6th Homework sheet Category Theory

- Deadline: 23 May, 13:00 sharp.
- Submit your solutions by handing them to the lecturer at the *beginning* of the lecture.
- Good luck!

Exercise 1 (10 points) A poset P is complete if every subset $X \subseteq P$ has a least upper bound and a greatest lower bound (equivalently, it is a poset which is both complete and cocomplete as a category). This means in particular that it has a least and greatest element. A complete Heyting algebra is a complete poset which is also cartesian closed as a category. Throughout this exercise H will be a fixed complete Heyting algebra.

An *H-set* is a pair (A, α) where A is a set and α is a function $A \to H$. A morphism of *H*-sets $f: (B, \beta) \to (A, \alpha)$ is a function $f: B \to A$ such that

 $\beta(b) \le \alpha(f(b))$

for every $b \in B$. Since such functions are closed under composition and contain all identities, this defines a category which we will denote by H**Sets**.

You have already proved in an earlier homework sheet that this category has pullbacks, so any morphism $f: (B, \beta) \to (A, \alpha)$ in this category induces a monotone function

$$f^*: \operatorname{Sub}(A, \alpha) \to \operatorname{Sub}(B, \beta)$$

by pullback. Show that this operation has a left adjoint \exists_f and a right adjoint $\forall_f.$