We will discuss two results. The first result is of Awodey and Warren, the second result is from Gambino and Garner.

1. When C is a finitely complete category with a weak factorization system, then C is a model of a form of Martin-Löf type theory with identity types [1].

2. When \mathbb{T} is a dependent type theory with the axioms for identity types, then its syntactic category $Syn(\mathbb{T})$ admits a non-trivial weak factorisation system [2].
1 Preliminaries

Before we get into this, we will define a weak factorisation system. Before that we need the following definition:

Definition 1.1 (Left lifting property (LLP)). Let C be a category. Given two maps $f : A \to B$ and $g : C \to D$ we say that f has the left lifting property with respect to g, and g has the right lifting property w.r.t. f, denoted by $f \Leftarrow g$, when for any commutative square as below:

\[
\begin{array}{ccc}
A & \xrightarrow{h} & C \\
\downarrow{f} & & \downarrow{g} \\
B & \xrightarrow{k} & D
\end{array}
\]

there exists a map $l : B \to C$, the diagonal filler, such that $g \circ l = k$ and $l \circ f = h$

Let C be a category. For a collection of maps \mathcal{M}, we define $\Leftarrow \mathcal{M}$ to be the collection of maps in C having the LLP with respect to all maps in \mathcal{M}. The collection \mathcal{M}^\Leftarrow is defined similarly.

Definition 1.2 (Weak factorization system). Let C be a category. A weak factorisation system on C consists of a pair of collections of maps $(\mathcal{L}, \mathcal{R})$, such that the following holds:

1. Every map f in C admits a factorization $f = p \circ i$ where $i \in \mathcal{L}$ and $p \in \mathcal{R}$
2. $\mathcal{R} = \mathcal{L}^\Leftarrow$ and $\mathcal{L} = \mathcal{R}^\Leftarrow$

We remind you of the following definition:

Definition 1.3 (Display map). A display map is a morphism between contexts, defined by "projecting away" a variable: $[\Gamma, x : A] \to \Gamma$, where Γ is a context and A is a type relative to Γ.
The result of Awodey and Warren

A model in Martin-Löf type theory is extensional if the following reflection rule is satisfied:

\[\vdash p : \text{Id}_A(a, b) \quad \vdash a = b : A \]

Type checking is decidable in the intensional theory, but not in extensional. That is the main reason why we should prefer intensional theories.

Lemma 2.1 ([1]). In the standard interpretation of type theory every locally cartesian closed category \(\mathcal{C} \) is extensional.

Definition 2.2 (Model category). A model category is a bicomplete category \(\mathcal{C} \) equipped with subcategories \(\mathcal{F} \) (fibrations), \(\mathcal{C} \) (cofibrations) and \(\mathcal{W} \) (weak equivalences) satisfying the following conditions:

1. ("Three-for-two") given a commutative triangle

\[
\begin{array}{ccc}
A & \xrightarrow{i} & C \\
\downarrow f & & \downarrow p \\
B & \xleftarrow{g} & \end{array}
\tag{\ast}
\]

if any two of \(f, g, h \) are weak equivalences, then so is the third.

2. both \((\mathcal{C}, \mathcal{F} \cap \mathcal{W}) \) and \((\mathcal{C} \cap \mathcal{W}, \mathcal{F}) \) are weak factorization systems.

A map \(f \) is an acyclic cofibration if it is in \(\mathcal{C} \cap \mathcal{W} \), i.e. both cofibration and a weak equivalence. Similarly, an acyclic fibration is a map in \(\mathcal{F} \cap \mathcal{W} \), i.e. which is simultaneously a fibration and a weak equivalence. An object \(A \) is said to be fibrant if the canonical map \(A \to 1 \) is a fibration. Similarly, \(A \) is cofibrant if \(0 \to A \) is a cofibration.

In a model category \(\mathcal{C} \) a path object \(A^I \) for an object \(A \) consists of a factorization

\[
\begin{array}{ccc}
A & \xrightarrow{r} & A^I \\
\downarrow \Delta & & \downarrow p \\
A \times A & \xleftarrow{p} & \end{array}
\]

of the diagonal map \(\Delta : A \to A \times A \) as an acyclic cofibration \(r \) followed by a fibration \(p \).
Theorem 2.3. Let C be a finitely complete category with a weak factorization system and a functorial choice $(−)^I$ of path objects in C, and all of its slices, which is stable under substitution, i.e. given any fibration $B \to A$ and any arrow $σ : A' \to A$, the evident comparison map is an isomorphism

$$σ^*(B^I) \cong (σ^*B)^I.$$

Proof. We may work in the empty context since the relevant structure is stable under slicing. Given a functorial choice of path objects $(*)$, we interpret, given a fibrant object A, the judgement $x, y : Id_A(x, y)$ as the path object fibration $p : A^I \to A \times A$. Because p is a fibration, the formation is satisfied. Similarly, the introduction rule is valid because $r : A \to A^I$ is a section of p.

For the elimination and conversion rules, assume that the following premises are given

$$x : A, y : A, z : Id_A(x, y) \vdash D(x, y, z) \text{ type},$$

$$x : A \vdash d(x) : D(x, x, r_A(x)).$$

We have, therefore, a fibration $g : D \to A^I$ together with a map $d : A \to D$ such that $g \circ d = r$. This data yields the following commutative square:

$$\begin{array}{ccc}
A & \xrightarrow{d} & C \\
\downarrow{r} & & \downarrow{g} \\
A^I & \xrightarrow{1} & A^I
\end{array}$$

Because g is a fibration and r is, by definition an acyclic cofibration, there exists a diagonal filler

$$\begin{array}{ccc}
A & \xrightarrow{d} & C \\
\downarrow{r} & \xrightarrow{J} & \downarrow{g} \\
A^I & \xrightarrow{1} & A^I
\end{array}$$

Choose such a filler J as the interpretation of the term:

$$x, y : A, z : Id_A(x, y) \vdash J_{A, D}(d, x, y, z) : D(x, y, z).$$

Then commutativity of the bottom triangle on the diagram above is precisely the conclusion of the elimination rule nad commutativity of the top triangle is the computation rule. □
3 The result of Gambino and Garner

Before we can prove the main theorem, we need to introduce a couple of definitions and lemma’s.

We remind you of the following definition:

Definition 3.1 (Syntactic category). We have a category $\text{Syn}(\mathbb{T})$. Objects are the contexts of \mathbb{T} and the morphisms are tuples of terms (context morphisms).

Let us consider a fixed context Γ.

Definition 3.2 (Dependent context). Let $\Phi = [x_0 : A_0, x_1 : A_1(x_0), \ldots, x_n : A_n(x_0, \ldots, x_{n-1})]$. We say that Φ is a dependent context relative to Γ when we can derive $\Gamma \vdash \Phi : Cxt$, where we mean the following sequence of judgements:

\[
\begin{align*}
\Gamma &\vdash A_0 : Type \\
\Gamma, x_0 : A_0 &\vdash A_1(x_0) : Type \\
&\vdots \\
\Gamma, x_0 : A_0, \ldots, x_{n-1} : A_{n-1}(x_0, \ldots, x_{n-1}) &\vdash A_n(x_0, \ldots, x_{n-1}) : Type
\end{align*}
\]

Let $a = (a_0, a_1, \ldots, a_n)$. With $\Gamma \vdash a : \Phi$ we mean:

\[
\begin{align*}
\Gamma &\vdash a_0 : A_0 \\
\Gamma &\vdash a_1 : A_1(a_0) \\
&\vdots \\
\Gamma &\vdash a_n : A_n(a_0, \ldots, a_{n-1})
\end{align*}
\]

We say that a is a dependent element of Φ with respect to Γ.

When we have a dependent context Φ, relative to Γ, we obtain a new context $[\Gamma, \Phi]$. We also obtain the following morphisms:

Definition 3.3 (Dependent projections). A dependent projection is a map $[\Gamma, \Phi] \rightarrow \Gamma$, "projecting away" the variables in Φ.

It is possible introduce expressions $\Gamma \vdash \Phi = \Psi : Cxt$ and $\Gamma \vdash a = b : \Phi$, such that these equalities satisfy reflexivity, symmetry and transitivity.

In addition to identity types we will introduce identity contexts:
Definition 3.4. For a context Φ and $a, b : \Phi$, we have an identity context $Id_\Phi(a, b)$.

We have the following deduction rules for identity contexts, where we leave implicit a context Γ, to which all notions are assumed to be relative:

- **Formation:**
 \[
 \frac{\vdash \Phi : Cxt}{a : \Phi, b : \Phi \vdash Id_\Phi(a, b) : Cxt}
 \]

- **Introduction:**
 \[
 \frac{\vdash \Phi : Cxt}{a : \Phi \vdash \text{refl}(a) : Id_\Phi(a, a)}
 \]

- **Elimination:**
 \[
 \frac{a : \Phi, b : \Phi, u : Id_\Phi(a, b), \Delta(a, b, u) \vdash C(a, b, u) : Cxt}{a : \Phi, \Delta(a, a, \text{refl}(a)) \vdash d(a) : C(a, a, \text{refl}(a))}
 \]
 \[
 \frac{a : \Phi, b : \Phi, u : Id_\Phi(a, b), \Delta(a, b, u) \vdash J(d, a, b, u) : C(a, b, u)}{a : \Phi, b : \Phi, u : Id_\Phi(a, b), \Delta(a, a, \text{refl}(a)) \vdash J(d, a, a, \text{refl}(a)) : d(a) : C(a, a, \text{refl}(a))}
 \]

Here $\Delta(a, b, u)$ is a dependent context.

We will need the following lemma's:

Lemma 3.5 ([2]). For every context Φ, we can derive a rule of the form

\[
\frac{a : \Phi \vdash \Phi(a) : Cxt}{a : \Phi, b : \Phi, u : Id_\Phi(a, b), e : \Phi(a) \vdash u_* (e) : \Phi(b)}
\]

such that

\[
\frac{a : \Phi, e : \Phi(a)}{(\text{refl}(a))_* (e) = e : \Phi(a)}
\]

holds

Lemma 3.6 ([2]). We can derive rules of the form

\[
\frac{u : Id_\Phi(a, b), v : Id_\Phi(b, c)}{v \circ u : Id_\Phi(a, c)}
\]

such that

\[
\frac{a : \Phi}{\mathbb{1}_a : Id_\Phi(a, a)}
\]

such that

\[
\frac{u : Id_\Phi(a, b)}{\mathbb{1}_b \circ u = u : Id_\Phi(a, b)}
\]

holds
Lemma 3.7 ([2]). We can derive a rule
\[
\frac{u : \text{Id}_\Phi(a,b)}{\psi_u : \text{Id}_\Phi(u \circ \mathbb{1}_a, u)}
\]
such that
\[
\frac{a : \Phi}{\psi_{\mathbb{1}_a} = \mathbb{1} : \text{Id}_\Phi(\mathbb{1}_a, \mathbb{1}_a)}
\]
holds

Lemma 3.8 (Retract argument, [3]). Suppose \(f = p \circ i \) and \(f \) has the RLP with respect to \(i \). Then \(f \) is a retract of \(p \).

We are now ready to prove the main theorem.

Theorem 3.9. Let \(\mathbb{T} \) be a dependent type theory with axioms for identity types. Let \(D \) be the set of display maps in \(\text{Syn}(\mathbb{T}) \). The pair \((L, R)\), where \(L := \mathbb{r} D \) and \(R := L^\mathbb{r} \), forms a weak factorisation system on \(\text{Syn}(\mathbb{T}) \).

We will show the theorem by proving the following two lemma’s:

Lemma 3.10. Every map \(f \) admits a factorisation \(f = p \circ i \), where \(i \in L \) and \(p \) is a dependent projection.

Lemma 3.11. \(L = \mathbb{r} R \)

Proof of Theorem 3.9. Note that a display map is a dependent projection. Also note that \(D \subseteq R \). We have that \(R \) is closed under composition, and we can create all dependent projections from compositions of display maps, so \(R \) contains all dependent projections. Then Lemma 3.10 gives us axiom 1 in Definition 1.2. Then by definition of \((L, R)\) and Lemma 3.11 we get axiom 2 in Definition 1.2, which proves the theorem.

We will now continue to prove the lemma’s that we used.

Proof of Lemma 3.10. Let \(f : \Phi \to \Psi \) be a context morphism. Define \(\text{Id}(f) := [x : \Phi, y : \Psi, u : \text{Id}_\Phi(f(x), y)] \). We will now show that \(f = p_f \circ i_f \), where \(p_f := [y] \) and \(i_f := [x, f(x), 1_f(x)] \). The factorization is displayed in the following picture:

\[
\Phi \xrightarrow{i_f} \text{Id}(f) \xrightarrow{p_f} \Psi
\]

It is clear that \(p_f \) is a dependent projection. So we only need to show that \(i_f \in A \), which means that \(i_f \) has the LLP with respect to all display maps.
We thus want to show that the commuting diagram above, where d is some display map, has a diagonal filler, df_1. Display maps are closed under pullbacks (we proved this in one of the lectures).

This means that we also have a commuting diagram as below:

$$
\begin{array}{c}
\Phi \xrightarrow{g} [v : \Delta, z : D(v)] \\
\downarrow_{ij} \quad \downarrow_{d} \\
Id(f) \xrightarrow{h} [v \in \Delta]
\end{array}
$$

And a unique morphism $e : \Phi \to X$, such that $d \circ e = i_f$ and $j \circ e = g$. Moreover, \bar{d} is also a pullback and so X can be written as $[Id(f), z : C(x, y, u)]$ where $C(x, y, u)$ is a dependent type relative to $Id(f)$.

So if we can find a diagonal filler df_2 for this diagram:

$$
\begin{array}{c}
\Psi \xrightarrow{e} [Id(f), z : C(x, y, u)] \\
\downarrow_{ij} \quad \downarrow_{d} \\
Id(f) \xrightarrow{1_{Id(f)}} \xrightarrow{id} Id(f)
\end{array}
$$

Then by concatenation of df_2 with j, we get a diagonal filler for the first diagram.

The rest of the proof will be dedicated to finding df_2.

We can derive

$$
x : \Phi, y_0 : \Psi, y_1 : \Psi, v : Id_{\Psi}(y_0, y_1), u : Id_{\Psi}(f(x), y), z : C(x, y_0, u) \vdash C(x, y_1, v \circ u) : Type
$$

(3.1)

since we can form $v \circ u : Id_{\Psi}(f(x), y_1)$ with Lemma 3.6 and thus a context $Id(f) = [x : \Phi, y_1 : \Psi, v \circ u : Id_{\Psi}(f(x), y_1)]$, so we can obtain the type $C(x, y_1, v \circ u)$ from the display map \bar{d}.

We can also derive

$$
x : \Phi, y : \Psi, u : Id_{\Psi}(f(x), y), z : C(x, y, u) \vdash z : C(x, y, 1_y \circ y)
$$

(3.2)

by the morphism e and again using Lemma 3.6.
Then, by the elimination rule for identity contexts, we obtain from 3.1 and 3.2

\[x : \Phi, y_0 : \Psi, y_1 : \Psi, v : Id_{\Psi}(y_0, y_1), u : Id_{\Psi}(f(x), y), z : C(x, y_0, u) \vdash J(z, y_0, y_1, v) : C(x, y_1, v \circ u) \]

(3.3)

From 3.3 we can then obtain

\[x : \Phi, y : \Psi, u : Id_{\Psi}(f(x), y), z : C(x, f(x), u) \vdash J(z, f(x), y, u) : C(x, y, u \circ u_{f(x)}) \]

(3.4)

Since here \(z \) only depends on \(x \), we can substitute it for \(d(x) \) to get

\[x : \Phi, y : \Psi, u : Id_{\Psi}(f(x), y) \vdash J(d(x), f(x), y, u) : C(x, y, u \circ u_{f(x)}) \]

(3.5)

Since we have \(u : Id_{\Psi}(f(x), y) \), by Lemma 3.7 we also have \(\psi_u : Id(u \circ u_{f(x)}, u) \).

By this and by Lemma 3.5 we obtain

\[x : \Phi, y : \Psi, u : Id_{\Psi}(f(x), y) \vdash (\psi_u)_*(J(d(x), f(x), y, u) : C(x, y, u)) \]

(3.6)

We now claim that the required filler, \(df_2 \) can be defined as \([x, y, u, (\psi_u)_*(J(f(x), y, u, d(x)))] \).

That the bottom triangle commutes is obvious. The commutativity of the top triangle follows from the following equalities:

\[(\psi_{u_{f(x)}})_*(J(d(x), f(x), y, u)) = J(d(x), f(x), f(x), u_{f(x)}) = d(x) \]

\[\square \]

Proof of Lemma 3.11. Since \(L =^h D \) and \(R = L^h \), we have that \(D \subseteq R \). This implies that \(^h B \subseteq^h D = L \). We still need to show that \(L \subseteq^h R \), that every map in \(L \) has the LLP with respect to every map in \(R \). We have that \(L =^h D \), so every map in \(L \) has the LLP with respect to every display map. But dependent projections are composites of display maps, so also every map in \(L \) has the LLP with respect to every dependent projection.

Lemma 3.8 and Lemma 3.10 tell us that every map in \(R \) is a retract of a dependent projection. From this we can conclude that \(L \subseteq^h R \).

\[\square \]
4 Exercises

In the following exercises, consider the category of sets Set

1. What class of functions is equal to $\{\emptyset \to \{\ast\}\}$?

2. What class of functions is equal to $\Rightarrow\{\{a,b\} \to \{\ast\}\}$?

 We have that a function $f : X \to Y$ has a section when there is a function $g : Y \to X$ such that $f \circ g = 1_X$.

3. Let \mathcal{L} be all monomorphisms and \mathcal{R} be all epimorphisms. Show that $(\mathcal{L}, \mathcal{R})$ is a weak factorisation system for Set iff the Axiom of Choice holds ($\text{Hint: AC is equivalent to some function having a section}$).
Bibliography

