1st Exercise sheet Model Theory 7 Feb 2017

Exercise 1 A theory T is *consistent* if it has a model and *complete* if it is consistent and for any formula φ we have

 $T \models \varphi$ or $T \models \neg \varphi$.

Show that the following are equivalent for a consistent theory T:

- (1) T is complete.
- (2) All models of T are elementarily equivalent.
- (3) There is a structure M such that T and Th(M) have the same models.

Exercise 2 Let M_1, M_2 be *L*-structures. Define an *L*-structure $M_1 \times M_2$ whose underlying set is the cartesian product of the underlying sets of M_1 and M_2 and such that the projections $\pi_i: M_1 \times M_2 \to M_i$ for i = 1, 2 are homomorphisms satisfying the following universal property: given an *L*-structure *N* and homomorphisms $\varphi_i: N \to M_i$ for i = 1, 2, there is a unique homomorphism $\psi: N \to M_1 \times M_2$ such that $\pi_i \circ \psi = \varphi_i$ for i = 1, 2.

Exercise 3 An *isomorphism* is a bijective homomorphism $h: M \to N$ of *L*-structures whose inverse h^{-1} is a homomorphism as well.

Show that if $h: M \to N$ is an isomorphism and $\varphi(x_1, \ldots, x_k)$ is any *L*-formula, then

 $M \models \varphi(m_1, \dots, m_k) \Leftrightarrow N \models \varphi(h(m_1), \dots, h(m_k))$

for any $m_1, \ldots, m_k \in M$.

Exercise 4 An element a in an L-structure M is definable if there is an L-formula $\varphi(x)$ such that for any $m \in M$

$$M \models \varphi(m) \Leftrightarrow a = m$$

(a) What are the definable elements in $(\mathbb{N}, +)$? And in $(\mathbb{Z}, +)$?

(b) (Challenging!) Define an equivalence relation on the integers by putting $a \sim b$ if for any formula $\varphi(x)$ with one free variable x in the language of (\mathbb{Z}, \cdot) , we have

$$(\mathbb{Z}, \cdot) \models \varphi(a) \Leftrightarrow (\mathbb{Z}, \cdot) \models \varphi(b).$$

Describe an algorithm for determining whether two integers are equivalent in this sense.