13th Exercise sheet Model Theory 21 Mar 2017

Exercise 1 Let $L = \{E\}$ where E is a binary relation symbol. For each of the following theories either prove that they have quantifier elimination, or give an example showing that they do not have quantifier elimination; in the latter case, also formulate a natural extension $T' \supseteq T$ in an extended language $L' \supseteq L$ in which they do have quantifier elimination.

- (a) E is an equivalence relation with infinitely many equivalence classes, each having size 2.
- (b) E is an equivalence relation with infinitely many equivalence classes, each having infinite size.
- (c) E is an equivalence relation with infinitely many equivalence classes of size 2, infinitely many equivalence classes of size 3, and each equivalence class has size 2 or 3.

Exercise 2 Let $M = (\mathbb{Z}, s)$, where s(x) = x + 1, and let T = Th(M).

- (a) Show that T has quantifier elimination.
- (b) Give a concrete description of a countable ω -saturated model of T.
- (c) Describe the type spaces of T.
- (d) Show that $\operatorname{Th}(\mathbb{N}, s)$ does not have quantifier elimination.
- **Exercise 3** (a) Show that the theory of $(\mathbb{Z}, <)$ has quantifier elimination in the language where we add a function symbol s for the function s(x) = x + 1.
 - (b) Give a concrete description of a countable ω -saturated model of Th($\mathbb{Z}, <$).
 - (c) Describe the type spaces of $\operatorname{Th}(\mathbb{Z}, <)$

Exercise 4 Let T be the theory of infinite vector spaces over \mathbb{Q} .

- (a) Show that T has quantifier elimination.
- (b) Which models of T are $\kappa\text{-saturated}?$
- (c) Describe the type spaces of T.