2nd Exercise sheet Model Theory 10 Feb 2017

- **Exercise 1** (a) Let $A_0 \subseteq A_1 \subseteq A_2 \subseteq ...$ be an increasing sequence of sets, and write $A := \bigcup_{n \in \mathbb{N}} A_n$. Show that any finite subset of A is already a finite subset of some A_n .
 - (b) Suppose that $L_0 \subseteq L_1 \subseteq L_2 \subseteq ...$ is an increasing sequence of languages and $L = \bigcup_{n \in \mathbb{N}} L_n$. Show that any *L*-formula is also an L_n -formula for some *n*.
 - (c) Suppose that $T_0 \subseteq T_1 \subseteq T_2 \subseteq \ldots$ is an increasing sequence of finitely consistent theories. Prove that $\bigcup_{n \in \mathbb{N}} T_n$ is finitely consistent as well.

Exercise 2 A class of models \mathcal{K} in some fixed signature is called an *elementary* class if there is a first-order theory such that \mathcal{K} consists of precisely those *L*-structures that are models of *T*.

Show that if \mathcal{K} is a class of *L*-structures and both \mathcal{K} and its complement (in the class of all *L*-structures) are elementary, then there is a sentence φ such that M belongs to \mathcal{K} if and only if $M \models \varphi$.

Exercise 3 We work over the empty language L (no constants, function or relations symbols). Show that the class of infinite L-structures is elementary, but the class of finite L-structures is not. Deduce that there is no sentence φ that is true in an L-structure if and only if the L-structure is infinite.

Exercise 4 Let < be a binary predicate symbol and fix $L = \{<\}$. Write \mathcal{K} for the class of *L*-structures that are well-ordered by < (meaning that \mathcal{K} consists of those *L*-structures *M* on which < defines a linear order without infinitely descending sequences $m_0 > m_1 > m_2 > \ldots$).

Show that the class \mathcal{K} is not elementary.