3rd Exercise sheet Model Theory 14 Feb 2017

Exercise 1 Assume T is an L-theory, $\varphi(x)$ is an L-formula and c is a constant not occurring in L.

- (a) Prove: $T \models \varphi(c)$ iff $T \models \forall x \varphi(x)$.
- (b) Prove: T is consistent with $\varphi(c)$ iff T is consistent with $\exists x \varphi(x)$.

Exercise 2 For any *L*-structure *A* we write AtDiag(A) for the collection of atomic L_A -sentences true in *A*. A formula is called *positive primitive* if it is of the form

$$\exists \overline{x} \bigwedge \psi_i(\overline{y}, \overline{x}),$$

where each $\psi_i(\overline{y}, \overline{x})$ is an atomic formula.

- (a) Show that there is a one-to-one correspondence between L_A -structures B which model AtDiag(A) and L-structures C with a homomorphism $f: A \to C$.
- (b) Show that the following are equivalent for an L-theory T:
 - (i) If $B \models T$ and $f: A \rightarrow B$ is a homomorphism, then $A \models T$.
 - (ii) There is a set of positive primitive sentences S such that $\{\neg \sigma : \sigma \in S\}$ and T have the same models.

Exercise 3 A class \mathcal{K} of *L*-structures is a PC_{Δ} -class, if there is an extension L' of L and an L'-theory T' such that \mathcal{K} consists of all reducts to L of models of T'.

Show that a PC_{Δ} -class of *L*-structures is *L*-elementary if and only if it is closed under *L*-elementary substructures.

Exercise 4 (Challenging!) An *existential sentence* is a sentence which consists of a string of existential quantifiers followed by a quantifier-free formula.

Show that a theory T can be axiomatised using existential sentences if and only if its models are closed under extensions.