6th Exercise sheet Model Theory
 24 Feb 2017

Exercise 1 Give a direct proof of Proposition 6.2, that is, without using Theorem 6.3.

Hint: Simply use induction on n.

Exercise 2 Let $I=\{0,1\}$ be the linear order in which $0<1$ and put $M:=$ $(\mathbb{Z},<)$ and $N:=(I,<) \times(\mathbb{Z},<)$, where N is ordered lexicographically. Show that for any $i \in I$ the embedding $h_{i}: M \rightarrow N$ obtained by mapping $z \in \mathbb{Z}$ to (i, z) is elementary.

Hint: Let $A \subseteq \mathbb{Z}$ be finite and let $f: A \rightarrow N$ be an order and distance preserving function. Show that $(M, a)_{a \in A} \equiv(N, f(a))_{a \in A}$ (that is, show that if we consider the two L_{A}-structures obtained by interpreting any $a \in A$ as a itself in M and as $f(a)$ in N, then these two structures are L_{A}-elementarily equivalent).

Exercise 3 The circle of length $N \in \mathbb{N}$ is the structure $\mathcal{C}_{N}:=\left(C_{N}, R\right)$, where $C_{N}=\{0, \ldots, N-1\}$ and $R=\left\{(i, j) \in C_{N} \times C_{N}: j=i+1 \bmod N\right\}$.
(a) Give a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $\mathcal{C}_{N} \equiv{ }_{n} \mathcal{C}_{N^{\prime}}$ whenever $N, N^{\prime} \geq f(n)$.
(b) Is there a first-order formula φ such that $\mathcal{C}_{N} \models \varphi$ if and only if N is even?

Exercise 4 Show that there is no formula of first-order logic which expresses " (a, b) is in the transitive closure of R ", even on finite structures. (For infinite structures it is easy to show there is no such formula.)

