9th Exercise sheet Model Theory 7 Mar 2017

Exercise 1 Prove the generalised omitting types theorem: Let T be a consistent theory in a countable language and let $\{p_i : i \in \mathbb{N}\}$ be a sequence of partial n_i -types (for varying n_i). If none of the p_i is isolated in T, then T has a countable model which omits all p_i .

Exercise 2 Prove that the omitting types theorem is specific to the countable case: give an example of a consistent theory T in an uncountable language and a partial type in T which is not isolated, but which is nevertheless realised in every model of T.

Exercise 3 Show that (\mathbb{N}, \cdot) is an atomic model of $\mathrm{Th}(\mathbb{N}, \cdot)$.

Exercise 4 Let $M = (\mathbb{Z}, s)$, where s is the successor function, and $T = \text{Th}(\mathbb{Z}, s)$.

- (a) Show that (\mathbb{Z}, s) is an atomic model of T.
- (b) Show that T is κ -categorical for uncountable κ .

Hint: Guess a convenient axiomatisation S for T and show completeness of S by showing that it is κ -categorical for uncountable κ .

(c) Describe all $S_n(T)$ and convince yourself that the isolated points are dense in these type spaces.