5th Homework sheet Model Theory

- Deadline: 13 March, 13:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the *beginning of the lecture*.
- Good luck!

Exercise 1 Let M be an L-structure and A be a subset of M. We say that b is algebraic over A if there is an L-formula $\varphi(x, \overline{y})$ and a tuple \overline{a} from A such that

 $M \models \varphi(b, \overline{a})$

and the set

$$\{x\in M\colon M\models\varphi(x,\overline{a})\}$$

is finite. We write $\operatorname{acl}(A)$ for the set of elements in M that are algebraic over A.

- (a) (10 points) Show that $A \subseteq \operatorname{acl}(A)$.
- (b) (20 points) Show that $\operatorname{acl}(\operatorname{acl}(A)) = \operatorname{acl}(A)$.
- (c) (30 points) Write $T = \text{Th}_{L_A}((M, a)_{a \in A})$, the set of all L_A -sentences true in M. Show that if b is algebraic over A, then $\text{tp}_M^{L_A}(b)$ is isolated in T.
- (d) (40 points) Suppose that T is a nice ω -categorical theory. Show that there is a function $f: \mathbb{N} \to \mathbb{N}$ such that for any model M of T and any subset $A \subseteq M$ with $|A| \leq n$, we have $|\operatorname{acl}(A)| \leq f(n)$.