
CHAPTER 1

Tests

1. Tests for quantifier elimination

We have not been overly explicit about this, but for what follows it is important to have
⊥ or > among one’s atomic sentences.

Definition 1.1. A theory T in a language L has quantifier elimination if for any L-formula
ϕ(x1, . . . , xn) there is quantifier-free L-formula ψ(x1, . . . , xn) such that

T |= ϕ↔ ψ.

We give two tests for quantifier elimination. The first one is simple:

Definition 1.2. A literal is an atomic formula or a negated atomic formula. A formula
will be called primitive if it is of the form

∃xϕ(y, x)

where ϕ is a conjunction of literals.

Proposition 1.3. A theory T has quantifier elimination if and only if any primitive for-
mula is equivalent over T to a quantifier-free formula.

Proof. Suppose every primitive formula is equivalent over T to a quantifier-free formula.
Then every formula of the form

∃xϕ(y, x)

with ϕ quantifier-free is also equivalent to a quantifier-free formula: for we can write ϕ(y, x)
in disjunctive normal form, that is, as a disjunction

∨
i ϕi(y, x), where each ϕi(y, x) is a con-

junctions of literals. Then we can push the disjunction through the existential quantifier, using
that

∃x
∨
i

ϕi(y, x)↔
∨
i

∃xϕi(y, x),

so that we are left with a disjunction of primitive formulas, which is equivalent to a quantifier-
free formula, by assumption.

Now let ϕ be an arbitrary formula. We can rewrite ϕ into an equivalent formula using
only ¬,∧ and ∃, and then, working inside out, eliminate all the existential quantifiers using the
previous observation. �

The second is a bit more complicated, but generally easier to apply. We need the following
notion:
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Definition 1.4. Let M and N be models. A local isomorphism is a map

f : {m1, . . . ,mn} ⊆M → N

such that

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(f(m1), . . . , f(mn))

holds for all quantifier-free formulas ϕ. (Note that this is equivalent to it holding for all atomic
formulas.)

Theorem 1.5. A theory T has quantifier elimination if and only if, given

(1) two models M and N of T , where N is ω-saturated,
(2) a local isomorphism f : {a1, . . . , an} ⊆M → N , and
(3) an element m ∈M ,

there is a local isomorphism g: {a1, . . . , an,m} → N which extends f .

Proof. Necessity is clear: if T has quantifier elimination, then any local isomorphism is
an elementary map, and we have

(M,a1, . . . , an) ≡ (N, f(a1), . . . , f(an)).

The type p(x) = tp(M,a1,...,an)(m) is satisfied in (M,a1, . . . , an), so it is finitely satisfiable in

(N, f(a1), . . . , f(an)). Because the latter is ω-saturated, we can find an element n ∈ N realizing
this type and we can extend f by putting g(m) = n.

Conversely, let L be the language of T and suppose ∃xϕ(y, x) is a primitive formula not
equivalent over T to a quantifier-free formula in L. Extend the language with constants c and
work in the extended language. Now let T0 be the collection of all quantifier-free sentences
which are a consequence over T of ¬∃xϕ(c, x). Then the union of T , T0 and ∃y ϕ(c, y) has a
model M .

Next, consider T1, which consists of the theory T , all quantifier-free sentences in the ex-
tended language which are true in M , as well as the sentence ¬∃y ϕ(c, y). This theory T1 is
consistent: for if not, there would be a quantifier-free sentence ψ(c) which is false in M and
and which is a consequence of ¬∃xϕ(c, x) over T . But such a sentence must belong to T0 and
therefore be true in M . Contradiction!

So T1 has a model N and we may assume that N is ω-saturated. Now let f be the map
which sends the interpretation of ci in M to its interpretation in N and let m be such that
M |= ϕ(c,m). This f is a local isomorphism, but cannot be extended to one whose domain
includes m, because ∃y ϕ(c, y) fails in N . �

2. Tests for completeness

Theorem 1.6. (Vaught’s Test) If a theory T in a language L is consistent, has no finite
models and is λ-categorical for some λ ≥ |L|, then T is complete.

Proof. If T were not complete, there would a sentence ψ such that neither ψ nor ¬ψ
would follow from T . But then both T ∪ {ψ} and T ∪ {¬ψ} would have infinite models. Since
λ ≥ |L|, both would actually have models of cardinality λ by the theorems of Skolem and
Löwenheim. But these cannot be isomorphic, because they are not elementarily equivalent,
contradicting the λ-categoricity of T . �
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Theorem 1.7. If a theory T has quantifier elimination and there is a model M of T that
can be embedded into every other model of T , then T is complete.

Proof. If N is any model of T , then M can be embedded into it. So M and N witness the
same quantifier-free formulas with parameters from M . But since T has quantifier elimination,
this implies that the same is true for all formulas with parameters from M . So the embedding
is elementary and M and N are elementarily equivalent. Hence all models of T are elementary
equivalent and so T must be complete. �

3. Tests for ω-saturation

Theorem 1.8. Let T be a nice theory. A model M of T is ω-saturated if and only if

(1) every countable model of T embeds elementarily into M , and
(2) M is ω-homogeneous.

Proof. We have already shown necessity, so we now show that (1) and (2) imply that
M is ω-saturated. To that purpose let X = {m1, . . . ,mk} be a finite set of parameters from
M and p be a 1-type over X which is finitely satisfiable in M . Then p can be realized in an
elementary extension B of M , by an element b say, and by the downward Löwenheim-Skolem
Theorem there is a countable elementary substructure A of B such that A contains both X
and b.

Now, by assumption (1) there is an elementary embedding f :A → M . Write ni = f(mi),
a = f(b) and Y = {n1, . . . , nk}. Since f is an elementary embedding, we see that g:Y →
X:ni 7→ mi is an elementary map, so using that M is ω-homogeneous, we see that g can be
extended to an elementary map h whose domain includes a. Then m = h(a) realizes p, for we
have

M |= ϕ(m1, . . . ,mk,m) ⇔ M |= ϕ(h(n1), . . . , h(nk), h(a))

⇔ M |= ϕ(n1, . . . , nk, a)

⇔ M |= ϕ(f(m1), . . . , f(mk), f(b))

⇔ A |= ϕ(m1, . . . ,mk, b)

⇔ B |= ϕ(m1, . . . ,mk, b)

⇔ ϕ(m1, . . . ,mk, x) ∈ p(x)

for any formula ϕ(y, x). �

Corollary 1.9. Suppose T is a nice theory with quantifier elimination and suppose M is
a model of T such that:

(1) every countable model of T embeds into M , and
(2) if a1, . . . , an,m are elements from M and f : {a1, . . . , an} →M is a local isomorphism,

then f can be extended to a local isomorphism whose domain includes m.

Then M is ω-saturated.

Proof. If T has quantifier elimination then any embedding between models of T is ele-
mentary and any local isomorphism between models of T is an elementary map. So this follows
from the previous theorem. �
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Corollary 1.10. Let κ be an infinite cardinal and suppose T is a κ-categorical theory in a
countable language. If M is an ω-homogeneous model of cardinality κ, then M is ω-saturated.

Proof. Since T must be a nice theory, it suffices to show that every countable model can
be embedded into M . But if N0 is a countable model of T then it embeds elementarily into a
model of N1 of cardinality κ, by the upward Löwenheim-Skolem theorem. But then N1

∼= M ,
so that N0 embeds elementarily into M as well. �



CHAPTER 2

Examples

1. Dense linear orders

The theory DLO of dense linear orders without endpoints is the theory in the language <
saying that:

(1) < defines an ordering: if x < y then not x = y and not y < x, and if x < y and y < z
then x < z.

(2) The order < is linear: x < y or x = y or y < x.
(3) It is dense: this says that x < y implies that there is a z with x < z < y.
(4) It has no endpoints: for every x there are y and z such that y < x < z.

Examples are Q and R.

Theorem 2.1. The theory DLO is ω-categorical.

Proof. Let M and N be two countable dense linear orders without endpoints. Fix enu-
merations M = {m0,m1, . . .} and N = {n0, n1, . . .}. We will construct an increasing sequence
of local isomorphisms fk from some subset of M to N such that mi belongs to the domain of
f2i and ni belongs to the codomain of f2i+1. Then f =

⋃
i fi will be the desired isomorphism

between M and N . We start with f0 = ∅.

So suppose k + 1 = 2i and we have constructed fj for all j ≤ k and we want to construct
fk+1. If mi already belongs to the domain of fk, we do not need to do anything and we put
fk+1 = fk. If not, then we determine the relative position of mi to all m belonging to the
domain of dom(fk). There are only a few possibilities: (1) mi is small than all of these, (2) mi

is bigger than all of these, or (3) mi is in between two elements m < m′ in the domain and then
we may choose for m and m′ its nearest neighbours so that no other element from the domain
is in between m and m′. In case (1) we choose for fk+1(mi) an element strictly smaller than all
the elements in the image of fk, in case (2) an element strictly bigger than all the elements in
the image of fk and in case (3) an element strictly between f(m) and f(m′). This is possible
since N is a dense linear order without endpoints.

If k+ 1 = 2i+ 1, we argue in the same way in order to find a suitable preimage for ni. �

We see from the proof: if M is a countable dense linear order, then any local isomorphism
from a subset of M to itself can be extended to an automorphism of the entire structure M . And
since every n-type is realized in M , we see that the n-types in variables x1, . . . , xn correspond
to possible ways to order the xi (while allowing for some of them to coincide). In particular,
there are only finitely many of them and each of them is generated by a single quantifier-free
formula. From this it follows:

Theorem 2.2. The theory DLO has quantifier elimination.
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6 2. EXAMPLES

Proof. Let [ϕ] be the open corresponding to a formula ϕ. It consists of finitely many n-
types, each of which is generated by a quantifier-free formula. So let ψ1, . . . , ψk be the quantifier-
free formulas generating the n-types belonging to [ϕ]. Then DLO |= ϕ↔ ψ1 ∨ . . . ∨ ψk. �

In fact, this would also have followed easily from Theorem 1.5.

Exercise 1. Show that DLO is not λ-categorical for any λ > ω.

2. Random graph

Definition 2.3. By a graph we will mean a pair (V,E) where V is a non-empty set and E
is a binary relation on V which is both symmetric and irreflexive. We will refer to the elements
of V as the vertices and the elements of E as the edges. If xEy holds for two x, y ∈ V , we say
that x and y are adjacent.

A graph (V,E) will be called random if for any two finite sets of vertices X and Y which
are disjoint there is a vertex v 6∈ X ∪ Y which adjacent to all of the vertices in X and to none
of the vertices in Y . We will write RG for the theory of random graphs.

Theorem 2.4. If one is given

(1) two random graphs A and B,
(2) a local isomorphism f :A0 ⊆ A→ B, where A0 is finite, and
(3) an element a ∈ A,

then one can extend the local isomorphism f to one whose domain includes a.

Proof. Clearly, we only need to consider the case where a 6∈ A0. Then consider the
following two finite subsets of B:

X = { f(a0) : a0 ∈ A0, a0 adjacent to a },
Y = { f(a0) : a0 ∈ A0, a0 not adjacent to a }.

These subsets are disjoint and B is a random graph, so there is an element b ∈ B which is
adjacent to all elements in X and none of the elements in Y . This means that we can extend
the local isomorphism f by putting f(a) = b. �

Corollary 2.5. (1) The theory RG is ω-categorical.
(2) Any model of RG is ω-saturated.
(3) The theory RG has quantifier elimination.

3. Atomless Boolean algebras

Definition 2.6. A (bounded) lattice L is a partial order in which every finite subset A ⊆ L
has a least upper bound (a supremum or join, written

∨
A) and a greatest lower bound (an

infimum or meet, written
∧
A). More concretely this means that L has a smallest element 0,

a largest element 1 and that for any two elements p, q ∈ L there are elements p ∧ q and p ∨ q
such that:

x ≤ p ∧ q ⇔ x ≤ p and x ≤ q,
p ∨ q ≤ x ⇔ p ≤ x and p ≤ x.
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Exercise 2. Show that in any lattice ∧ and ∨ are associative, commutative and idempotent
(that is, x∧x = x and x∨x = x hold). In addition, show that the absorbative laws x = x∧(x∨y)
and x = x ∨ (x ∧ y) hold, as well as 0 ∧ x = 0 and 1 ∨ y = y.

Exercise 3. Conversely, show that if L is a set equipped with two binary operations ∧
and ∨ and in which there are elements 0, 1 ∈ L such that all the properties from the previous
exercise hold, then there is a unique ordering on L turning L into a lattice. (Hint: observe that
in a lattice we have x ≤ y iff x = x ∧ y iff y = x ∨ y.)

Definition 2.7. A lattice L is called distributive if both distributive laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

are satisfied. A distributive lattice L is called a Boolean algebra if for any element x ∈ L there
is an element ¬x ∈ L (its complement) for which

x ∧ ¬x = 0 and x ∨ ¬x = 1

hold.

Example 2.8. For any set X the powerset P(X) is a Boolean algebra with order given by
inclusion, meets and joins given by intersection and union, complements given by set-theoretic
complement and smallest and largest elements ∅ and X.

Example 2.9. If X is a topological space, then the clopens in X also form a Boolean
algebra with the same operations as in the previous example.

Exercise 4. Show that in any lattice one distributive law implies the other.

Exercise 5. Let L be a distributive lattice and suppose x ∈ L is a complemented element,
meaning that there is an element y ∈ L such that x ∧ y = 0 and x ∨ y = 1. Show that for any
other element p ∈ L, we have

x ∧ p = 0 =⇒ p ≤ y and x ∨ p = 1 =⇒ y ≤ p.
Deduce that complements are unique.

Exercise 6. Show that if B is a Boolean algebra, then Bop, which is B with the order
reversed, is a Boolean algebra as well. In fact, B and Bop are isomorphic with the isomorphism
given by negating (taking complements). Deduce the De Morgan laws: ¬(p∧ q) = ¬p∨¬q and
¬(p ∨ q) = ¬p ∧ ¬q.

For what follows we need to understand finitely generated Boolean algebras. Recall that a
Boolean algebra B is finitely generated if there are elements b1, . . . , bn ∈ B such that there is
no proper Boolean subalgebra of B also containing the elements b1, . . . , bn.

Theorem 2.10. Finitely generated Boolean algebras are finite.

Proof. Suppose B is generated by b1, b2, . . . , bn. Let C be the collection of elements in B
that can be written as “conjunctions” of the form c1 ∧ c2 ∧ . . . ∧ cn where ci is either bi or its
complement, and let D the collection of elements in B that can be written as “disjunctions” of
elements in C. The collections C and D are finite, because they contains at most 2n and 2(2

n)

elements, respectively. But D is a Boolean subalgebra of B, because it contains 0 (no disjuncts),
1 (all disjuncts) and is closed under disjunction (clear), conjunction (by the distributive laws)
and negation (by the De Morgan laws). So B = D is finite; in fact, it contains at most 2(2

n)

many elements. �
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So we need to understand finite Boolean algebras. But these are always of the form P(X),
where X is finite. To show this, we need some definitions.

Definition 2.11. An element a in a Boolean algebra B is called an atom if a > 0 and
there are no elements strictly in between a and 0. A Boolean algebra in which for any element
x > 0 there is an atom a such that x ≥ a is called atomic. A Boolean algebra in which there
are no atoms is called atomless.

Proposition 2.12. Finite Boolean algebras are atomic.

Proof. Let B is a finite Boolean algebra. Suppose x0 ∈ B is an element different from
0 and there are no atoms a with x0 ≥ a. This means that x0 itself is no atom, so there is an
element x1 with x0 > x1 > 0. Of course, x1 cannot be atom, by our assumption on x0, so
there must be an element x2 such that x0 > x1 > x2 > 0. Continuing in this way we create an
infinitely descending sequence of elements in B, which contradicts its finiteness. �

Proposition 2.13. If B is an atomic Boolean algebra and x < y, then there is an atom
a ∈ B which lies below y, but not below x.

Proof. If x < y, then y ∧ ¬x 6= 0 (for if y ∧ ¬x = 0, then ¬x ≤ ¬y and x ≥ y by the
exercises). So there is an atom a with y∧¬x ≥ a. So we have y ≥ a and ¬x ≥ a; but the latter
implies that x 6≥ a, for if also x ≥ a, then 0 = x ∧ ¬x ≥ a. �

Theorem 2.14. All finite Boolean algebras B are of the form P(X) for a finite set X. In
fact, X can be chosen to be the collection of atoms in B.

Proof. Let B be a finite Boolean algebra and let A be its collection of atoms. Then we
define maps f :B → P(A) by sending b ∈ B to the set f(b) = {a ∈ A : a ≤ b} and g:P(A)→ B
by sending a set X ⊆ A to g(X) =

∨
X. It will suffice to prove that f and g are order preserving

and each other’s inverses (since all operations in a Boolean algebra are uniquely determined in
terms of its order, any order isomorphism between Boolean algebras must be an isomorphism
of Boolean algebras). That they are order preserving is clear, so we only check that they are
each other’s inverses.

So if b is an element in B and X = {a ∈ A : a ≤ b}, then b is an upper bound for X, so
b ≥

∨
X. Here we must have equality: for if b >

∨
X, then the previous two results imply that

there is an atom a′ such that b ≥ a′ but not
∨
X ≥ a′. But the former implies that a′ ∈ X so

we should have
∨
X ≥ a′ after all. Contradiction! We deduce g(f(b)) = b.

Conversely, let X be a set of atoms in B and b =
∨
X. Clearly, all atoms in X are below

b, but the converse is true as well: for suppose a′ is an atom and b ≥ a′. Then

0 < a′ = (a′ ∧ b) = a′ ∧
∨
a∈X

a =
∨
a∈X

(a′ ∧ a).

So there must be an element a ∈ X such that a′ ∧ a is not zero. But since a and a′ are atoms
and a′ ∧ a is below each of them, we must have a = a ∧ a′ = a′. We deduce f(g(X)) = X,
which finishes the proof. �

Theorem 2.15. The theory ABA of atomless Boolean algebras is ω-categorical.

Proof. Observe that atomless Boolean algebras have to be infinite (by Proposition 2.12)
and that there is a countable and atomless Boolean algebra: look at the clopens in Cantor
space.
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Let A and B be two countable atomless Boolean algebras and fix enumerations a1, a2, . . .
of A and b1, b2, . . . of B. Again, we will construct a sequence (fn)n∈N of local isomorphisms
from A to B with ai in the domain of f2i and bi in the codomain of f2i−1. Put f0 = ∅.

Now suppose fk has been constructed for all k < n and we want to build fn. Write C for
the Boolean subalgebra of A generated by a0, . . . , an−1 and D for the Boolean subalgebra of B
generated by b0, . . . , bn−1. The local isomorphism fn−1 induces an isomorphism f of Boolean
algebras from C to D and without loss of generality we may assume that a0, . . . , an−1 are the
atoms of C and b0, . . . , bn−1 are the atoms of D and f(ai) = bi.

For any x ∈ A, there are three possibilities for x ∧ ai: it can be 0, or ai or something
in between. Let us call the function which says for every i which of these three possibilities
happens, the profile of x. Similarly, we can define the profile of elements y ∈ B, but then with
respect to the bi instead of the ai.

The proof will be finished once I show:

(1) For any x ∈ A there is a y ∈ B which has the same profile, and vice versa.
(2) If x ∈ A and y ∈ B have the same profile, then the local isomorphism can be extended

to one which sends x to y.

I will only sketch the argument: as for (1), let I = {i < n : x ∧ ai = ai} and J = {j < n : 0 <
(x ∧ aj) < aj}. For any j ∈ J we consider bj : since it is not an atom in B, we can choose an
element yj ∈ B with 0 < yj < bj .

Now put y: =
∨

i∈I bi ∧
∨

j∈J yj . Using that the bi are atoms in D and we therefore have
that bi ∧ bj = 0 whenever i 6= j, we see that y has the same profile as x.

As for (2): the crucial observation here is that if J = {j < n : 0 < (x ∧ aj) < aj}, then
the atoms of the Boolean subalgebra generated by a0, . . . , an−1 and x are the ai with i ∈ Jc

together with aj ∧ x and aj ∧ ¬x for every j ∈ J . Sending these to bi, bj ∧ y and bj ∧ ¬y,
respectively, we have a maps from atoms to atoms which extends uniquely to a map of Boolean
algebras: this one extends the original map and sends x to y. �

Theorem 2.16. The theory of atomless Boolean algebras has quantifier elimination.

Proof. An n-type in variables x1, . . . , xn should say what the profile of xi is in terms of
the atoms of the Boolean subalgebra generated by x1, . . . , xi−1: call this a sequence of profiles.
I claim that a sequence of profiles completely determines the n-type: by this I mean that if
a1, . . . , an is a tuple in a model A and b1, . . . , bn is a tuple in a model B and they determine the
same sequence of profiles, then they realize the same type. For by the downward Lowenheim-
Skolem Theorem, we may assume that both A and B are countable, in which case the proof of
the previous theorem implies that there is an isomorphism from A to B sending ai to bi. Since
a sequence of profiles can be formulated using a single quantifier-free sentence, and there are
only finitely many n-types, the theory ABA has quantifier elimination. �

Again, we could also have used Theorem 1.5.

Exercise 7. Show that all Boolean algebras of the form P(X) are atomic, but that there
are atomic Boolean algebras which are not of this form.

Exercise 8. Not so easy: show that ABA is not λ-categorical for any λ > ω.
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4. Vector spaces

For a fixed field K, the language of K-vector spaces contains symbols + and 0, for vector
addition and the null vector, as well as unary operations fk, one for every k ∈ K, for scalar
multiplication with k. The theory IV SK of infinite vector spaces over K expresses that (+, 0)
is an infinite Abelian group on which K acts as a set of scalars.

Theorem 2.17. The theory IV SK is λ-categorical for all λ > |K|.

Proof. Because vector spaces are completely determined by their dimension and if V is
a vector space over a field K of cardinality λ > |K|, then its dimension is λ. �

Theorem 2.18. The theory IV SK has quantifier elimination.

Proof. We will use Theorem 1.5. So let V and W be two infinite K-vector spaces, where
W is ω-saturated, and let f : {v1, . . . , vn} →W be a local isomorphism. If v ∈ V , then there are
two possibilities: v is a linear combination k1v1 + . . .+ knvn, in which case v should be sent to
k1f(v1)+ . . .+knf(vn). Or v is linearly independent from v1, . . . , vn: in case K is finite, we use
that W is infinite, and in case K is infinite, we use ω-saturation of W to find a vector w ∈ W
which is linearly independent from f(v1), . . . , f(vn). Then extend f by putting f(v) = w. �

5. Algebraically closed fields

Recall that a field K is called algebraically closed if every non-constant polynomial has a
root in K. For convenience, we will only consider fields of characteristic 0 and only consider
ACF0, the theory of algebraically closed fields of characteristic 0.

5.1. Recap on fields. Consider an inclusion K ⊆ L of fields. Recall that L can be
considered as a K-vector space and that we write [K:L] for its dimension.

Proposition 2.19. If we have two field extensions K ⊆ L ⊆M , then [M :K] = [M :L][L:K].

If K ⊆ L and ξ ∈ L, then there are two possibilities:

(1) ξ is algebraic over K. This means that there is a polynomial p(x) with coefficients from
K such that p(ξ) = 0. In this case we can consider the monic polynomial m(x) ∈ K[x]
with m(ξ) = 0 which has least possible degree: this is called the minimal polynomial
of ξ. This polynomial has to be irreducible and K(ξ), the smallest subfield of L which
contains both K and ξ, is isomorphic to K[x]/(m(x)). In this case [K(ξ):K] is finite.

(2) ξ is transcendental over K. In this case K(ξ) is isomorphic to the quotient field K(x)
and [K(ξ):K] is infinite.

An extension K ⊆ L is called algebraic if all elements in L are algebraic over K. From
Proposition 2.19 it follows that:

(1) K(ξ) is algebraic over K precisely when ξ is algebraic over K.
(2) If K ⊆ L and L ⊆M are two field extensions and they are both algebraic, then so is

K ⊆M .
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5.2. Algebraic closure.

Definition 2.20. If K ⊆ L is a field extension, then L is an algebraic closure of K, if L is
algebraic over K, but no proper extension of L is algebraic over K.

Theorem 2.21. Algebraic closures are algebraically closed.

Proof. Let L be the algebraic closure of K and p(x) be a non-constant polynomial with
coefficients from L without any roots in L. Without loss of generality we may assume that p(x)
is irreducible (otherwise replace p(x) with one of its irreducible factors); but then L[x]/(p(x))
is a proper algebraic extension of L and K, which is a contradiction. �

Theorem 2.22. Every field K has an algebraic closure.

Proof. Let X the collection of algebraic field extensions of K and order by embedding of
fields. We restrict attention to those fields which have the same cardinality as K and therefore
X is a set (essentially). Clearly, every chain of embeddings has an upper bound in X, so X has
a maximal element L. This field is an algebraic closure of X: for if L ⊂M is a proper extension
of fields and ξ ∈ M − L, then ξ cannot be algebraic over K. For otherwise, L ⊂ L(ξ) ∈ X,
contradicting maximality of L. �

Theorem 2.23. Algebraic closures are unique up to (non-unique) isomorphism.

Proof. By a back and forth argument. Let L and M be algebraic closures of K. Since
L and M have the same (infinite) cardinality as K, which is κ say, we can fix enumerations
{li : i ∈ κ} and {mi : i ∈ κ} of L and M , respectively. By induction on i ∈ κ we will construct
an increasing sequence of isomorphisms fi:Li → Mi between subfields of L and M such that⋃
Li = L and

⋃
Mi = M . We start by declaring f0 to be isomorphism between the isomorphic

copies of K inside L and M ; and at limit stages we simply take the union.

If i + 1 = 2j, then look at the minimal polynomial m(x) = anx
n + an−1x

n−1 + . . . + a0
of lj over Li: such a thing exists because L is algebraic over K and hence over Li. Because
M is algebraically closed, there exists a root m ∈ M of the polynomial n(x) = fi(an)xn +
fi(an−1)xn−1 + . . .+ f(a0); since fi is an isomorphism, the polynomial n(x) is irreducible over
Mi and n(x) must be the minimal polynomial of m over Mi. So we can extend the isomorphism
by sending lj to m:

fi+1:Li(lj) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If i+ 1 = 2j + 1, then we can use a similar argument to show that the isomorphism fi can
be extended to one whose codomain includes mj . �

5.3. Categoricity. A similar argument shows:

Theorem 2.24. The theory ACF0 is λ-categorical for any uncountable λ.

Proof. Let L and M be two algebraically closed fields of the same uncountable cardinality
λ and fix enumerations {li : i ∈ λ} and {mi : i ∈ λ} of L and M , respectively. By induction on
i ∈ λ we will construct an increasing sequence of isomorphisms fi:Li → Mi between subfields
of L and M of cardinality strictly less than λ such that

⋃
Li = L and

⋃
Mi = M . We start by

declaring f0 to be isomorphism between the isomorphic copies of the rationals inside L and M ;
and at limit stages we simply take the union.
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If i + 1 = 2j, then there are two possibilities for lj vis-à-vis Li: it can either be algebraic
or transcendental. If it is algebraic, we proceed as in the proof of the previous theorem. We
look at the minimal polynomial m(x) = anx

n + an−1x
n−1 + . . . + a0 of lj over Li and use

that M is algebraically closed to find an element m ∈ M with minimal polynomial n(x) =
fi(an)xn + fi(an−1)xn−1 + . . .+ f(a0) over Mi. And we extend the isomorphism by sending lj
to m:

fi+1:Li(li) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If, one the other hand, lj is transcendental over Li, we use the fact that |Mi| < |M | to deduce
that M also contains an element m ∈M which transcendental over Mi. And the isomorphism
can be extended by sending lj to m:

fi+1:Li(lj) ∼= Li(x) ∼= Mi(x) ∼= Mi(m).

If i+ 1 = 2j + 1, then we can use a similar argument to show that the isomorphism fi can
be extended to one whose codomain includes mj . �

Note, however, that the theory ACF0 is not ω-categorical: consider, for example, the
algebraic closures of Q and Q(π).

Corollary 2.25. The theory ACF0 is complete.

5.4. Quantifier elimination.

Theorem 2.26. The theory ACF0 has quantifier elimination.

Proof. We use Theorem 1.5. So let L and M be two algebraically closed fields, where M
in addition is ω-saturated. We assume we are given a local isomorphism f : {l1, . . . , ln} → M
and an element l ∈ L and we want to extend the local isomorphism f to one whose domain
includes l.

Because it is a local isomorphism, the map f extends to an embedding of fields

f :Q(l1, . . . , ln)→M.

If l is algebraic over Q(l1, . . . , ln) with minimal polynomial

m(x) = akx
k + ak−1x

k−1 + . . .+ a0,

then we send l to an element m ∈M whose minimal polynomial is

f(ak)xk + f(ak−1)xk−1 + . . .+ f(a0)

over Im(f). If l is transcendental over L(l1, . . . , ln), we use that M is ω-saturated to find an
element m ∈M which is transcendental over f(l1), . . . , f(ln) and we send l to m. �

6. Real closed ordered fields

6.1. Ordered fields.

Definition 2.27. An ordered field is a field equipped with a linear order ≤ satisfying

(1) if x ≤ y, then x+ z ≤ y + z,
(2) if x ≤ y and 0 ≤ z, then xz ≤ yz.
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Let us call elements x for which x ≥ 0 positive; otherwise x is called negative. Note that if
x is negative, then x < 0 and

−x = 0− x ≥ x− x = 0,

so −x is positive. Using property (2) and the observation that x2 = (−x)2, it follows that
1 = 12 is positive and also 2, 3, 4, . . . are positive. But −1 is negative and hence ordered fields
always have characteristic 0.

Definition 2.28. If K is a field, then we call a subset P ⊆ F a positive cone, if:

(1) P is closed under sums and products.
(2) −1 6∈ P .
(3) for any x, either x or −x belongs to P .

Proposition 2.29. If K is an ordered field, then the elements x ∈ K satisfying x ≥ 0
form a positive cone. Conversely, if P is a positive cone on a field K, then K can be ordered
by putting x ≤ y iff y − x ∈ P .

In ordered fields sums of squares have to be positive. In fact, we have:

Proposition 2.30. Let K be a field and r ∈ K. If both −1 and r cannot be written as a
sum of squares, then K can be ordered in such a way that r becomes negative.

Proof. Let S be the collection of those elements in K that can be written as sums of
squares. This set has the following properties:

(1) it is closed under sums and products,
(2) it contains all squares,
(3) and it does not contain −1.

Such a set is called a semipositive cone. We use two properties of such sets: first, if X is a
semipositive cone and s ∈ X − {0}, then ( 1

s )2 ∈ X and hence also 1
s ∈ X. And if X is a

semipositive cone and s 6∈ X, then X − sX is also semipositive cone. For if there would be
x0, x1 such that x0 − sx1 = −1, then x1 6= 0 and

s =
1 + x0
x1

∈ X.

So put Y : = S − rS. This is a semipositive cone, and, using Zorn’s Lemma, we can extend
Y to a maximal semipositive cone Ymax. Then Ymax is a positive cone, for if x 6∈ Ymax, then
−x ∈ Ymax − xYmax = Ymax. �

6.2. Some analysis in ordered fields. Now suppose that K is an ordered field.

Proposition 2.31. Let p(x) = xd +ad−1x
d−1 + . . .+a0 and m = max(|ad−1|, . . . , |a0|)+1.

Then all roots of p(x) lie between −m and m.

Proof. If |x| ≥ m, then

|P (x)− xd| ≤ (|m| − 1) (|x|d−1 + |x|d−2 + . . .+ 1) ≤ (|m| − 1)
|x|d − 1

|x| − 1
≤ |x|d − 1

so P (x) 6= 0. �

Proposition 2.32. If p(x) ∈ K[x] and p(0) > 0, then there is an ε > 0 such that P (x) > 0
for all x ∈ [−ε,+ε].
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Proof. Let p(x) = adx
d + ad−1x

d−1 + . . .+ a0. Then put m = max(|ad|, |ad−1|, . . . , |a0|)
and ε = min(1, P (0)

2md ). Then x ∈ [−ε,+ε] implies

|p(x)− p(0)| ≤ |adxd + ad−1x
d−1 + . . .+ a0 − a0|

≤ mεd +mεd−1 + . . .+mε

≤ mdε

≤ 1

2
p(0)

and hence p(x) > 0. �

Proposition 2.33. If p′(a) > 0, then there is an ε > 0 such that p(x) > p(a) for every
x ∈ (a, a+ ε] and p(x) < p(a) for every x ∈ [a− ε, a).

Proof. Write p(x) = (x−a)q(x)+p(a). Then p′(x) = q(x)+(x−a)q′(x), so q(a) = p′(a) >
0. Then choose ε such that q(x) > 0 for all x ∈ [a− ε, a+ ε] using the previous result. �

6.3. Real closed ordered fields.

Definition 2.34. An ordered field will be called real closed if it satisfies the intermediate
value theorem for polynomials: if for any polynomial P (x) and elements a < b such that
P (a) < 0 and P (b) > 0 there is an element c ∈ (a, b) such that P (c) = 0.

For example, the field R is real closed, but Q is not.

Proposition 2.35. In a real closed field an element is positive iff it can be written as a
square.

Proof. We already know that squares are positive. So suppose a > 0 and consider p(x) =
x2 − a. Then p(a+ 1) = (a+ 1)2 − a = a2 + 2a+ 1− a = a2 + a+ 1 > 0 and p(0) < 0, so there
is an element r such that p(r) = 0 and hence r2 = a. �

Exercise 9. Use this to say in the language of fields (without order!) that the field can
be ordered in such a way that it becomes real closed.

Theorem 2.36. Let K be a real closed field and p(x) be a polynomial over K. If a < b ∈ K
and p′(x) > 0 for all x ∈ (a, b), then p(a) < p(b).

Proof. First suppose that p′(a) > 0 and p′(b) > 0. Then we can use Proposition 2.33
to find c, d with a < c < d < b such that p(a) < p(c) and p(d) < p(b). So if p(a) ≥ p(b),
then p(c) > p(b) > p(d) and there is an e0 ∈ (c, d) such that p(e0) = p(b). By repeating this
argument for ei and b instead of a and b we find for every i ∈ N an ei+1 ∈ (ei, b) such that
p(ei+1) = p(b), contradicting the fact that a polynomial can have only finitely many zeros.

In the general case choose arbitrary c, d such that a < c < d < b. We have p(c) < p(d)
by the previous argument. In addition, we have p(a) ≤ p(c), for if p(a) > p(c), then there is
an e ∈ (a, c) such that p(e) > p(c) by continuity of p. But that again contradicts the previous
argument. Similary, p(c) ≤ p(d), so p(a) < p(b). �

Corollary 2.37. (Rolle’s Theorem for real closed ordered fields) Let K be a real closed
ordered field and p(x) be a polynomial over K. If p(a) = p(b) for a < b, then there exists
c ∈ (a, b) with P ′(c) = 0.
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Proof. For if P ′(c) 6= 0 for all c ∈ (a, b), then P ′ is either strictly positive or strictly
negative on (a, b), by real closure. �

6.4. Real closure.

Definition 2.38. Let K ⊆ L be an order preserving embedding between ordered fields.
L is a real closure of K, if L is algebraic over K and no ordered field properly extending L is
algebraic over K.

Note, by the way, that an inclusion of ordered fields K ⊆ L is order preserving iff it is order
reflecting, because ordered fields are linearly ordered.

Theorem 2.39. If L is a real closure of K, then L is real closed.

Proof. Suppose there are polynomials in L[x] for which the intermediate value theorem
for polynomials fails. Let p be a counterexample of minimal degree: so the intermediate value
theorem holds for polynomials in L[x] with degree smaller than p, but there are a < b ∈ L with
p(a) < 0 and p(b) > 0 for which no ξ ∈ (a, b) with p(ξ) = 0 exists.

In that case p has to be irreducible so L[x]/(p(x)) is a field extending L, still algebraic over
K. So once we show that L[x]/(p(x)) can be ordered in a way which extends to the order on
L, we have obtained our desired contradiction.

Let A = {x ∈ [a, b] : (∃y ≥ x) p(y) < 0} and B = [a, b]−B = {x ∈ [a, b] : (∀y ≥ x) p(y) > 0}.
Since polynomials are continuous, both A and B are open and have no greatest or least element,
respectively. So if q(x) is any non-zero polynomial, then q has only finitely many roots, so there
are a0 ∈ A and b0 ∈ B such that q has no roots in the interval [a0, b0]. If q(x) has a degree
strictly smaller than p(x), then the intermediate value theorem holds for q(x) and q(x) is either
strictly positive or strictly negative on [a0, b0]. If the former holds we declare q(x) positive. It
is easy to see that this defines a positive cone on L[x]/(p(x)) extending the one on L. So we
have our desired contradiction. �

Theorem 2.40. Real closures exist and are unique up to unique isomorphism.

Proof. The existence of real closures follows from Zorn’s Lemma: consider all ordered
extensions of a field K which are still algebraic over K and all field embeddings between them
which preserve the ordering. Since fields algebraic over K have the same infinite cardinality as
K, this is essentially a set. Since chains have upper bounds given by unions, a maximal element
must exist, which is a real closure of K.

Now suppose both L0 and L1 are real closures of an ordered field K. By Zorn’s Lemma,
again, there are subfields K0 ⊆ L0 and K1 ⊆ L1 between which there exists an order preserving
isomorphism f which leaves K invariant and which is maximal with these properties. If either
L0 −K0 or L1 −K1 is non-empty, then we may assume, without loss of generality, that there
is an element ξ ∈ L0 −K0 with minimal polynomial p(x) over K such that all other elements
ξ′ ∈ Li −Ki have a minimal polynomial over K whose degree is at least that of p.

Since p is minimal, we have p′(ξ) 6= 0, so p changes sign in ξ. Moreover, in L1 and L2 it
holds that in between any two roots of p(x) lies a root of p′(x), by Rolle’s Theorem. Since roots
of p′(x) have a minimal polynomial whose degree is strictly smaller than that of p(x), these
roots of p′(x) lie already in K0 and K1. So for ξ there are three possibilities:



16 2. EXAMPLES

(1) ξ lies in between two roots of p′(x), call them x0 and x1, and it is the only root lying
in this interval. In that case p has different signs in x0 and x1. So the same applies to
f(x0) and f(x1) and the polynomial p can have only one root in K1 in between these
points. Then ξ should be sent to this root.

(2) ξ is bigger than the largest root of p′(x). Let x0 be this largest root and let x1 be
a number in K bounding the zeros of p from above (using Proposition 2.31). Then
again p changes sign between x0 and x1 and ξ should be sent to the unique root of p
in K1 between f(x0) and f(x1).

(3) ξ is smaller than the smallest root of p′(x). Then the same argument as in (2) applies.

This determines a field isomorphism between K(ξ) ∼= K[x]/(p(x)) ∼= K(ξ′). The question now
is why this field isomorphism should be order preserving. But this follows from the following
observation: if q(x) is any non-zero polynomial of degree strictly smaller than p(x), then q is
strictly positive or negative on some interval [x2, x3] with x2, x3 ∈ K0 and x0 < x2 < ξ < x3 <
x1. So the sign of q(ξ) in L0 can be determined by checking the sign of q(x2) and the sign of
q(ξ′) in L1 can be determined by checking to sign of q(f(x2)). But both answers should agree
because f is an order preserving isomorphism.

So we have an isomorphism between L0 and L1. This isomorphism is necessarily unique
because it should send the nth root from the left of the polynomial p(x) ∈ K[x] in L0 to the
nth root from the left of p(x) in L1. �

6.5. Quantifier elimination.

Theorem 2.41. The theory RCOF of real closed ordered fields has quantifier elimination.

Proof. We use Theorem 1.5. So let K,L be two real closed ordered fields, where L in
addition is ω1-saturated, and suppose f : {k1, . . . , kn} → L is a local isomorphism and k ∈ K.
Then Q(k1, . . . , kn), considered as an ordered subfield of K, and Q(f(k1), . . . , f(kn)), considered
as an ordered subfield of L, are isomorphic. So we can use the previous theorem to extend f
to an isomorphism f of ordered fields between the real closure K of Q(k1, . . . , kn) inside K
and the real closure L of Q(f(k1), . . . , f(kn)) inside L. If k ∈ K, then we send k to f(k). So
the interesting case is where k is transcendental over K. To simplify notation, we will assume
K = L.

In that case we should send k to an element l ∈ L which is transcendental over the subfield
K and for which

(∀x ∈ K)x ≤ k ⇔ x ≤ l

holds. Such an element certainly exists because |K| = ω and L is assumed to be ω+-saturated.
And this is enough, for to see that the composite isomorphism

K(k) ∼= K(x) ∼= K(l)

is order preserving it suffices to check that p(k) and p(l) have the same sign for every irreducible
polynomial p ∈ K[x]. This is true for irreducible polynomials of degree one (by construction),
and if p has degree greater than one, then p has no roots in K or L (since K is maximal as an
algebraic extension over Q(k1, . . . , kn) inside K or L). So p does not change sign inside K or
L and p(k) and p(l) have the same sign as p(0). �

Corollary 2.42. The theory RCOF is complete.
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Proof. Since the theory of real closed ordered fields has quantifier elimination and has
a model which can be embedded into any other model (to wit, the real numbers which are
algebraic over Q), this theory is complete by Theorem 1.7. �

Remark 2.43. The theory RCOF is not λ-categorical for any infinite λ, but that is not so
easy to prove!

6.6. Hilbert’s 17th Problem.

Theorem 2.44. (Hilbert’s 17th Problem) Let K be a real closed field. If f ∈ K(x1, . . . , xn)
is such that f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ K, then f can be written as

f = g21 + . . .+ g2n

for suitable gi ∈ K(x1, . . . , xn).

Proof. Suppose f cannot be written as a sum of squares in K(x1, . . . , xn). The same
applies to −1, because −1 cannot be written as a sum of squares in K. So we can order
K(x1, . . . , xn) in such a way that f becomes negative. This order extends the original order
on K because K is real closed and hence positive elements in K can be written as squares (see
Proposition 2.35). Now embed K(x1, . . . , xn) with this order into a real closed field L. So we
have embeddings of fields

K ⊆ K(x1, . . . , xn) ⊆ L,
all of which preserve and reflect the ordering. So the inclusion K ⊆ L reflects truth of atomic
sentences, and hence of quantifier-free sentences and hence, as the theory of real closed fields
has quantifier elimination, of all sentences. Therefore the sentence

∃x1, . . . , xn f(x1, . . . , xn) < 0,

which is true in L, must be true in K as well. �

Remark 2.45. Hilbert’s 17th Problem asked whether Theorem 2.44 holds in case K is the
reals. This was settled by Artin in 1927, who proved the result for general real closed fields.
The model-theoretic proof we just gave is due to Robinson.


