2nd Exercise sheet Model Theory 12 Feb 2015

Exercise 1 A class of models \mathcal{K} in some fixed signature is called an *elementary* class if there is a first-order theory such that \mathcal{K} consists of precisely those *L*-structures that are models of *T*.

Show that if \mathcal{K} is a class of *L*-structures and both \mathcal{K} and its complement (in the class of all *L*-structures) are elementary, then there is a sentence φ such that M belongs to \mathcal{K} if and only if $M \models \varphi$.

Exercise 2 We work over the empty language L (no constants, function or relations symbols). Show that the class of infinite L-structures is elementary, but the class of finite L-structures is not. Deduce that there is no sentence φ that is true if and only if the L-structure is infinite.

Exercise 3 (Exam question from last year.) A class \mathcal{K} of *L*-structures is a PC_{Δ} -class, if there is an extension L' of L and an L'-theory T' such that \mathcal{K} consists of all reducts to L of models of T'.

Show that a PC_{Δ} -class of *L*-structures is *L*-elementary if and only if it is closed under *L*-elementary substructures.

Exercise 4 In the lecture we deduced the Craig Interpolation Theorem from the Robinson Consistency Theorem. Show how one can deduce the Robinson Consistency Theorem from the Craig Interpolation Theorem.

Exercise 5 Use Robinson's Consistency Theorem to prove the following Amalgamation Theorem: Let L_1, L_2 be languages and $L = L_1 \cap L_2$, and suppose A, B and C are structures in the languages L, L_1 and L_2 , respectively. Any pair of L-elementary embeddings $f: A \to B$ and $g: A \to C$ fit into a commuting square

where D is an $L_1 \cup L_2$ -structure, h is an L_1 -elementary embedding and k is an L_2 -elementary embedding.

Exercise 6 (Challenging!) An *existential sentence* is a sentence which consists of a string of existential quantifiers followed by a quantifier-free formula.

Show that a theory T can be axiomatised using existential sentences if and only if its models are closed under extensions.