6th Exercise sheet Model Theory 11 Mar 2015

Exercise 1 Let $L = \{E\}$ where E is a binary relation symbol. For each of the following theories either prove that they have quantifier elimination or give an example showing that they do not have quantifier elimination and a natural $L' \supseteq L$ in which they do have quantifier elimination.

- (a) E is an equivalence relation and has infinitely many equivalence classes and each equivalence class has size 2.
- (b) E is an equivalence relation and has infinitely many equivalence classes and each equivalence class is infinite.
- (c) E is an equivalence relation and has infinitely many equivalence classes of size 2 and infinitely many equivalence classes of size 3, and every equivalence class has size 2 or 3.
- (d) E is an equivalence relation and has precisely one equivalence class of size n for each finite n, but no infinite equivalence classes.

Exercise 2 Let $M = (\mathbb{Z}, s)$, where s(x) = x + 1, and let T = Th(M).

- (a) Show that T has quantifier elimination.
- (b) Give a concrete description of a countable ω -saturated model of T.
- (c) Describe the type spaces of T.
- (d) Show that $\operatorname{Th}(\mathbb{N}, s)$ does not have quantifier elimination.
- **Exercise 3** (a) Show that the theory of $(\mathbb{N}, <)$ has quantifier elimination in the language where we add a function symbol s for the function s(x) = x + 1 and a constant symbol for 0.
 - (b) Give a concrete description of a countable ω -saturated model of Th($\mathbb{N}, <$).
 - (c) Describe the type spaces of $Th(\mathbb{N}, <)$