7th Exercise sheet Model Theory 18 Mar 2015

Exercise 1 Let L be the first-order language of linear orderings.
(a) Show that if $h \leq 2^{k}$ then there is a formula $\varphi(x, y)$ of L of quantifier depth $\leq k$ which expresses (in any linear ordering) " $x<y$ and the distance between x and y is at least h ".
(b) Let $M=(\mathbb{Z},<)$. Show that if $a_{0}<\ldots<a_{n-1}$ and $b_{0}<\ldots<b_{n-1}$ in M, then $(M, \bar{a}) \equiv_{k}(M, \bar{b})$ if and only if for all $m<n-1$ and all $i \leq 2^{k}$,

$$
\operatorname{dist}\left(a_{m}, a_{m+1}\right)=i \Leftrightarrow \operatorname{dist}\left(b_{m}, b_{m+1}\right)=i .
$$

Exercise 2 Show that there is no formula of first-order logic which expresses " (a, b) is in the transitive closure of R ", even on finite structures. (For infinite structures it is easy to show that there is no such formula; why?)

Exercise 3 Let M be an L-structure and \mathcal{U} be an ultrafilter on an infinite set I. Put $M_{i}=M$ and $M^{*}=\prod_{i \in I} M_{i} / \mathcal{U}$.
(a) Define a map $d: M \rightarrow M^{*}$ by sending m to the equivalence class of the function which is constant m. Show that d is an elementary embedding.
(b) Prove that if $|M| \geq|I|$ and \mathcal{U} is non-principal, then the embedding d from (a) cannot be surjective.

Exercise 4 In this exercise $I=\mathbb{N}$ and \mathcal{U} is a non-principal ultrafilter on the set of natural numbers. Suppose that for each $i \in I$ we have a model M_{i}, each in the same countable language. Write $M^{*}=\prod_{i \in I} M_{i} / \mathcal{U}$. The aim of this exercise is to show that M^{*} is ω-saturated.

So let $A=\left\{\left[f_{1}\right], \ldots,\left[f_{k}\right]\right\}$ be a collection of k-many elements from M^{*}, and let $p(x)$ be a partial 1-type with parameters from A. Since the language is countable we can enumerate the formulas $\left(\varphi_{j}: j \in \mathbb{N}\right)$ in $p(x)$ and, by taking conjunctions, we may assume, without loss of generality, that $\varphi_{j+1}(x) \rightarrow \varphi_{j}(x)$. Instead of $\varphi_{j}(x)$ we will write $\theta_{j}\left(x,\left[f_{1}\right], \ldots,\left[f_{k}\right]\right)$ where θ_{j} is an L-formula.
(a) Let

$$
D_{j}=\left\{i \in \mathbb{N}: M_{i} \models \exists x \theta_{i}\left(x, f_{1}(i), \ldots, f_{k}(i)\right)\right\} .
$$

Show that $D_{j} \in \mathcal{U}$.
(b) Find a $g \in \prod_{i \in I} M_{i}$ such that if $j \leq i$ and $i \in D_{j}$, then

$$
M_{i} \models \theta_{j}\left(g(i), f_{1}(i), \ldots, f_{k}(i)\right) .
$$

(c) Show that $[g]$ realizes $p(x)$. Where do you use the fact that \mathcal{U} is nonprincipal? Conclude that M^{*} is ω-saturated.

