Malvin Gattinger

March 9, 2015

Claim 1. If the theory $T_n \cup \{\exists x \psi(x)\} \cup T \cup \mathsf{ElDiag}(M)$ is satisfiable, then also the theory $T_n \cup \{\psi(m)\} \cup T \cup \mathsf{ElDiag}(M)$ is satisfiable for some $m \in M$.

Proof. Let N be a model of $T_n \cup \{\exists x \psi(x)\} \cup T \cup \mathsf{ElDiag}(M)$. Consider the partial type

 $p(x) := \{ \phi(x) \in L_A \mid T_n \cup T \cup \mathsf{ElDiag}(M) \vDash \forall x(\psi(x) \to \phi(x)) \}$

where $A \subseteq M$ is the set of constants occurring in T_n . Note that $|A| < \omega$.

By $N \vDash \exists x \psi(x)$ there is an $n \in N$ such that n realizes p in N.

We now show that p is also finitely realized in M. Note that p is closed under conjunction. Hence w.l.o.g. we take a $\phi \in p$. Then $N \vDash \phi(n)$ and therefore $N \vDash \exists x \phi(x)$. The latter is an L_A sentence and by $N \vDash \mathsf{ElDiag}(M)$ we have that $N \equiv_{L_M} M$, hence also $N \equiv_{L_A} M$ and therefore $M \vDash \exists x \phi(x)$.

As ϕ was arbitrary this shows that p is finitely realized in M. Because M is ω -saturated p is also realized in M. Let $m \in M$ be an element that realizes p in M.

Now suppose that $T_n \cup \{\psi(m)\} \cup T \cup \mathsf{ElDiag}(M)$ is not satisfiable. Then by compactness there is an L_M sentence $\theta \in \mathsf{ElDiag}(M)$ such that $T_n \cup T \vDash \psi(m) \to \neg \theta$.

We can write θ as an *L*-formula with additional parameters *m* itself, \vec{a} from $A \setminus \{m\}$ and $\vec{m'}$ from $(M \setminus A) \setminus \{m\}$. Then $T_n \cup T \vDash \psi(m) \to \neg \theta(m, \vec{a}, \vec{m'})$. Note that the $\vec{m'}$ are not in *T* or T_n , hence $T_n \cup T \vDash \psi(m) \to \forall \vec{y} \neg \theta(m, \vec{a}, \vec{y})$. Now distinguish two cases:

1. Suppose $m \notin A$. Then also m does not occur in $T_n \cup T$ and we have $T_n \cup T \models \forall (x)(\psi(x) \rightarrow \forall \vec{y} \neg \theta(x, \vec{a}, \vec{y}))$. Note that the consequent is an L_A formula. Hence by definition of p we have that $\forall \vec{y} \neg \theta(x, \vec{a}, \vec{y}) \in p$.

But *m* realizes *p*, hence $M \vDash \forall \vec{y} \neg \theta(m, \vec{a}, \vec{y})$ and in particular $M \vDash \neg \theta(m, \vec{a}, \vec{m'})$.

2. Suppose $m \in A$. By compactness there is a $\chi(m, \vec{a})$ such that $T_n \models \chi(m, \vec{a})$ and

$$T \vDash \psi(m) \to \forall \vec{y} \neg (\theta(m, \vec{a}, \vec{y}) \land \chi(m, \vec{a})).$$

Note that m does not occur in T, hence

$$T \vDash \forall x(\psi(x) \to \forall \vec{y} \neg (\theta(x, \vec{a}, \vec{y}) \land \chi(m, \vec{a})))$$

Again the consequent is an L_A formula, hence $\forall \vec{y} \neg (\theta(x, \vec{a}, \vec{y}) \land \chi(m, \vec{a})) \in p$. We know that m realizes p, hence $M \models \forall \vec{y} \neg (\theta(m, \vec{a}, \vec{y}) \land \chi(m, \vec{a}))$. Instantiating $\vec{m'}$ for \vec{y} we get $M \models \neg (\theta(m, \vec{a}, \vec{m'}) \land \chi(m, \vec{a}))$.

But we also have that $T_n \models \chi(m, \vec{a})$, therefore $\chi(m, \vec{a}) \in p$. (This is not a typo: The type p also contains a lot of formulas not mentioning the free variable x.)

Hence by boolean reasoning it must be that $M \vDash \neg(\theta(m, \vec{a}, \vec{m'}))$.

In both cases we have a contradiction, because by $\theta(m, \vec{a}, \vec{m'}) \in \mathsf{ElDiag}(M)$ we also have $M \models \theta(m, \vec{a}, \vec{m'})$. Hence $T_n \cup \{\psi(m)\} \cup T \cup \mathsf{ElDiag}(M)$ has to be satisfiable. \Box