
CHAPTER 1

New models from old

1. Directed systems

Definition 1.1. A partially ordered set (K,≤) is called directed, if K is non-empty and
for any two elements x, y ∈ K there is an element z ∈ K such that x ≤ z and y ≤ z.

Note that non-empty linear orders (aka chains) are always directed.

Definition 1.2. A directed system of L-structures consists of a family (Mk)k∈K of L-
structures indexed by a directed partial order K, together with homomorphisms fkl:Mk →Ml

for k ≤ l, satisfying:

• fkk is the identity homomorphism on Mk,
• if k ≤ l ≤ m, then fkm = flmfkl.

If K is a chain, we call (Mk)k∈K a chain of L-structures

If we have a directed system, then we can construct its colimit, another L-structure M with
homomorphisms fk:Mk → M . To construct the underlying set of the model M , we first take
the disjoint union of all the universes:∑

k∈K

Mk = {(k, a) : k ∈ K, a ∈Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l, b):⇔ (∃m ≥ k, l) fkm(a) = flm(b).

The underlying set of M will be the set of equivalence classes, where denote the equivalence
class of (k, a) by [k, a].

M has an L-structure: if R is a relation symbol in L, we put

RM ([k1, a1], . . . , [kn, an])

if there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .

And if g is a function symbol in L, we put

gM ([k1, a1], . . . , [kn, an]) = [k, gMk(fk1k(a1), . . . , fknk(an))],

where k is an element ≥ k1, . . . , kn. (Check that this makes sense!) In addition, the homomor-
phisms fk:Mk →M are obtained by sending a to [k, a].

The following theorem collects the most important facts about colimits of directed systems.
Especially useful is part 5, often called the elementary system lemma.
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2 1. NEW MODELS FROM OLD

Theorem 1.3. (1) All fk are homomorphisms.
(2) If k ≤ l, then flfkl = fk.
(3) If N is another L-structure for which there are homomorphisms gk:Mk → N such

that glfkl = gk whenever k ≤ l, then there is a unique homomorphisms g:M → N
such that gfk = gk for all k ∈ K (this is the universal property of the colimit).

(4) If all maps fkl are embeddings, then so are all fk.
(5) If all maps fkl are elementary embeddings, then so are all fk.

Proof. Exercise! �

2. Ultraproducts

Definition 1.4. Let I be a set. A collection F of subsets of I is called a filter (on I) if:

(1) I ∈ F , ∅ 6∈ F ;
(2) whenever A,B ∈ F , then also A ∩B ∈ F ;
(3) whenever A ∈ F and A ⊆ B, then also B ∈ F .

A filter which is maximal in the inclusion ordering is called an ultrafilter.

Lemma 1.5. A filter U is an ultrafilter iff for any X ⊆ I either X ∈ U or I \X ∈ U .

Proof. ⇒: Let U be a maximal filter and suppose X is a set such that X 6∈ U . Put

F = {Y ⊆ I : (∃F ∈ U)F ∩X ⊆ Y }.
Since U ⊆ F and X ∈ F , the set F cannot be filter; since it has all other properties of a
filter, we must have ∅ ∈ F . So there is an element F ∈ U such that F ∩ X = ∅ and hence
F ⊆ I \X ∈ U .

⇐: Suppose U is a filter and for any X ⊆ I either X ∈ U or I \ X ∈ U . If U would not
be maximal, there would be a filter F extending U . This would mean that there would be a
subset X ⊆ I such that X ∈ F and X 6∈ U . But the latter implies that I \ X ∈ U ⊆ F . So
∅ = X ∩ (I \X) ∈ F , contradicting the fact that F is a filter. �

Definition 1.6. For any element i ∈ I, the set {X ⊆ I : i ∈ X} is an ultrafilter; ultrafilters
of this form are called principal, the others are called non-principal.

If I is a finite set, then every ultrafilter on I is principal. If I is infinite, then there are
non-principal ultrafilters. In fact, if I is infinite, then F = {X ⊆ I : I \X is finite } is a filter
on I (this is the Fréchet filter on I). Since, by Zorn’s Lemma, every filter can be extended to
an ultrafilter, there is an ultrafilter U ⊇ F ; such an ultrafilter has to be non-principal.

Now suppose we have a collection {Mi : i ∈ I} of L-structures and F is a filter on I. We
can construct a new L-structure M , as follows. Its universe is∏

i∈I
Mi = {f : I →

⋃
i

Mi : (∀i ∈ I) f(i) ∈Mi},

quotiented by the following equivalence relation:

f ∼ g :⇔ {i ∈ I : f(i) = g(i)} ∈ F .
In addition, if g is an n-ary function symbol belonging to L and [f1], . . . , [fn] ∈M , then

gM ([f1], . . . , [fn]) = [i 7→ gMi(f1(i), . . . , fn(i))],
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and if R is an n-ary relation symbol belonging to L and [f1], . . . , [fn] ∈M , then

([f1], . . . , [fn]) ∈ RM :⇔ { i ∈ I : (f1(i), . . . , fn(i)) ∈ RMi } ∈ F ,
where one should check, once again, that everything is well-defined. The resulting structure is
denoted by

∏
Mi/F . We will be most interested in the special case where F is an ultrafilter,

in which case
∏
Mi/F is called an ultraproduct.

Theorem 1.7. ( Loś’s Theorem) Let {Mi : i ∈ I} be a collection of L-structures and U be
an ultrafilter on I. Then we have for any formula ϕ(x1, . . . , xn) and [f1], . . . , [fn] ∈

∏
Mi/U

that ∏
Mi/U |= ϕ([f1], . . . , [fn]) ⇔ {i ∈ I : Mi |= ϕ(f1(i), . . . , fn(i))} ∈ U .

Proof. Exercise! �

Corollary 1.8. If all Mi are models of some theory T , then so is
∏
Mi/U .

Corollary 1.9. Let M be an L-structure and U be an ultrafilter on a set I. Put Mi = M
and M∗ =

∏
i∈I Mi/U . Then the map d:M → M∗ obtained by sending m to [i 7→ m] is an

elementary embedding. If |M | ≥ |I| and U is non-principal, then this embedding is proper.

Ultraproducts taken over a constant indexed family of models are called ultrapowers. In
particular, the structure M∗ in Corollary 1.9 is an ultrapower of M .

3. Additional exercises

Exercise 1. Do Exercise 2.5.20 in Marker.





CHAPTER 2

Preservation theorems

1. Characterisation universal theories

Definition 2.1. A sentence is universal if it starts with a string of universal quantifiers
followed by a quantifier-free formula. A theory is universal if it consists of universal sentences.
A theory has a universal axiomatisation if it has the same class of models as a universal theory
in the same language.

Theorem 2.2. (The  Loś-Tarski Theorem) T has a universal axiomatisation iff models of
T are closed under substructures.

Proof. It is easy to see that models of a universal theory are closed under substructures,
so we concentrate on the other direction. So let T be a theory such that its models are closed
under substructures. Write

T∀ = {ϕ : T |= ϕ and ϕ is universal }.
Clearly, T |= T∀. We need to prove the converse.

So suppose M is a model of T∀. Now it suffices to show that T ∪ Diag(M) is consistent.
Because once we do that, it will have a model N . But since N is a model of Diag(M), it
will be an extension of M ; and because N is a model of T and models of T are closed under
substructures, M will be a model of T .

So the theorem will follow from the following claim: if M |= T∀, then T ∪ Diag(M) is
consistent. Proof of claim: Suppose not. Then, by the compactness theorem, there are lit-
erals ψ1, . . . , ψn ∈ Diag(M) which are inconsistent with T . Replace the constants from M
in ψ1, . . . , ψn by variables x1, . . . , xn and we obtain ψ′1, . . . , ψ

′
n; because the constants from

M do not appear in T , the theory T is already inconsistent with ∃x1, . . . , xn (ψ′1 ∧ . . . ,∧ψ′n ).
So T |= ¬∃x1, . . . , xn (ψ′1 ∧ . . . ψ′n ) and hence T |= ∀x1, . . . , xn (¬(ψ′1 ∧ . . . ψ′n) ). Since M
is a model of T∀, it follows that M |= ∀x1, . . . , xn (¬(ψ′1 ∧ . . . ψ′n) ). On the other hand,
M |= ∃x1, . . . , xn (ψ′1 ∧ . . . ,∧ψ′n ), since ψ1, . . . , ψn ∈ Diag(M). Contradiction. �

2. Chang- Loś-Suszko Theorem

Definition 2.3. A ∀∃-sentence is a sentence which consists first of a sequence of universal
quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula. A
theory T can be axiomatised by ∀∃-sentences if there is a set T ′ of ∀∃-sentences such that T
and T ′ have the same models.

Definition 2.4. A theory T is preserved by directed unions if, for any directed system
consisting of models of T and embeddings between them, also the colimit is a model T . And
T is preserved by unions of chains if, for any chain of models of T and embeddings between
them, also the colimit is a model of T .
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6 2. PRESERVATION THEOREMS

Theorem 2.5. (The Chang- Loś-Suszko Theorem) The following statements are equivalent:

(1) T is preserved by directed unions.
(2) T is preserved by unions of chains.
(3) T can be axiomatised by ∀∃-sentences.

Proof. It is easy to see that (1) ⇒ (2) and (3) ⇒ (1) hold, so we concentrate on (2) ⇒
(3).

So suppose T is preserved by unions of chains. Again, let

T∀∃ = {ϕ : ϕ is a ∀∃-sentence and T |= ϕ},
and let B be a model of T∀∃. We will construct a chain of embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .

such that:

(1) Each An is a model of T .
(2) The composed embeddings Bn → Bn+1 are elementary.
(3) Every universal sentence in the language LBn

true in Bn is also true in An (when
regarding An is an LBn

-structure via the embedding Bn → An).

This will suffice, because when we take the colimit of the chain, then it is:

• the colimit of the An, and hence a model of T , by assumption on T .
• the colimit of the Bn, and hence elementary equivalent to each Bn.

So B is a model of T , as desired.

Construction of An: We need An to be a model of T and must have that every universal
sentence in the language LBn true in Bn is also true in An. So let

T ′ = T ∪ {ϕ : ϕ is a universal LBn
-formula and Bn |= ϕ};

we want to show that T ′ is consistent. Suppose not. Then, by compactness, there is a single
universal sentence ∀xϕ(x, b) with b ∈ Bn and Bn |= ∀xϕ(x, b) that is already inconsistent with
T . So

T |= ∃x ¬ϕ(x, b)

and
T |= ∀y ∃x¬ϕ(x, y)

because the bi do not occur in T . Since Bn |= T∀∃, we should have Bn |= ∀y ∃x¬ϕ(x, y). But
this contradicts the fact that Bn |= ∀xϕ(x, b).

Construction of Bn+1: We need An → Bn+1 to be an embedding and Bn → Bn+1 to be
elementary. So let

T ′ = Diag(An) ∪Diagel(Bn)

(identifying the element of Bn with their image along the embedding Bn → An); we want
to show that T ′ is consistent. Suppose not. Then, by compactness, there is a quantifier-free
sentence

ϕ(b, a)

with bi ∈ Bn and ai ∈ An \Bn which is true in An, but is inconsistent with Diagel(Bn). Since
the ai do not occur in Bn, we must have

Bn |= ∀x¬ϕ(b, x).
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This contradicts the fact that all universal LBn
-sentences true in Bn are also true in An. �

3. Exercises

Exercise 2. Does the theory of fields have a universal axiomatisation?

Exercise 3. Prove: a theory has an existential axiomatisation iff its models are closed
under extensions.





CHAPTER 3

The theorems of Robinson, Craig and Beth

1. Robinson’s Consistency Theorem

The aim of this section is to prove the statement:

(Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1 ∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend
a complete L-theory T . If both T1 and T2 are consistent, then so is T1 ∪ T2.

We first treat the special case where L1 ⊆ L2.

Lemma 3.1. Let L ⊆ L′ be languages and suppose A is an L-structure and B is an L′-
structure. Suppose moreover A ≡ B � L. Then there is an L′-structure C and a diagram of
elementary embeddings (f in L and f ′ in L′)

A

f   

B

f ′
~~

C.

Proof. Consider T = DiagL
el(A) ∪ DiagL′

el (B) (making sure we use different constants for
the elements from A and B!). We need to show T has a model; so suppose T is inconsistent.
Then, by compactness, a finite subset of T has no model; taking conjunctions, we have sentences
ϕ(a) ∈ Diagel(A) and ψ(b) ∈ Diagel(B) that are contradictory. But as the aj do not occur in
L′B , we must have that B |= ¬∃xϕ(x). This contradicts A ≡ B � L. �

Lemma 3.2. Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an L′-
structure. Any pair of L-elementary embeddings f :A→ B and g:A→ C fit into a commuting
square A

g

  

f

~~

B

h
  

C

k
~~

D
where D is an L′-structure, h is an L-elementary embedding and k is an L′-elementary embed-
ding.

Proof. Without loss of generality we may assume that L contains constants for all ele-
ments of A. Then simply apply Lemma 3.1. �
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10 3. THE THEOREMS OF ROBINSON, CRAIG AND BETH

Theorem 3.3. (Robinson’s Consistency Theorem) Let L1 and L2 be two languages and
L = L1∩L2. Suppose T1 is an L1-theory, T2 an L2-theory and both extend a complete L-theory
T . If both T1 and T2 are consistent, then so is T1 ∪ T2.

Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is complete, their
reducts to L are elementary equivalent, so, by the first lemma, there is a diagram

A0

f0

  

B0
h0

// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding. Now by applying
the second lemma to f0 and the identity on A0, we obtain

A0

f0   

k0 // A1

B0
h0

// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way we obtain a diagram

A0

f0   

k0 // A1

f1

  

k1 // A2
// . . .

B0
h0

// B1

g0

OO

h1

// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi are L2-elementary.
The colimit C of this directed system is both the colimit of the Ai and of the Bi. So A0 and
B0 embed elementarily into C by the elementary systems lemma; hence C is a model of both
T1 and T2, as desired. �

2. Craig Interpolation

Theorem 3.4. Let ϕ and ψ be sentences in some language such that ϕ |= ψ. Then there
is a sentence θ, a “(Craig) interpolant”, such that

(1) ϕ |= θ and θ |= ψ;
(2) every predicate, function or constant symbol that occurs in θ occurs also in both ϕ and

ψ.

Proof. Let L be the common language of ϕ and ψ. We will show that T0 |= ψ where
T0 = {σ : σ is an L-sentence and ϕ |= σ}. Let us first check that this suffices for proving the
theorem: for then there are θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by compactness. So
θ: = θ1 ∧ . . . ∧ θn is an interpolant.

Claim: If ϕ |= ψ, then T0 |= ψ where T0 = {σ ∈ L : ϕ |= σ} and L is the common language
of ϕ and ψ. Proof of claim: Suppose not. Then T0 ∪{¬ψ} has a model A. Write T = ThL(A).
Observe that we now have T0 ⊆ T and:

(1) T is a complete L-theory.
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(2) T ∪ {¬ψ} is consistent (because A is a model).
(3) T ∪{ϕ} is consistent. (Proof: Suppose not. Then, by the compactness theorem, there

would a sentence σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)

This means we can apply Robinson’s Consistency Theorem to deduce that T ∪ {¬ψ,ϕ} is
consistent. But that contradicts ϕ |= ψ. �

3. Beth Definability Theorem

Definition 3.5. Let L be a language a P be a predicate symbol not in L, and let T be an
L ∪ {P}-theory. T defines P implicitly if any L-structure M has at most one expansion to an
L∪{P}-structure which models T . There is another way of saying this: let T ′ be the theory T
with all occurrences of P replaced by P ′, another predicate symbol not in L. Then T defines
P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn
(
P (x1, . . . , xn)↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn
(
P (x1, . . . , xn)↔ ϕ(x1, . . . , xn)

)
.

Theorem 3.6. (Beth Definability Theorem) T defines P implicitly if and only if T defines
P explicitly.

Proof. It is easy to see that T defines P implicitly in case T defines P explicitly. So we
prove the other direction.

Suppose T defines P implicitly. Add new constants c1, . . . , cn to the language. Then we
have

T ∪ T ′ |= P (c1, . . . , cn)→ P ′(c1, . . . , cn).

Using compactness and taking conjunctions we can find an L∪{P}-formula ψ such that T |= ψ
and

ψ ∧ ψ′ |= P (c1, . . . , cn)→ P ′(c1, . . . , cn)

(where ψ′ is ψ with all occurrences of P replaced by P ′). Taking all the P s to one side and the
P ′s to another, we get

ψ ∧ P (c1, . . . , cn) |= ψ′ → P ′(c1, . . . , cn)

So there is a Craig interpolant θ in the language L ∪ {c1, . . . , cn} such that

ψ ∧ P (c1, . . . , cn) |= θ and θ |= ψ′ ∧ P ′(c1, . . . , cn)

By symmetry also

ψ′ ∧ P ′(c1, . . . , cn) |= θ and θ |= ψ ∧ P (c1, . . . , cn)

So θ = θ(c1, . . . , cn) is, modulo T , equivalent to P (c1, . . . , cn); hence θ(x1, . . . , xn) defines P
explicitly. �
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4. Exercises

Exercise 4. Use Robinson’s Consistency Theorem to prove the following Amalgamation
Theorem: Let L1, L2 be languages and L = L1 ∩ L2, and suppose A,B and C are structures
in the languages L, L1 and L2, respectively. Any pair of L-elementary embeddings f :A → B
and g:A→ C fit into a commuting square

A
g

  

f

~~

B

h
  

C

k
~~

D

where D is an L1 ∪ L2-structure, h is an L1-elementary embedding and k is an L2-elementary
embedding.


