CHAPTER 1

New models from old

1. Directed systems

Definition 1.1. A partially ordered set (K, \leq) is called directed, if K is non-empty and for any two elements $x, y \in K$ there is an element $z \in K$ such that $x \leq z$ and $y \leq z$.

Note that non-empty linear orders (aka chains) are always directed.
Definition 1.2. A directed system of L-structures consists of a family $\left(M_{k}\right)_{k \in K}$ of L structures indexed by a directed partial order K, together with homomorphisms $f_{k l}: M_{k} \rightarrow M_{l}$ for $k \leq l$, satisfying:

- $f_{k k}$ is the identity homomorphism on M_{k},
- if $k \leq l \leq m$, then $f_{k m}=f_{l m} f_{k l}$.

If K is a chain, we call $\left(M_{k}\right)_{k \in K}$ a chain of L-structures
If we have a directed system, then we can construct its colimit, another L-structure M with homomorphisms $f_{k}: M_{k} \rightarrow M$. To construct the underlying set of the model M, we first take the disjoint union of all the universes:

$$
\sum_{k \in K} M_{k}=\left\{(k, a): k \in K, a \in M_{k}\right\}
$$

and then we define an equivalence relation on it:

$$
(k, a) \sim(l, b): \Leftrightarrow(\exists m \geq k, l) f_{k m}(a)=f_{l m}(b)
$$

The underlying set of M will be the set of equivalence classes, where denote the equivalence class of (k, a) by $[k, a]$.
M has an L-structure: if R is a relation symbol in L, we put

$$
R^{M}\left(\left[k_{1}, a_{1}\right], \ldots,\left[k_{n}, a_{n}\right]\right)
$$

if there is a $k \geq k_{1}, \ldots, k_{n}$ such that

$$
\left(f_{k_{1} k}\left(a_{1}\right), \ldots, f_{k_{n} k}\left(a_{n}\right)\right) \in R^{M_{k}}
$$

And if g is a function symbol in L, we put

$$
g^{M}\left(\left[k_{1}, a_{1}\right], \ldots,\left[k_{n}, a_{n}\right]\right)=\left[k, g^{M_{k}}\left(f_{k_{1} k}\left(a_{1}\right), \ldots, f_{k_{n} k}\left(a_{n}\right)\right)\right]
$$

where k is an element $\geq k_{1}, \ldots, k_{n}$. (Check that this makes sense!) In addition, the homomorphisms $f_{k}: M_{k} \rightarrow M$ are obtained by sending a to $[k, a]$.

The following theorem collects the most important facts about colimits of directed systems. Especially useful is part 5 , often called the elementary system lemma.

THEOREM 1.3. (1) All f_{k} are homomorphisms.
(2) If $k \leq l$, then $f_{l} f_{k l}=f_{k}$.
(3) If N is another L-structure for which there are homomorphisms $g_{k}: M_{k} \rightarrow N$ such that $g_{l} f_{k l}=g_{k}$ whenever $k \leq l$, then there is a unique homomorphisms $g: M \rightarrow N$ such that $g f_{k}=g_{k}$ for all $k \in K$ (this is the universal property of the colimit).
(4) If all maps $f_{k l}$ are embeddings, then so are all f_{k}.
(5) If all maps $f_{k l}$ are elementary embeddings, then so are all f_{k}.

Proof. Exercise!

2. Ultraproducts

Definition 1.4. Let I be a set. A collection \mathcal{F} of subsets of I is called a filter (on I) if:
(1) $I \in \mathcal{F}, \emptyset \notin \mathcal{F}$;
(2) whenever $A, B \in \mathcal{F}$, then also $A \cap B \in \mathcal{F}$;
(3) whenever $A \in \mathcal{F}$ and $A \subseteq B$, then also $B \in \mathcal{F}$.

A filter which is maximal in the inclusion ordering is called an ultrafilter.
Lemma 1.5. A filter \mathcal{U} is an ultrafilter iff for any $X \subseteq I$ either $X \in \mathcal{U}$ or $I \backslash X \in \mathcal{U}$.
Proof. \Rightarrow : Let \mathcal{U} be a maximal filter and suppose X is a set such that $X \notin \mathcal{U}$. Put

$$
\mathcal{F}=\{Y \subseteq I:(\exists F \in \mathcal{U}) F \cap X \subseteq Y\}
$$

Since $\mathcal{U} \subseteq \mathcal{F}$ and $X \in \mathcal{F}$, the set \mathcal{F} cannot be filter; since it has all other properties of a filter, we must have $\emptyset \in \mathcal{F}$. So there is an element $F \in \mathcal{U}$ such that $F \cap X=\emptyset$ and hence $F \subseteq I \backslash X \in \mathcal{U}$.
$\Leftarrow:$ Suppose \mathcal{U} is a filter and for any $X \subseteq I$ either $X \in \mathcal{U}$ or $I \backslash X \in \mathcal{U}$. If \mathcal{U} would not be maximal, there would be a filter \mathcal{F} extending \mathcal{U}. This would mean that there would be a subset $X \subseteq I$ such that $X \in \mathcal{F}$ and $X \notin \mathcal{U}$. But the latter implies that $I \backslash X \in \mathcal{U} \subseteq \mathcal{F}$. So $\emptyset=X \cap(I \backslash X) \in \mathcal{F}$, contradicting the fact that \mathcal{F} is a filter.

Definition 1.6. For any element $i \in I$, the set $\{X \subseteq I: i \in X\}$ is an ultrafilter; ultrafilters of this form are called principal, the others are called non-principal.

If I is a finite set, then every ultrafilter on I is principal. If I is infinite, then there are non-principal ultrafilters. In fact, if I is infinite, then $\mathcal{F}=\{X \subseteq I: I \backslash X$ is finite $\}$ is a filter on I (this is the Fréchet filter on I). Since, by Zorn's Lemma, every filter can be extended to an ultrafilter, there is an ultrafilter $\mathcal{U} \supseteq \mathcal{F}$; such an ultrafilter has to be non-principal.

Now suppose we have a collection $\left\{M_{i}: i \in I\right\}$ of L-structures and \mathcal{F} is a filter on I. We can construct a new L-structure M, as follows. Its universe is

$$
\prod_{i \in I} M_{i}=\left\{f: I \rightarrow \bigcup_{i} M_{i}:(\forall i \in I) f(i) \in M_{i}\right\}
$$

quotiented by the following equivalence relation:

$$
f \sim g \quad: \Leftrightarrow \quad\{i \in I: f(i)=g(i)\} \in \mathcal{F}
$$

In addition, if g is an n-ary function symbol belonging to L and $\left[f_{1}\right], \ldots,\left[f_{n}\right] \in M$, then

$$
g^{M}\left(\left[f_{1}\right], \ldots,\left[f_{n}\right]\right)=\left[i \mapsto g^{M_{i}}\left(f_{1}(i), \ldots, f_{n}(i)\right)\right]
$$

and if R is an n-ary relation symbol belonging to L and $\left[f_{1}\right], \ldots,\left[f_{n}\right] \in M$, then

$$
\left(\left[f_{1}\right], \ldots,\left[f_{n}\right]\right) \in R^{M} \quad: \Leftrightarrow \quad\left\{i \in I:\left(f_{1}(i), \ldots, f_{n}(i)\right) \in R^{M_{i}}\right\} \in \mathcal{F}
$$

where one should check, once again, that everything is well-defined. The resulting structure is denoted by $\prod M_{i} / \mathcal{F}$. We will be most interested in the special case where \mathcal{F} is an ultrafilter, in which case $\prod M_{i} / \mathcal{F}$ is called an ultraproduct.

Theorem 1.7. (Łoś's Theorem) Let $\left\{M_{i}: i \in I\right\}$ be a collection of L-structures and \mathcal{U} be an ultrafilter on I. Then we have for any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $\left[f_{1}\right], \ldots,\left[f_{n}\right] \in \prod M_{i} / \mathcal{U}$ that

$$
\prod M_{i} / \mathcal{U} \models \varphi\left(\left[f_{1}\right], \ldots,\left[f_{n}\right]\right) \quad \Leftrightarrow \quad\left\{i \in I: M_{i} \models \varphi\left(f_{1}(i), \ldots, f_{n}(i)\right)\right\} \in \mathcal{U}
$$

Proof. Exercise!
Corollary 1.8. If all M_{i} are models of some theory T, then so is $\prod M_{i} / \mathcal{U}$.
Corollary 1.9. Let M be an L-structure and \mathcal{U} be an ultrafilter on a set I. Put $M_{i}=M$ and $M^{*}=\prod_{i \in I} M_{i} / \mathcal{U}$. Then the map d: $M \rightarrow M^{*}$ obtained by sending m to $[i \mapsto m]$ is an elementary embedding. If $|M| \geq|I|$ and \mathcal{U} is non-principal, then this embedding is proper.

Ultraproducts taken over a constant indexed family of models are called ultrapowers. In particular, the structure M^{*} in Corollary 1.9 is an ultrapower of M.

3. Additional exercises

Exercise 1. Do Exercise 2.5.20 in Marker.

CHAPTER 2

Preservation theorems

1. Characterisation universal theories

Definition 2.1. A sentence is universal if it starts with a string of universal quantifiers followed by a quantifier-free formula. A theory is universal if it consists of universal sentences. A theory has a universal axiomatisation if it has the same class of models as a universal theory in the same language.

Theorem 2.2. (The Łoś-Tarski Theorem) T has a universal axiomatisation iff models of T are closed under substructures.

Proof. It is easy to see that models of a universal theory are closed under substructures, so we concentrate on the other direction. So let T be a theory such that its models are closed under substructures. Write

$$
T_{\forall}=\{\varphi: T \models \varphi \text { and } \varphi \text { is universal }\} .
$$

Clearly, $T \models T_{\forall}$. We need to prove the converse.
So suppose M is a model of T_{\forall}. Now it suffices to show that $T \cup \operatorname{Diag}(M)$ is consistent. Because once we do that, it will have a model N. But since N is a model of $\operatorname{Diag}(M)$, it will be an extension of M; and because N is a model of T and models of T are closed under substructures, M will be a model of T.

So the theorem will follow from the following claim: if $M \models T_{\forall}$, then $T \cup \operatorname{Diag}(M)$ is consistent. Proof of claim: Suppose not. Then, by the compactness theorem, there are literals $\psi_{1}, \ldots, \psi_{n} \in \operatorname{Diag}(M)$ which are inconsistent with T. Replace the constants from M in $\psi_{1}, \ldots, \psi_{n}$ by variables x_{1}, \ldots, x_{n} and we obtain $\psi_{1}^{\prime}, \ldots, \psi_{n}^{\prime}$; because the constants from M do not appear in T, the theory T is already inconsistent with $\exists x_{1}, \ldots, x_{n}\left(\psi_{1}^{\prime} \wedge \ldots, \wedge \psi_{n}^{\prime}\right)$. So $T \models \neg \exists x_{1}, \ldots, x_{n}\left(\psi_{1}^{\prime} \wedge \ldots \psi_{n}^{\prime}\right)$ and hence $T \models \forall x_{1}, \ldots, x_{n}\left(\neg\left(\psi_{1}^{\prime} \wedge \ldots \psi_{n}^{\prime}\right)\right)$. Since M is a model of T_{\forall}, it follows that $M \models \forall x_{1}, \ldots, x_{n}\left(\neg\left(\psi_{1}^{\prime} \wedge \ldots \psi_{n}^{\prime}\right)\right)$. On the other hand, $M \vDash \exists x_{1}, \ldots, x_{n}\left(\psi_{1}^{\prime} \wedge \ldots, \wedge \psi_{n}^{\prime}\right)$, since $\psi_{1}, \ldots, \psi_{n} \in \operatorname{Diag}(M)$. Contradiction.

2. Chang-Łoś-Suszko Theorem

Definition 2.3. A $\forall \exists$-sentence is a sentence which consists first of a sequence of universal quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula. A theory T can be axiomatised by $\forall \exists$-sentences if there is a set T^{\prime} of $\forall \exists$-sentences such that T and T^{\prime} have the same models.

Definition 2.4. A theory T is preserved by directed unions if, for any directed system consisting of models of T and embeddings between them, also the colimit is a model T. And T is preserved by unions of chains if, for any chain of models of T and embeddings between them, also the colimit is a model of T.

Theorem 2.5. (The Chang-Łoś-Suszko Theorem) The following statements are equivalent:
(1) T is preserved by directed unions.
(2) T is preserved by unions of chains.
(3) T can be axiomatised by $\forall \exists$-sentences.

Proof. It is easy to see that $(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$ hold, so we concentrate on $(2) \Rightarrow$ (3).

So suppose T is preserved by unions of chains. Again, let

$$
T_{\forall \exists}=\{\varphi: \varphi \text { is a } \forall \exists \text {-sentence and } T \models \varphi\},
$$

and let B be a model of $T_{\forall \exists}$. We will construct a chain of embeddings

$$
B=B_{0} \rightarrow A_{0} \rightarrow B_{1} \rightarrow A_{1} \rightarrow B_{2} \rightarrow A_{2} \ldots
$$

such that:
(1) Each A_{n} is a model of T.
(2) The composed embeddings $B_{n} \rightarrow B_{n+1}$ are elementary.
(3) Every universal sentence in the language $L_{B_{n}}$ true in B_{n} is also true in A_{n} (when regarding A_{n} is an $L_{B_{n}}$-structure via the embedding $B_{n} \rightarrow A_{n}$).

This will suffice, because when we take the colimit of the chain, then it is:

- the colimit of the A_{n}, and hence a model of T, by assumption on T.
- the colimit of the B_{n}, and hence elementary equivalent to each B_{n}.

So B is a model of T, as desired.
Construction of A_{n} : We need A_{n} to be a model of T and must have that every universal sentence in the language $L_{B_{n}}$ true in B_{n} is also true in A_{n}. So let

$$
T^{\prime}=T \cup\left\{\varphi: \varphi \text { is a universal } L_{B_{n}} \text {-formula and } B_{n} \mid=\varphi\right\}
$$

we want to show that T^{\prime} is consistent. Suppose not. Then, by compactness, there is a single universal sentence $\forall \bar{x} \varphi(\bar{x}, \bar{b})$ with $\bar{b} \in B_{n}$ and $B_{n} \models \forall \bar{x} \varphi(\bar{x}, \bar{b})$ that is already inconsistent with T. So

$$
T \models \exists \bar{x} \neg \varphi(\bar{x}, \bar{b})
$$

and

$$
T \models \forall \bar{y} \exists \bar{x} \neg \varphi(\bar{x}, \bar{y})
$$

because the b_{i} do not occur in T. Since $B_{n} \models T_{\forall \exists}$, we should have $B_{n} \models \forall \bar{y} \exists \bar{x} \neg \varphi(\bar{x}, \bar{y})$. But this contradicts the fact that $B_{n}=\forall \bar{x} \varphi(\bar{x}, \bar{b})$.

Construction of B_{n+1} : We need $A_{n} \rightarrow B_{n+1}$ to be an embedding and $B_{n} \rightarrow B_{n+1}$ to be elementary. So let

$$
T^{\prime}=\operatorname{Diag}\left(A_{n}\right) \cup \operatorname{Diag}_{\mathrm{el}}\left(B_{n}\right)
$$

(identifying the element of B_{n} with their image along the embedding $B_{n} \rightarrow A_{n}$); we want to show that T^{\prime} is consistent. Suppose not. Then, by compactness, there is a quantifier-free sentence

$$
\varphi(\bar{b}, \bar{a})
$$

with $b_{i} \in B_{n}$ and $a_{i} \in A_{n} \backslash B_{n}$ which is true in A_{n}, but is inconsistent with $\mathrm{Diag}_{\text {el }}\left(B_{n}\right)$. Since the a_{i} do not occur in B_{n}, we must have

$$
B_{n} \models \forall \bar{x} \neg \varphi(\bar{b}, \bar{x})
$$

This contradicts the fact that all universal $L_{B_{n}}$-sentences true in B_{n} are also true in A_{n}.

3. Exercises

ExERCISE 2. Does the theory of fields have a universal axiomatisation?
Exercise 3. Prove: a theory has an existential axiomatisation iff its models are closed under extensions.

CHAPTER 3

The theorems of Robinson, Craig and Beth

1. Robinson's Consistency Theorem

The aim of this section is to prove the statement:
(Robinson's Consistency Theorem) Let L_{1} and L_{2} be two languages and $L=L_{1} \cap L_{2}$. Suppose T_{1} is an L_{1}-theory, T_{2} an L_{2}-theory and both extend a complete L-theory T. If both T_{1} and T_{2} are consistent, then so is $T_{1} \cup T_{2}$.

We first treat the special case where $L_{1} \subseteq L_{2}$.
LEMmA 3.1. Let $L \subseteq L^{\prime}$ be languages and suppose A is an L-structure and B is an L^{\prime} structure. Suppose moreover $A \equiv B \upharpoonright L$. Then there is an L^{\prime}-structure C and a diagram of elementary embeddings (f in L and f^{\prime} in L^{\prime})

Proof. Consider $T=\operatorname{Diag}_{\text {el }}^{L}(A) \cup \operatorname{Diag}_{\mathrm{el}}^{L^{\prime}}(B)$ (making sure we use different constants for the elements from A and $B!$). We need to show T has a model; so suppose T is inconsistent. Then, by compactness, a finite subset of T has no model; taking conjunctions, we have sentences $\varphi(\bar{a}) \in \operatorname{Diag}_{\mathrm{el}}(A)$ and $\psi(\bar{b}) \in \operatorname{Diag}_{\mathrm{el}}(B)$ that are contradictory. But as the a_{j} do not occur in L_{B}^{\prime}, we must have that $B \models \neg \exists \bar{x} \varphi(\bar{x})$. This contradicts $A \equiv B \upharpoonright L$.

Lemma 3.2. Let $L \subseteq L^{\prime}$ be languages, suppose A and B are L-structures and C is an L^{\prime} structure. Any pair of L-elementary embeddings $f: A \rightarrow B$ and $g: A \rightarrow C$ fit into a commuting square

where D is an L^{\prime}-structure, h is an L-elementary embedding and k is an L^{\prime}-elementary embedding.

Proof. Without loss of generality we may assume that L contains constants for all elements of A. Then simply apply Lemma 3.1.

Theorem 3.3. (Robinson's Consistency Theorem) Let L_{1} and L_{2} be two languages and $L=L_{1} \cap L_{2}$. Suppose T_{1} is an L_{1}-theory, T_{2} an L_{2}-theory and both extend a complete L-theory T. If both T_{1} and T_{2} are consistent, then so is $T_{1} \cup T_{2}$.

Proof. Let A_{0} be a model of T_{1} and B_{0} be a model of T_{2}. Since T is complete, their reducts to L are elementary equivalent, so, by the first lemma, there is a diagram

with h_{0} an L_{2}-elementary embedding and f_{0} an L-elementary embedding. Now by applying the second lemma to f_{0} and the identity on A_{0}, we obtain

where g_{0} is L-elementary and k_{0} is L_{1}-elementary. Continuing in this way we obtain a diagram

where the k_{i} are L_{1}-elementary, the f_{i} and g_{i} are L-elementary and the h_{i} are L_{2}-elementary. The colimit C of this directed system is both the colimit of the A_{i} and of the B_{i}. So A_{0} and B_{0} embed elementarily into C by the elementary systems lemma; hence C is a model of both T_{1} and T_{2}, as desired.

2. Craig Interpolation

Theorem 3.4. Let φ and ψ be sentences in some language such that $\varphi \models \psi$. Then there is a sentence θ, a "(Craig) interpolant", such that
(1) $\varphi \models \theta$ and $\theta \models \psi$;
(2) every predicate, function or constant symbol that occurs in θ occurs also in both φ and ψ.

Proof. Let L be the common language of φ and ψ. We will show that $T_{0} \models \psi$ where $T_{0}=\{\sigma: \sigma$ is an L-sentence and $\varphi \models \sigma\}$. Let us first check that this suffices for proving the theorem: for then there are $\theta_{1}, \ldots, \theta_{n} \in T_{0}$ such that $\theta_{1}, \ldots, \theta_{n} \vDash \psi$ by compactness. So $\theta:=\theta_{1} \wedge \ldots \wedge \theta_{n}$ is an interpolant.

Claim: If $\varphi \models \psi$, then $T_{0} \models \psi$ where $T_{0}=\{\sigma \in L: \varphi \models \sigma\}$ and L is the common language of φ and ψ. Proof of claim: Suppose not. Then $T_{0} \cup\{\neg \psi\}$ has a model A. Write $T=\operatorname{Th}_{L}(A)$. Observe that we now have $T_{0} \subseteq T$ and:
(1) T is a complete L-theory.
(2) $T \cup\{\neg \psi\}$ is consistent (because A is a model).
(3) $T \cup\{\varphi\}$ is consistent. (Proof: Suppose not. Then, by the compactness theorem, there would a sentence $\sigma \in T$ such that $\varphi \models \neg \sigma$. But then $\neg \sigma \in T_{0} \subseteq T$. Contradiction!)

This means we can apply Robinson's Consistency Theorem to deduce that $T \cup\{\neg \psi, \varphi\}$ is consistent. But that contradicts $\varphi \models \psi$.

3. Beth Definability Theorem

Definition 3.5. Let L be a language a P be a predicate symbol not in L, and let T be an $L \cup\{P\}$-theory. T defines P implicitly if any L-structure M has at most one expansion to an $L \cup\{P\}$-structure which models T. There is another way of saying this: let T^{\prime} be the theory T with all occurrences of P replaced by P^{\prime}, another predicate symbol not in L. Then T defines P implicitly iff

$$
T \cup T^{\prime} \models \forall x_{1}, \ldots x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

T defines P explicitly, if there is an L-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
T \models \forall x_{1}, \ldots, x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \varphi\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Theorem 3.6. (Beth Definability Theorem) T defines P implicitly if and only if T defines P explicitly.

Proof. It is easy to see that T defines P implicitly in case T defines P explicitly. So we prove the other direction.

Suppose T defines P implicitly. Add new constants c_{1}, \ldots, c_{n} to the language. Then we have

$$
T \cup T^{\prime} \models P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

Using compactness and taking conjunctions we can find an $L \cup\{P\}$-formula ψ such that $T \models \psi$ and

$$
\psi \wedge \psi^{\prime} \models P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

(where ψ^{\prime} is ψ with all occurrences of P replaced by P^{\prime}). Taking all the P s to one side and the P^{\prime} s to another, we get

$$
\psi \wedge P\left(c_{1}, \ldots, c_{n}\right) \vDash \psi^{\prime} \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

So there is a Craig interpolant θ in the language $L \cup\left\{c_{1}, \ldots, c_{n}\right\}$ such that

$$
\psi \wedge P\left(c_{1}, \ldots, c_{n}\right) \models \theta \text { and } \theta \models \psi^{\prime} \wedge P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

By symmetry also

$$
\psi^{\prime} \wedge P^{\prime}\left(c_{1}, \ldots, c_{n}\right) \models \theta \text { and } \theta \models \psi \wedge P\left(c_{1}, \ldots, c_{n}\right)
$$

So $\theta=\theta\left(c_{1}, \ldots, c_{n}\right)$ is, modulo T, equivalent to $P\left(c_{1}, \ldots, c_{n}\right)$; hence $\theta\left(x_{1}, \ldots, x_{n}\right)$ defines P explicitly.

4. Exercises

Exercise 4. Use Robinson's Consistency Theorem to prove the following Amalgamation Theorem: Let L_{1}, L_{2} be languages and $L=L_{1} \cap L_{2}$, and suppose A, B and C are structures in the languages L, L_{1} and L_{2}, respectively. Any pair of L-elementary embeddings $f: A \rightarrow B$ and $g: A \rightarrow C$ fit into a commuting square

where D is an $L_{1} \cup L_{2}$-structure, h is an L_{1}-elementary embedding and k is an L_{2}-elementary embedding.

