CHAPTER 1

New models from old

1. Directed systems

DEFINITION 1.1. A partially ordered set (K, \leq) is called *directed*, if K is non-empty and for any two elements $x, y \in K$ there is an element $z \in K$ such that $x \leq z$ and $y \leq z$.

Note that non-empty linear orders (*aka* chains) are always directed.

DEFINITION 1.2. A directed system of L-structures consists of a family $(M_k)_{k \in K}$ of Lstructures indexed by a directed partial order K, together with homomorphisms $f_{kl}: M_k \to M_l$ for $k \leq l$, satisfying:

- f_{kk} is the identity homomorphism on M_k,
 if k ≤ l ≤ m, then f_{km} = f_{lm}f_{kl}.

If K is a chain, we call $(M_k)_{k \in K}$ a chain of L-structures

If we have a directed system, then we can construct its colimit, another L-structure M with homomorphisms $f_k: M_k \to M$. To construct the underlying set of the model M, we first take the disjoint union of all the universes:

$$\sum_{k \in K} M_k = \{(k, a) \colon k \in K, a \in M_k\},\$$

and then we define an equivalence relation on it:

$$(k,a) \sim (l,b)$$
: $\Leftrightarrow (\exists m \ge k, l) f_{km}(a) = f_{lm}(b).$

The underlying set of M will be the set of equivalence classes, where denote the equivalence class of (k, a) by [k, a].

M has an L-structure: if R is a relation symbol in L, we put

$$R^M([k_1, a_1], \ldots, [k_n, a_n])$$

if there is a $k \geq k_1, \ldots, k_n$ such that

$$(f_{k_1k}(a_1),\ldots,f_{k_nk}(a_n)) \in \mathbb{R}^{M_k}$$

And if g is a function symbol in L, we put

$$g^{M}([k_{1},a_{1}],\ldots,[k_{n},a_{n}]) = [k,g^{M_{k}}(f_{k_{1}k}(a_{1}),\ldots,f_{k_{n}k}(a_{n}))]$$

where k is an element $\geq k_1, \ldots, k_n$. (Check that this makes sense!) In addition, the homomorphisms $f_k: M_k \to M$ are obtained by sending a to [k, a].

The following theorem collects the most important facts about colimits of directed systems. Especially useful is part 5, often called the *elementary system lemma*.

THEOREM 1.3. (1) All f_k are homomorphisms.

- (2) If $k \leq l$, then $f_l f_{kl} = f_k$.
- (3) If N is another L-structure for which there are homomorphisms $g_k: M_k \to N$ such that $g_l f_{kl} = g_k$ whenever $k \leq l$, then there is a unique homomorphisms $g: M \to N$ such that $gf_k = g_k$ for all $k \in K$ (this is the universal property of the colimit).
- (4) If all maps f_{kl} are embeddings, then so are all f_k .
- (5) If all maps f_{kl} are elementary embeddings, then so are all f_k .

PROOF. Exercise!

2. Ultraproducts

DEFINITION 1.4. Let I be a set. A collection \mathcal{F} of subsets of I is called a *filter* (on I) if:

- (1) $I \in \mathcal{F}, \emptyset \notin \mathcal{F};$
- (2) whenever $A, B \in \mathcal{F}$, then also $A \cap B \in \mathcal{F}$;
- (3) whenever $A \in \mathcal{F}$ and $A \subseteq B$, then also $B \in \mathcal{F}$.

A filter which is maximal in the inclusion ordering is called an *ultrafilter*.

LEMMA 1.5. A filter \mathcal{U} is an ultrafilter iff for any $X \subseteq I$ either $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$.

PROOF. \Rightarrow : Let \mathcal{U} be a maximal filter and suppose X is a set such that $X \notin \mathcal{U}$. Put

$$\mathcal{F} = \{ Y \subseteq I : (\exists F \in \mathcal{U}) F \cap X \subseteq Y \}.$$

Since $\mathcal{U} \subseteq \mathcal{F}$ and $X \in \mathcal{F}$, the set \mathcal{F} cannot be filter; since it has all other properties of a filter, we must have $\emptyset \in \mathcal{F}$. So there is an element $F \in \mathcal{U}$ such that $F \cap X = \emptyset$ and hence $F \subseteq I \setminus X \in \mathcal{U}$.

 \Leftarrow : Suppose \mathcal{U} is a filter and for any $X \subseteq I$ either $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$. If \mathcal{U} would not be maximal, there would be a filter \mathcal{F} extending \mathcal{U} . This would mean that there would be a subset $X \subseteq I$ such that $X \in \mathcal{F}$ and $X \notin \mathcal{U}$. But the latter implies that $I \setminus X \in \mathcal{U} \subseteq \mathcal{F}$. So $\emptyset = X \cap (I \setminus X) \in \mathcal{F}$, contradicting the fact that \mathcal{F} is a filter. \Box

DEFINITION 1.6. For any element $i \in I$, the set $\{X \subseteq I : i \in X\}$ is an ultrafilter; ultrafilters of this form are called *principal*, the others are called *non-principal*.

If I is a finite set, then every ultrafilter on I is principal. If I is infinite, then there are non-principal ultrafilters. In fact, if I is infinite, then $\mathcal{F} = \{X \subseteq I : I \setminus X \text{ is finite}\}$ is a filter on I (this is the *Fréchet filter* on I). Since, by Zorn's Lemma, every filter can be extended to an ultrafilter, there is an ultrafilter $\mathcal{U} \supseteq \mathcal{F}$; such an ultrafilter has to be non-principal.

Now suppose we have a collection $\{M_i : i \in I\}$ of *L*-structures and \mathcal{F} is a filter on *I*. We can construct a new *L*-structure *M*, as follows. Its universe is

$$\prod_{i \in I} M_i = \{ f \colon I \to \bigcup_i M_i \colon (\forall i \in I) f(i) \in M_i \},\$$

quotiented by the following equivalence relation:

$$f \sim g \quad :\Leftrightarrow \quad \{i \in I : f(i) = g(i)\} \in \mathcal{F}.$$

In addition, if g is an n-ary function symbol belonging to L and $[f_1], \ldots, [f_n] \in M$, then

$$g^{M}([f_{1}],\ldots,[f_{n}]) = [i \mapsto g^{M_{i}}(f_{1}(i),\ldots,f_{n}(i))],$$

 $\mathbf{2}$

3. ADDITIONAL EXERCISES

and if R is an n-ary relation symbol belonging to L and $[f_1], \ldots, [f_n] \in M$, then

$$([f_1],\ldots,[f_n]) \in \mathbb{R}^M \quad :\Leftrightarrow \quad \{ i \in I : (f_1(i),\ldots,f_n(i)) \in \mathbb{R}^{M_i} \} \in \mathcal{F},$$

where one should check, once again, that everything is well-defined. The resulting structure is denoted by $\prod M_i/\mathcal{F}$. We will be most interested in the special case where \mathcal{F} is an ultrafilter, in which case $\prod M_i/\mathcal{F}$ is called an *ultraproduct*.

THEOREM 1.7. (Loś's Theorem) Let $\{M_i : i \in I\}$ be a collection of L-structures and \mathcal{U} be an ultrafilter on I. Then we have for any formula $\varphi(x_1, \ldots, x_n)$ and $[f_1], \ldots, [f_n] \in \prod M_i/\mathcal{U}$ that

$$\prod M_i / \mathcal{U} \models \varphi([f_1], \dots, [f_n]) \quad \Leftrightarrow \quad \{i \in I : M_i \models \varphi(f_1(i), \dots, f_n(i))\} \in \mathcal{U}.$$

PROOF. Exercise!

COROLLARY 1.8. If all M_i are models of some theory T, then so is $\prod M_i/\mathcal{U}$.

COROLLARY 1.9. Let M be an L-structure and \mathcal{U} be an ultrafilter on a set I. Put $M_i = M$ and $M^* = \prod_{i \in I} M_i / \mathcal{U}$. Then the map $d: M \to M^*$ obtained by sending m to $[i \mapsto m]$ is an elementary embedding. If $|M| \ge |I|$ and \mathcal{U} is non-principal, then this embedding is proper.

Ultraproducts taken over a constant indexed family of models are called *ultrapowers*. In particular, the structure M^* in Corollary 1.9 is an ultrapower of M.

3. Additional exercises

EXERCISE 1. Do Exercise 2.5.20 in Marker.

CHAPTER 2

Preservation theorems

1. Characterisation universal theories

DEFINITION 2.1. A sentence is *universal* if it starts with a string of universal quantifiers followed by a quantifier-free formula. A theory is *universal* if it consists of universal sentences. A theory has a *universal axiomatisation* if it has the same class of models as a universal theory in the same language.

THEOREM 2.2. (The Łoś-Tarski Theorem) T has a universal axiomatisation iff models of T are closed under substructures.

PROOF. It is easy to see that models of a universal theory are closed under substructures, so we concentrate on the other direction. So let T be a theory such that its models are closed under substructures. Write

$$T_{\forall} = \{ \varphi \colon T \models \varphi \text{ and } \varphi \text{ is universal } \}.$$

Clearly, $T \models T_{\forall}$. We need to prove the converse.

So suppose M is a model of T_{\forall} . Now it suffices to show that $T \cup \text{Diag}(M)$ is consistent. Because once we do that, it will have a model N. But since N is a model of Diag(M), it will be an extension of M; and because N is a model of T and models of T are closed under substructures, M will be a model of T.

So the theorem will follow from the following claim: if $M \models T_{\forall}$, then $T \cup \text{Diag}(M)$ is consistent. *Proof of claim:* Suppose not. Then, by the compactness theorem, there are literals $\psi_1, \ldots, \psi_n \in \text{Diag}(M)$ which are inconsistent with T. Replace the constants from Min ψ_1, \ldots, ψ_n by variables x_1, \ldots, x_n and we obtain ψ'_1, \ldots, ψ'_n ; because the constants from M do not appear in T, the theory T is already inconsistent with $\exists x_1, \ldots, x_n (\psi'_1 \land \ldots, \land \psi'_n)$. So $T \models \neg \exists x_1, \ldots, x_n (\psi'_1 \land \ldots, \psi'_n)$ and hence $T \models \forall x_1, \ldots, x_n (\neg (\psi'_1 \land \ldots, \psi'_n))$. Since Mis a model of T_{\forall} , it follows that $M \models \forall x_1, \ldots, x_n (\neg (\psi'_1 \land \ldots, \psi'_n))$. On the other hand, $M \models \exists x_1, \ldots, x_n (\psi'_1 \land \ldots, \land \psi'_n)$, since $\psi_1, \ldots, \psi_n \in \text{Diag}(M)$. Contradiction. \Box

2. Chang-Łoś-Suszko Theorem

DEFINITION 2.3. A $\forall \exists$ -sentence is a sentence which consists first of a sequence of universal quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula. A theory T can be axiomatised by $\forall \exists$ -sentences if there is a set T' of $\forall \exists$ -sentences such that T and T' have the same models.

DEFINITION 2.4. A theory T is preserved by directed unions if, for any directed system consisting of models of T and embeddings between them, also the colimit is a model T. And T is preserved by unions of chains if, for any chain of models of T and embeddings between them, also the colimit is a model of T. THEOREM 2.5. (The Chang-Loś-Suszko Theorem) The following statements are equivalent:

- (1) T is preserved by directed unions.
- (2) T is preserved by unions of chains.
- (3) T can be axiomatised by $\forall \exists$ -sentences.

PROOF. It is easy to see that $(1) \Rightarrow (2)$ and $(3) \Rightarrow (1)$ hold, so we concentrate on $(2) \Rightarrow (3)$.

So suppose T is preserved by unions of chains. Again, let

 $T_{\forall \exists} = \{ \varphi : \varphi \text{ is a } \forall \exists \text{-sentence and } T \models \varphi \},$

and let B be a model of $T_{\forall \exists}.$ We will construct a chain of embeddings

$$B = B_0 \to A_0 \to B_1 \to A_1 \to B_2 \to A_2 \dots$$

such that:

- (1) Each A_n is a model of T.
- (2) The composed embeddings $B_n \to B_{n+1}$ are elementary.
- (3) Every universal sentence in the language L_{B_n} true in B_n is also true in A_n (when regarding A_n is an L_{B_n} -structure via the embedding $B_n \to A_n$).

This will suffice, because when we take the colimit of the chain, then it is:

- the colimit of the A_n , and hence a model of T, by assumption on T.
- the colimit of the B_n , and hence elementary equivalent to each B_n .

So B is a model of T, as desired.

Construction of A_n : We need A_n to be a model of T and must have that every universal sentence in the language L_{B_n} true in B_n is also true in A_n . So let

 $T' = T \cup \{\varphi : \varphi \text{ is a universal } L_{B_n} \text{-formula and } B_n \models \varphi\};$

we want to show that T' is consistent. Suppose not. Then, by compactness, there is a single universal sentence $\forall \overline{x} \varphi(\overline{x}, \overline{b})$ with $\overline{b} \in B_n$ and $B_n \models \forall \overline{x} \varphi(\overline{x}, \overline{b})$ that is already inconsistent with T. So

 $T \models \exists \overline{x} \neg \varphi(\overline{x}, \overline{b})$

and

$$T \models \forall \overline{y} \exists \overline{x} \neg \varphi(\overline{x}, \overline{y})$$

because the b_i do not occur in T. Since $B_n \models T_{\forall \exists}$, we should have $B_n \models \forall \overline{y} \exists \overline{x} \neg \varphi(\overline{x}, \overline{y})$. But this contradicts the fact that $B_n \models \forall \overline{x} \varphi(\overline{x}, \overline{b})$.

Construction of B_{n+1} : We need $A_n \to B_{n+1}$ to be an embedding and $B_n \to B_{n+1}$ to be elementary. So let

$$T' = \operatorname{Diag}(A_n) \cup \operatorname{Diag}_{el}(B_n)$$

(identifying the element of B_n with their image along the embedding $B_n \to A_n$); we want to show that T' is consistent. Suppose not. Then, by compactness, there is a quantifier-free sentence

$$\varphi(b,\overline{a})$$

with $b_i \in B_n$ and $a_i \in A_n \setminus B_n$ which is true in A_n , but is inconsistent with $\text{Diag}_{el}(B_n)$. Since the a_i do not occur in B_n , we must have

$$B_n \models \forall \overline{x} \neg \varphi(b, \overline{x}).$$

3. EXERCISES

This contradicts the fact that all universal L_{B_n} -sentences true in B_n are also true in A_n . \Box

3. Exercises

EXERCISE 2. Does the theory of fields have a universal axiomatisation?

EXERCISE 3. Prove: a theory has an existential axiomatisation iff its models are closed under extensions.

CHAPTER 3

The theorems of Robinson, Craig and Beth

1. Robinson's Consistency Theorem

The aim of this section is to prove the statement:

(Robinson's Consistency Theorem) Let L_1 and L_2 be two languages and $L = L_1 \cap L_2$. Suppose T_1 is an L_1 -theory, T_2 an L_2 -theory and both extend a complete L-theory T. If both T_1 and T_2 are consistent, then so is $T_1 \cup T_2$.

We first treat the special case where $L_1 \subseteq L_2$.

LEMMA 3.1. Let $L \subseteq L'$ be languages and suppose A is an L-structure and B is an L'structure. Suppose moreover $A \equiv B \upharpoonright L$. Then there is an L'-structure C and a diagram of elementary embeddings (f in L and f' in L')

PROOF. Consider $T = \text{Diag}_{\text{el}}^{L}(A) \cup \text{Diag}_{\text{el}}^{L'}(B)$ (making sure we use different constants for the elements from A and B!). We need to show T has a model; so suppose T is inconsistent. Then, by compactness, a finite subset of T has no model; taking conjunctions, we have sentences $\varphi(\overline{a}) \in \text{Diag}_{\text{el}}(A)$ and $\psi(\overline{b}) \in \text{Diag}_{\text{el}}(B)$ that are contradictory. But as the a_j do not occur in L'_B , we must have that $B \models \neg \exists \overline{x} \varphi(\overline{x})$. This contradicts $A \equiv B \upharpoonright L$.

LEMMA 3.2. Let $L \subseteq L'$ be languages, suppose A and B are L-structures and C is an L'structure. Any pair of L-elementary embeddings $f: A \to B$ and $g: A \to C$ fit into a commuting square A

where D is an L'-structure, h is an L-elementary embedding and k is an L'-elementary embedding.

PROOF. Without loss of generality we may assume that L contains constants for all elements of A. Then simply apply Lemma 3.1.

THEOREM 3.3. (Robinson's Consistency Theorem) Let L_1 and L_2 be two languages and $L = L_1 \cap L_2$. Suppose T_1 is an L_1 -theory, T_2 an L_2 -theory and both extend a complete L-theory T. If both T_1 and T_2 are consistent, then so is $T_1 \cup T_2$.

PROOF. Let A_0 be a model of T_1 and B_0 be a model of T_2 . Since T is complete, their reducts to L are elementary equivalent, so, by the first lemma, there is a diagram

with h_0 an L_2 -elementary embedding and f_0 an L-elementary embedding. Now by applying the second lemma to f_0 and the identity on A_0 , we obtain

$$\begin{array}{c} A_0 \xrightarrow{k_0} A_1 \\ & & \uparrow^{g_0} \\ B_0 \xrightarrow{f_0} B_1 \end{array}$$

where g_0 is L-elementary and k_0 is L₁-elementary. Continuing in this way we obtain a diagram

where the k_i are L_1 -elementary, the f_i and g_i are L-elementary and the h_i are L_2 -elementary. The colimit C of this directed system is both the colimit of the A_i and of the B_i . So A_0 and B_0 embed elementarily into C by the elementary systems lemma; hence C is a model of both T_1 and T_2 , as desired.

2. Craig Interpolation

THEOREM 3.4. Let φ and ψ be sentences in some language such that $\varphi \models \psi$. Then there is a sentence θ , a "(Craig) interpolant", such that

- (1) $\varphi \models \theta$ and $\theta \models \psi$;
- (2) every predicate, function or constant symbol that occurs in θ occurs also in both φ and ψ .

PROOF. Let *L* be the common language of φ and ψ . We will show that $T_0 \models \psi$ where $T_0 = \{ \sigma : \sigma \text{ is an } L\text{-sentence and } \varphi \models \sigma \}$. Let us first check that this suffices for proving the theorem: for then there are $\theta_1, \ldots, \theta_n \in T_0$ such that $\theta_1, \ldots, \theta_n \models \psi$ by compactness. So $\theta := \theta_1 \land \ldots \land \theta_n$ is an interpolant.

Claim: If $\varphi \models \psi$, then $T_0 \models \psi$ where $T_0 = \{\sigma \in L : \varphi \models \sigma\}$ and L is the common language of φ and ψ . Proof of claim: Suppose not. Then $T_0 \cup \{\neg\psi\}$ has a model A. Write $T = \text{Th}_L(A)$. Observe that we now have $T_0 \subseteq T$ and:

(1) T is a complete L-theory.

- (2) $T \cup \{\neg\psi\}$ is consistent (because A is a model).
- (3) $T \cup \{\varphi\}$ is consistent. (*Proof:* Suppose not. Then, by the compactness theorem, there would a sentence $\sigma \in T$ such that $\varphi \models \neg \sigma$. But then $\neg \sigma \in T_0 \subseteq T$. Contradiction!)

This means we can apply Robinson's Consistency Theorem to deduce that $T \cup \{\neg \psi, \varphi\}$ is consistent. But that contradicts $\varphi \models \psi$.

3. Beth Definability Theorem

DEFINITION 3.5. Let L be a language a P be a predicate symbol not in L, and let T be an $L \cup \{P\}$ -theory. T defines P implicitly if any L-structure M has at most one expansion to an $L \cup \{P\}$ -structure which models T. There is another way of saying this: let T' be the theory T with all occurrences of P replaced by P', another predicate symbol not in L. Then T defines P implicitly iff

$$T \cup T' \models \forall x_1, \dots, x_n \left(P(x_1, \dots, x_n) \leftrightarrow P'(x_1, \dots, x_n) \right).$$

T defines P explicitly, if there is an L-formula $\varphi(x_1, \ldots, x_n)$ such that

$$T \models \forall x_1, \dots, x_n \left(P(x_1, \dots, x_n) \leftrightarrow \varphi(x_1, \dots, x_n) \right).$$

THEOREM 3.6. (Beth Definability Theorem) T defines P implicitly if and only if T defines P explicitly.

PROOF. It is easy to see that T defines P implicitly in case T defines P explicitly. So we prove the other direction.

Suppose T defines P implicitly. Add new constants c_1, \ldots, c_n to the language. Then we have

$$T \cup T' \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n).$$

Using compactness and taking conjunctions we can find an $L \cup \{P\}$ -formula ψ such that $T \models \psi$ and

$$\psi \land \psi' \models P(c_1, \dots, c_n) \to P'(c_1, \dots, c_n)$$

(where ψ' is ψ with all occurrences of P replaced by P'). Taking all the Ps to one side and the P's to another, we get

$$\psi \wedge P(c_1, \ldots, c_n) \models \psi' \to P'(c_1, \ldots, c_n)$$

So there is a Craig interpolant θ in the language $L \cup \{c_1, \ldots, c_n\}$ such that

$$\psi \wedge P(c_1, \dots, c_n) \models \theta$$
 and $\theta \models \psi' \wedge P'(c_1, \dots, c_n)$

By symmetry also

$$\psi' \wedge P'(c_1, \ldots, c_n) \models \theta$$
 and $\theta \models \psi \wedge P(c_1, \ldots, c_n)$

So $\theta = \theta(c_1, \ldots, c_n)$ is, modulo T, equivalent to $P(c_1, \ldots, c_n)$; hence $\theta(x_1, \ldots, x_n)$ defines P explicitly.

4. Exercises

EXERCISE 4. Use Robinson's Consistency Theorem to prove the following Amalgamation Theorem: Let L_1, L_2 be languages and $L = L_1 \cap L_2$, and suppose A, B and C are structures in the languages L, L_1 and L_2 , respectively. Any pair of L-elementary embeddings $f: A \to B$ and $g: A \to C$ fit into a commuting square

where D is an $L_1 \cup L_2$ -structure, h is an L_1 -elementary embedding and k is an L_2 -elementary embedding.