Section 1

Basic definitions

Language

A language or signature consists of:

- constants.
- Inction symbols.
- In the symbols of the symbols.

Once and for all, we fix a countably infinite set of variables. The terms are the smallest set such that:

- all constants are terms.
- 2 all variables are terms.
- if t₁,..., t_n are terms and f is an n-ary function symbol, then also f(t₁,..., t_n) is a term.

Terms which do not contain any variables are called *closed*.

Formulas and sentences

The *atomic formulas* are:

• s = t, where s and t are terms.

2 $P(t_1, ..., t_n)$, where $t_1, ..., t_n$ are terms and P is a predicate symbol. The set of *formulas* is the smallest set which:

- contains the atomic formulas.
- **②** is closed under the propositional connectives $\land, \lor, \rightarrow, \neg$.
- **③** contains $\exists x \varphi$ and $\forall x \varphi$, if φ is a formula.

A formula which does not contain any quantifiers is called *quantifier-free*. A *sentence* is a formula which does not contain any free variables. A set of sentences is called a *theory*.

Convention: If we write $\varphi(x_1, \ldots, x_n)$, this is supposed to mean: φ is a formula and its free variables are contained in $\{x_1, \ldots, x_n\}$.

Models

A structure or model M in a language L consists of:

- a non-empty set *M* (the *domain* or the *universe*).
- **2** interpretations $c^M \in M$ of all the constants in *L*,
- **③** interpretations $f^M : M^n \to M$ of all function symbols in *L*,
- interpretations $R^M \subseteq M^n$ of all relation symbols in *L*.

The interpretation can then be extended to all terms in the language:

$$f(t_1,\ldots,t_n)^M=f^M(t_1^M,\ldots,f_n^M).$$

If $A \subseteq M$, then we will write L_A for the language obtained by adding to L fresh constants $\{c_a : a \in A\}$. In this case M is also an L_A -structure with c_a to be interpreted as a. We will often just write a instead of c_a .

Tarski's truth definition

Validity or truth

If M is a model and φ is a sentence in the language L_M , then:

•
$$M \models s = t$$
 iff $s^M = t^M$;

•
$$M \models P(t_1,\ldots,t_n)$$
 iff $(t_1,\ldots,t_n) \in P^M$;

•
$$M\models arphi\wedge\psi$$
 iff $M\models arphi$ and $M\models\psi$;

•
$$M \models \varphi \lor \psi$$
 iff $M \models \varphi$ or $M \models \psi$

•
$$M \models \varphi \rightarrow \psi$$
 iff $M \models \varphi$ implies $M \models \psi$;

•
$$M \models \neg \varphi$$
 iff not $M \models \varphi$;

- $M \models \exists x \varphi(x)$ iff there is an $m \in M$ such that $M \models \varphi(m)$;
- $M \models \forall x \varphi(x)$ iff for all $m \in M$ we have $M \models \varphi(m)$.

Semantic implication

Definition

If *M* is a model in a language *L*, then Th(M) is the collection *L*-sentences true in *M*. If *N* is another model in the language *L*, then we write $M \equiv N$ and call *M* and *N* elementarily equivalent, whenever Th(M) = Th(N).

Definition

Let Γ and Δ be theories. If $M \models \varphi$ for all $\varphi \in \Gamma$, then M is called a *model* of Γ . We will write $\Gamma \models \Delta$ if every model of Γ is a model of Δ as well. We write $\Gamma \models \varphi$ for $\Gamma \models \{\varphi\}$, et cetera.

Expansions and reducts

If $L \subseteq L'$ and M is an L'-structure, then we can obtain an L-structure N by taking the universe of M and forgetting the interpretations of the symbols which do not occur in L. In that case, M is an *expansion* of N and N is the *L*-reduct of M.

Lemma

If $L \subseteq L'$ and M is an L'-structure and N is its L-reduct, then we have $N \models \varphi(m_1, \ldots, m_n)$ iff $M \models \varphi(m_1, \ldots, m_n)$ for all formulas $\varphi(x_1, \ldots, x_n)$ in the language L.

Homomorphisms

Let *M* and *N* be two *L*-structures. A homomorphism $h: M \to N$ is a function $h: M \to N$ such that:

- $h(c^M) = c^N$ for all constants c in L;
- A ($f^M(m_1, \ldots, m_n)$) = $f^N(h(m_1), \ldots, h(m_n))$ for all function symbols
 f in L and elements $m_1, \ldots, m_n \in M$;

$$(m_1,\ldots,m_n) \in R^M \text{ implies } (h(m_1),\ldots,h(m_n)) \in R^N.$$

A homomorphism which is bijective and whose inverse f^{-1} is also a homomorphism is called an *isomorphism*. If an isomorphism exists between structures M and N, then M and N are called *isomorphic*. An isomorphism from a structure to itself is called an *automorphism*.

Embeddings

A homomorphism $h: M \rightarrow N$ is an *embedding* if

h is injective;

$$(h(m_1),\ldots,h(m_n)) \in R^N \text{ implies } (m_1,\ldots,m_n) \in R^M.$$

Lemma

The following are equivalent for a homomorphism $h: M \to N$:

it is an embedding.

■
$$M \models \varphi(m_1, ..., m_n) \Leftrightarrow N \models \varphi(h(m_1), ..., h(m_n))$$
 for all $m_1, ..., m_n \in M$ and atomic formulas $\varphi(x_1, ..., x_n)$.

■
$$M \models \varphi(m_1, ..., m_n) \Leftrightarrow N \models \varphi(h(m_1), ..., h(m_n))$$
 for all $m_1, ..., m_n \in M$ and quantifier-free formulas $\varphi(x_1, ..., x_n)$

If *M* and *N* are two models and the inclusion $M \subseteq N$ is an embedding, then *M* is a *substructure* of *N* and *N* is an *extension* of *M*.

Elementary embeddings

An embedding is called *elementary*, if

$$M \models \varphi(m_1,\ldots,m_n) \Leftrightarrow N \models \varphi(h(m_1),\ldots,h(m_n))$$

for all $m_1, \ldots, m_n \in M$ and *all* formulas $\varphi(x_1, \ldots, x_n)$.

Lemma

If h is an isomorphism, then h is an elementary embedding. If there is an elementary embedding $h: M \to N$, then $M \equiv N$.

Tarski-Vaught Test

An embedding $h: M \to N$ is elementary if and only if for any L_M -formula $\varphi(x)$: if $N \models \exists x \varphi(x)$, then there is an element $m \in M$ such that $N \models \varphi(h(m))$.

Cardinality of model and language

Definition

The *cardinality* of a model is the cardinality of its underlying domain. The cardinality of a language L is the sums of the cardinalities of its sets of constants, function symbols and relation symbols.

I will write |X| for the cardinality of the set X, |M| for the cardinality of the model M and |L| for the cardinality of the language L.

Downward Löwenheim-Skolem

Downward Löwenheim-Skolem

Suppose *M* is an *L*-structure and $X \subseteq M$. Then there is an elementary substructure *N* of *M* with $X \subseteq N$ and $|N| \leq |X| + |L| + \aleph_0$.

Proof.

We construct N as $\bigcup_{i \in \mathbb{N}} N_i$ where the N_i are defined inductively as follows: $N_0 = X$, while

- if *i* is even, then N_{i+1} is obtained from N_i by adding the interpretations of the constants and closing under f^M for every function symbol *f*.
- if i is odd, we look at all L_{Ni}-sentences of the form ∃x φ(x). If such a sentence is true in M, then we pick a witness n ∈ M such that M ⊨ φ(n) and put it in N_{i+1}.

Then the first item guarantees that N is a substructure, while the second item ensures that it is an elementary substructure (using the Tarski-Vaught test).

Section 2

New models from old

Directed systems

Definition

A partially ordered set (K, \leq) is called *directed*, if K is non-empty and for any two elements $x, y \in K$ there is an element $z \in K$ such that $x \leq z$ and $y \leq z$. It is a *chain*, if K is non-empty and for any two elements $x, y \in K$ either $x \leq y$ or $y \leq x$.

Clearly, chains are directed.

Definition

A directed system of L-structures consists of a family $(M_k)_{k \in K}$ of L-structures indexed by K, together with homomorphisms $f_{kl} : M_k \to M_l$ for $k \leq l$. These homomorphisms should satisfy:

- f_{kk} is the identity homomorphism on M_k ,
- if $k \leq l \leq m$, then $f_{km} = f_{lm}f_{kl}$.

If we have a directed system, then we can construct its colimit.

The colimit

First, we take the disjoint union of all the universes:

$$\sum_{k\in K}M_k=\{(k,a): k\in K, a\in M_k\},\$$

and then we define an equivalence relation on it:

$$(k,a) \sim (l,b) :\Leftrightarrow (\exists m \geq k, l) f_{km}(a) = f_{lm}(b).$$

Let M be the set of equivalence classes and denote the equivalence class of (k, a) by [k, a].

The colimit, continued

M has an L-structure: we put

$$f^{M}([k_{1},a_{1}],\ldots,[k_{n},a_{n}]) = [k,f^{M_{k}}(f_{k_{1}k}(a_{1}),\ldots,f_{k_{n}k}(a_{n})],$$

where k is an element $\geq k_1, \ldots, k_n$. (Check that this makes sense!)

And we put

$$R^{M}([k_1,a_1],\ldots,[k_n,a_n])$$

iff there is a $k \geq k_1, \ldots, k_n$ such that

$$(f_{k_1k}(a_1),\ldots,f_{k_nk}(a_n))\in R^{M_k}.$$

In addition, we have maps $f_k : M_k \to M$ sending *a* to [k, a].

Omnibus theorem

The following theorem collects the most important facts about colimits of directed systems. Especially useful is part 5.

Theorem

- All f_k are homomorphisms.
- **2** If $k \leq l$, then $f_l f_{kl} = f_k$.
- If N is another L-structure for which there are homomorphisms $g_k : M_k \to N$ such that $g_l f_{kl} = g_k$ whenever $k \leq l$, then there is a unique homomorphisms $g : M \to N$ such that $gf_k = g_k$ for all $k \in K$ ("universal property").
- If all maps f_{kl} are embeddings, then so are all f_k .
- If all maps f_{kl} are elementary embeddings, then so are all f_k ("elementary system lemma").

Proof.

Exercise!