
Section 1

Basic definitions
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Language

A language or signature consists of:

1 constants.

2 function symbols.

3 relation symbols.

Once and for all, we fix a countably infinite set of variables. The terms are
the smallest set such that:

1 all constants are terms.

2 all variables are terms.

3 if t1, . . . , tn are terms and f is an n-ary function symbol, then also
f (t1, . . . , tn) is a term.

Terms which do not contain any variables are called closed.
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Formulas and sentences

The atomic formulas are:

1 s = t, where s and t are terms.

2 P(t1, . . . , tn), where t1, . . . , tn are terms and P is a predicate symbol.

The set of formulas is the smallest set which:

1 contains the atomic formulas.

2 is closed under the propositional connectives ∧,∨,→,¬.

3 contains ∃x ϕ and ∀x ϕ, if ϕ is a formula.

A formula which does not contain any quantifiers is called quantifier-free.
A sentence is a formula which does not contain any free variables. A set of
sentences is called a theory.

Convention: If we write ϕ(x1, . . . , xn), this is supposed to mean: ϕ is a
formula and its free variables are contained in {x1, . . . , xn}.
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Models

A structure or model M in a language L consists of:

1 a non-empty set M (the domain or the universe).

2 interpretations cM ∈ M of all the constants in L,

3 interpretations f M : Mn → M of all function symbols in L,

4 interpretations RM ⊆ Mn of all relation symbols in L.

The interpretation can then be extended to all terms in the language:

f (t1, . . . , tn)M = f M(tM1 , . . . , f
M
n ).

If A ⊆ M, then we will write LA for the language obtained by adding to L
fresh constants {ca : a ∈ A}. In this case M is also an LA-structure with
ca to be interpreted as a. We will often just write a instead of ca.
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Tarski’s truth definition

Validity or truth

If M is a model and ϕ is a sentence in the language LM , then:

M |= s = t iff sM = tM ;

M |= P(t1, . . . , tn) iff (t1, . . . , tn) ∈ PM ;

M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ;

M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ;

M |= ϕ→ ψ iff M |= ϕ implies M |= ψ;

M |= ¬ϕ iff not M |= ϕ;

M |= ∃x ϕ(x) iff there is an m ∈ M such that M |= ϕ(m);

M |= ∀x ϕ(x) iff for all m ∈ M we have M |= ϕ(m).
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Semantic implication

Definition

If M is a model in a language L, then Th(M) is the collection L-sentences
true in M. If N is another model in the language L, then we write M ≡ N
and call M and N elementarily equivalent, whenever Th(M) = Th(N).

Definition

Let Γ and ∆ be theories. If M |= ϕ for all ϕ ∈ Γ, then M is called a model
of Γ. We will write Γ |= ∆ if every model of Γ is a model of ∆ as well. We
write Γ |= ϕ for Γ |= {ϕ}, et cetera.
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Expansions and reducts

If L ⊆ L′ and M is an L′-structure, then we can obtain an L-structure N by
taking the universe of M and forgetting the interpretations of the symbols
which do not occur in L. In that case, M is an expansion of N and N is
the L-reduct of M.

Lemma

If L ⊆ L′ and M is an L′-structure and N is its L-reduct, then we have
N |= ϕ(m1, . . . ,mn) iff M |= ϕ(m1, . . . ,mn) for all formulas ϕ(x1, . . . , xn)
in the language L.
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Homomorphisms

Let M and N be two L-structures. A homomorphism h : M → N is a
function h : M → N such that:

1 h(cM) = cN for all constants c in L;

2 h(f M(m1, . . . ,mn)) = f N(h(m1), . . . , h(mn)) for all function symbols
f in L and elements m1, . . . ,mn ∈ M;

3 (m1, . . . ,mn) ∈ RM implies (h(m1), . . . , h(mn)) ∈ RN .

A homomorphism which is bijective and whose inverse f −1 is also a
homomorphism is called an isomorphism. If an isomorphism exists between
structures M and N, then M and N are called isomorphic. An
isomorphism from a structure to itself is called an automorphism.
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Embeddings

A homomorphism h : M → N is an embedding if

1 h is injective;

2 (h(m1), . . . , h(mn)) ∈ RN implies (m1, . . . ,mn) ∈ RM .

Lemma

The following are equivalent for a homomorphism h : M → N:

1 it is an embedding.

2 M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn)) for all
m1, . . . ,mn ∈ M and atomic formulas ϕ(x1, . . . , xn).

3 M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn)) for all
m1, . . . ,mn ∈ M and quantifier-free formulas ϕ(x1, . . . , xn).

If M and N are two models and the inclusion M ⊆ N is an embedding,
then M is a substructure of N and N is an extension of M.
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Elementary embeddings

An embedding is called elementary, if

M |= ϕ(m1, . . . ,mn)⇔ N |= ϕ(h(m1), . . . , h(mn))

for all m1, . . . ,mn ∈ M and all formulas ϕ(x1, . . . , xn).

Lemma

If h is an isomorphism, then h is an elementary embedding. If there is an
elementary embedding h : M → N, then M ≡ N.

Tarski-Vaught Test

An embedding h : M → N is elementary if and only if for any LM -formula
ϕ(x): if N |= ∃x ϕ(x), then there is an element m ∈ M such that
N |= ϕ(h(m)).
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Cardinality of model and language

Definition

The cardinality of a model is the cardinality of its underlying domain. The
cardinality of a language L is the sums of the cardinalities of its sets of
constants, function symbols and relation symbols.

I will write |X | for the cardinality of the set X , |M| for the cardinality of
the model M and |L| for the cardinality of the language L.
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Downward Löwenheim-Skolem

Downward Löwenheim-Skolem

Suppose M is an L-structure and X ⊆ M. Then there is an elementary
substructure N of M with X ⊆ N and |N| ≤ |X |+ |L|+ ℵ0.

Proof.

We construct N as
⋃

i∈NNi where the Ni are defined inductively as
follows: N0 = X , while

if i is even, then Ni+1 is obtained from Ni by adding the
interpretations of the constants and closing under f M for every
function symbol f .

if i is odd, we look at all LNi
-sentences of the form ∃x ϕ(x). If such a

sentence is true in M, then we pick a witness n ∈ M such that
M |= ϕ(n) and put it in Ni+1.

Then the first item guarantees that N is a substructure, while the second
item ensures that it is an elementary substructure (using the
Tarski-Vaught test).
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Section 2

New models from old
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Directed systems

Definition

A partially ordered set (K ,≤) is called directed, if K is non-empty and for
any two elements x , y ∈ K there is an element z ∈ K such that x ≤ z and
y ≤ z . It is a chain, if K is non-empty and for any two elements x , y ∈ K
either x ≤ y or y ≤ x .

Clearly, chains are directed.

Definition

A directed system of L-structures consists of a family (Mk)k∈K of
L-structures indexed by K , together with homomorphisms fkl : Mk → Ml

for k ≤ l . These homomorphisms should satisfy:

fkk is the identity homomorphism on Mk ,

if k ≤ l ≤ m, then fkm = flmfkl .

If we have a directed system, then we can construct its colimit.
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The colimit

First, we take the disjoint union of all the universes:∑
k∈K

Mk = {(k , a) : k ∈ K , a ∈ Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l , b) :⇔ (∃m ≥ k, l) fkm(a) = flm(b).

Let M be the set of equivalence classes and denote the equivalence class
of (k, a) by [k, a].
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The colimit, continued

M has an L-structure: we put

f M([k1, a1], . . . , [kn, an]) = [k , f Mk (fk1k(a1), . . . , fknk(an)],

where k is an element ≥ k1, . . . , kn. (Check that this makes sense!)

And we put
RM([k1, a1], . . . , [kn, an])

iff there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .

In addition, we have maps fk : Mk → M sending a to [k , a].
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Omnibus theorem
The following theorem collects the most important facts about colimits of
directed systems. Especially useful is part 5.

Theorem
1 All fk are homomorphisms.

2 If k ≤ l , then fl fkl = fk .

3 If N is another L-structure for which there are homomorphisms
gk : Mk → N such that gl fkl = gk whenever k ≤ l , then there is a
unique homomorphisms g : M → N such that gfk = gk for all k ∈ K
(“universal property”).

4 If all maps fkl are embeddings, then so are all fk .

5 If all maps fkl are elementary embeddings, then so are all fk
(“elementary system lemma”).

Proof.

Exercise!
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