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Compactness Theorem

The most important result in model theory is:

Compactness Theorem

Let T be a theory in language L. If every finite subset of T has a model,
then T has a model.

It follows from the completeness theorem for first-order logic, but we can
also prove it by purely model-theoretic means.

For convenience call a theory T finitely consistent if any finite subset of T
has a model. We have to show that finitely consistent implies consistent.

)
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Proof of Compactness Theorem

Lemma
Suppose T is an L-theory with the following properties:
© T is finitely consistent.
@ For any formula ¢ the theory T contains either ¢ or —p.

@ If T contains a sentence Ix (x), then there is a closed term t such
that T also contains o(t).

Then T has a model.

Proof.

Note that if Ty is a finite subset of T and Ty |= ¢, then p € T by the
first two properties. We construct a model M by taking the closed terms

in the language in L and identifying s and t whenever s =t € T (this is

an equivalence relation), and we say that ([t1], ..., [ts]) € RM in case
R(ti,...,t;) € T and FM([t1],...,[ta]) = [F(t1, ..., ta)] (this is
well-defined). Now show by induction on the structure of the term t that
tM = [t] and the structure of the formula ¢ that M = ¢ if and only if
oeT. 734




Proof of Compactness Theorem, continued
Lemma

Suppose T is finitely consistent. Then T can be extended to a theory T’
which is finitely consistent and which for any sentence ¢ contains either ¢
or .

Proof.

Use Zorn's Lemma to extend T to a maximal finitely consistent theory T'.
We will show that if such a T’ does not contain a formula ¢, it has to
contain —. So suppose ¢ ¢ T'. Note that because T’ is maximal, the
theory T" U {¢} cannot be finitely consistent, meaning that there is a
finite subtheory Ty C T’ such that To U {¢} has no models.

It now follows that T’ U {—¢} is finitely consistent. For let T3 C T’ be a
finite. Since To U T; C T’ is finite and T is finitely consistent, To U Ty
has a model M. As M models Ty it cannot model ¢ and must model —p.
So T1 U{—p} is consistent. But if 7" U {—p} is finitely consistent and T’
is maximal, then T" U {—p} = T'. So —p € T’, as desired. O

4[24




Proof of Compactness Theorem, finished

Lemma

Suppose T is a finitely consistent L-theory. Then L can be extended to a
language L’ and T to a finitely consistent L’-theory T’ such that for any
L-sentence of the form Ix (x) in T’ there is a term ¢t in L' such that
o(t)e T'.

Proof.

For any sentence of the form 3x ¢(x) which belongs to T we add a fresh
constant c to the language L’ and the sentence ¢(c) to the theory T'. [

v

Proof of the Compactness Theorem

Starting from any finitely consistent theory T we can, by alternatingly
applying the previous two lemmas, create a theory which has all the three
properties of the first lemma. So T has a model.
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Diagrams

Definition
If M is a model in a language L, then the collection of quantifier-free

Lps-sentences true in M is called the diagram of M and written Diag(M).

The collection of all Lps-sentences true in M is called the elementary
diagram of M and written ElDiag(M).

Lemma
The following amount to the same thing:
e A model N of Diag(M).
@ An embedding h: M — N.
As do the following:
e A model N of ElDiag(M).
@ An elementary embedding h: M — N.

~
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Upward Lowenheim-Skolem

Upward Lowenheim-Skolem

Suppose M is an infinite L-structure and & is a cardinal number with
k > |M],|L|. Then there is an elementary embedding i : M — N with
IN| = k.

Proof.

Let I be the elementary diagram of M and A be the set of sentences

{ci # ¢j i #j € K} where the ¢; are k-many fresh constants. By the
Compactness Theorem, the theory ' U A has a model A; we have |A| > k.
By the downwards version A has an elementary substructure N of
cardinality . So, since N is a model of ', there is an elementary
embedding i : M — N. Ol




Characterisation universal theories

Theorem

T has a universal axiomatisation iff models of T are closed under
substructures.

Proof.

Suppose T is a theory such that its models are closed under substructures.
Let Ty ={¢ : T = ¢ and ¢ is universal }. Clearly, T = Ty. We need to
prove the converse.

So suppose M is a model of Ty. It suffices to show that T U Diag(M) is
consistent. Because once we do that, it will have a model N. But since N
is a model of Diag(M), it will be an extension of M; and because N is a
model of T and models of T are closed under substructures, M will be a
model of T. ]




Proof of claim

Claim

If M = Ty where Ty ={¢ : T = ¢ and ¢ is universal }, then
T U Diag(M) is consistent.

Proof.

Suppose not. Then, by the compactness theorem, there would be a finite
set of sentences v, ..., 1, € Diag(M) which are inconsistent with T.
Write ¢ = A; ¢ and note that ¢ € Diag(M) and %) is already inconsistent
with T. Replace the constants from M in %) by variables xi, ..., x, and we
obtain 7)’; because the constants from M do not appear in T, the theory
T is already inconsistent with 3x,...,x,¢'. So T = —=3xq,...,x,%" and
T = Vx1,...,xp ', Therefore the sentence Vxi, ..., x, ' belongs to
Ty; but it is false in M as M is a model of ¢. This contradicts the
assumption that M = Ty. O

10/24



Chang-tos-Suszko Theorem

Definition

A Y3-sentence is a sentence which consists of a sequence of universal
quantifiers, then a sequence of existential quantifiers and then a

quantifier-free formula. A theory T can be axiomatised by Y3-sentences if
there is a set T’ of V3-sentences which has the same models as T.

A theory T is preserved by directed unions if for any directed system
consisting of models of T and embeddings between them, also the colimit
is a model T. T is preserved by unions of chains if for any chain of models
of T and embeddings between them, also the colimit is a model of T.

Chang-t.0$-Suszko Theorem
The following statements are equivalent:
(1) T is preserved by directed unions.

(2) T is preserved by unions of chains.

(3) T can be axiomatised by V3-sentences.
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Chang-tos-Suszko Theorem, proof
Proof. We just show (2) = (3). Suppose T is preserved by unions of
chains. Again, let

Tva ={p : @is a V3i-sentence and T |= ¢},

and let B be a model of Ty3. We will construct a chain of embeddings

B:Bo—>A0—>Bl—>A1—>BQ—>A2...

such that:
@ Each A, is a model of T.
@ The composed embeddings B, — B,1 are elementary.
© Every universal sentence in the language Lg, true in B, is also true in
An (when regarding A, is an L -structure via the embedding
B, — Ap).
This will suffice, because when we take the colimit of the chain, then it is:
@ the colimit of the A,, and hence a model of T, by assumption on T.
@ the colimit of the B,,, and hence elementary equivalent to each B,,.

So B is a model of T, as desired.
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Chang-tos-Suszko Theorem, proof continued

Construction of A,: We need A, to be a model of T and every universal
sentence in the language Lg, true in B, to be true in A, as well. So let

T'=TuU{p€ Lp, : ¢ universal and B, | ¢};

to show that T’ is consistent. Suppose not. Then there is a universal
sentence Vx1, ... X, @(X1,...,Xn, b1,..., bx) with b; € B, that is
inconsistent with T. So

TE3x,...,xoo0(x1, ..y Xn, b1, .., bg)

and
T ):Vyla"'7yk3X17"'7Xn_'80(X17"'7Xn7)/1>"'7yk)

because the b; do not occur in T. But this contradicts the fact that B, is
a model of Ty3.
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Chang-tos$-Suszko Theorem, proof finished

Construction of B, 1: We need A, — Bp11 to be an embedding and
B, — Bnhy1 to be elementary. So let

T’ = Diag(A,) U ElDiag(B,)

(identifying the element of B, with their image along the embedding
B, — A,); to show that T’ is consistent. Suppose not. Then there is a
quantifier-free sentence

gp(bl,...,bn,al,...,ak)

with b; € B, and a; € A, \ B, which is true in A, but is inconsistent with
ElDiag(B,). Since the a; do not occur in B,, we must have

Bn EVx1, ..., xk—o(b1, ..., bny X1, .oy Xk).

This contradicts the fact that all universal Lpg -sentences true in B, are
also true in A,. O
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Section 5

Theorems of Robinson, Craig and Beth
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Robinson’s Consistency Theorem

Robinson's Consistency Theorem

Let L; and L, be two languages and L = L3 N L,. Suppose T3 is an
Li-theory, T, an Lp-theory and both extend a complete L-theory T. If
both T7 and T, are consistent, then so is T71 U T5.
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First lemma

Lemma

Let L C L/, A an L-structure and B an L’-structure. Suppose moreover
A= B | L. Then there is an L'-structure C and a diagram of elementary
embeddings (f in L and f" in L")

A B
N
C.

Proof. Consider T = ElDiag(A) U ElDiag(B) (making sure we use
different constants for the elements from A and B!). We need to show T
has a model; so suppose T is inconsistent. Then, by Compactness, a finite
subset of T has no model; taking conjunctions, we have sentences
¢(a1,...,an) € ElDiag(A) and ¢(b1, ..., by) € ElDiag(B) that are
contradictory. But as the a; do not occur in Lg, we must have that

B = —3x1,...,xpp(x1,...,%n). This contradicts A= B | L. O
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Second lemma

Lemma

Let L C L’ be languages, suppose A and B are L-structures and C is an
’-structure. Any pair of L-elementary embeddings f : A — B and
g : A— C fit into a commuting square A

where D is an L’-structure, h is an L-elementary embedding and k is an
'-elementary embedding.

Proof.

Without loss of generality we may assume that L contains constants for all
elements of A. Then simply apply the first lemma. [
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Robinson’s consistency theorem

Theorem

Let L; and L, be two languages and L = L3 N L,. Suppose T3 is an
Li-theory, T, an Lp-theory and both extend a complete L-theory T. If
both T; and T» are consistent, then so is T; U T».

Proof. Let Ap be a model of T; and By be a model of T,. Since T is
complete, their reducts to L are elementary equivalent, so, by the first
lemma, there is a diagram

Ao

\fb\\
BOT>81

0

with hg an Lp-elementary embedding and fy an L-elementary embedding.
Now by applying the second lemma to fy and the identity on A, we obtain
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Robinson’s consistency theorem, proof finished

Aoiﬂ‘h

e

BOT())Bl

where gy is L-elementary and kg is Li-elementary. Continuing in this way
ko ky

we obtain a diagram Ao Aq Ao
NN
g0 &
f
BO ho Bl hy B2

where the k; are Li-elementary, the f; and g; are L-elementary and the h;
are Lp-elementary. The colimit C of this directed system is both the
colimit of the A; and of the B;. So Ay and By embed elementarily into C
by the elementary systems lemma; hence C is a model of both T7 and T5,
as desired. O
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Craig Interpolation

Craig Interpolation Theorem
Let ¢ and v be sentences in some language such that ¢ = 1. Then there
is a sentence 6 such that

Q@ voE=6and b =,

@ every predicate, function or constant symbol that occurs in 8 occurs
also in both ¢ and .

Proof.

Let L be the common language of ¢ and ¢. We will show that Ty |= ¢
where To = {0 € L : ¢ |=o}. This is sufficient: for then there are
01,...,0n € To such that 61,...,0, = ¢ by Compactness. So

0 :=61 N...N\8, is the interpolant. O
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Craig Interpolation, continued

Lemma

Let L be the common language of ¢ and . If ¢ =1, then Ty = ¢ where
To={oel:ypEod}

Proof.

Suppose not. Then To U {—%} has a model A. Write T = Th;(A). We
now have To C T and:

© 7T is a complete L-theory.
@ T U{—} is consistent (because A is a model).
@ T U{p} is consistent.

(Proof of 3: Suppose not. Then, by Compactness, there would a sentence
o € T such that ¢ = —o. But then =0 € Ty C T. Contradiction!)

Now we can apply Robinson's Consistency Theorem to deduce that
T U{—, p} is consistent. But that contradicts ¢ |= . O




Beth Definability Theorem

Definition

Let L be a language a P be a predicate symbol not in L, and let T be an
LU {P}-theory. T defines P implicitly if any L-structure M has at most
one expansion to an LU {P}-structure which models T. There is another
way of saying this: let T’ be the theory T with all occurrences of P
replaced by P’. Then T defines P implicitly iff

TUT EVx,...x (P(Xl,...,x,,) > P’(xl,...,x,,)).
T defines P explicitly, if there is an L-formula ¢(x1, ..., x,) such that

T ):Vxl,...,x,,(P(xl,...,x,,) Hgo(xl,...,x,,)).

Beth Definability Theorem
T defines P implicitly if and only if T defines P explicitly.

(Right-to-left direction is obvious.)
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Beth Definability Theorem, proof

Proof. Suppose T defines P implicitly. Add new constants ci, ..., c, to
the language. Then we have TU T’ = P(cy,...,¢n) = P'(c1,...,¢cn). By
Compactness and taking conjunctions we can find an L U {P}-formula ¢
such that T = and

Y AY = Pe,. .., cn) = P'(ct,. .., cn)

(where ¢ is ¢ with all occurrences of P replaced by P’). Taking all the
Ps to one side and the P’s to another, we get

Y AP(cr,...,ca) EY — Pc,. .., cn)
So there is a Craig Interpolant 6 such that
YAP(c1,...,cn) EOand 0 =" AP (ci,...,ch)

By symmetry also

W AP (ct,...,cn) E0and 0 =Y AP(c,...,cn)

So 8 =0(ci,...,cn) is, modulo T, equivalent to P(cy,...,cy) and
O(x1,...,xn) defines P explicitly. O
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