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Compactness Theorem

The most important result in model theory is:

Compactness Theorem

Let T be a theory in language L. If every finite subset of T has a model,
then T has a model.

It follows from the completeness theorem for first-order logic, but we can
also prove it by purely model-theoretic means.

For convenience call a theory T finitely consistent if any finite subset of T
has a model. We have to show that finitely consistent implies consistent.
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Proof of Compactness Theorem

Lemma

Suppose T is an L-theory with the following properties:

1 T is finitely consistent.

2 For any formula ϕ the theory T contains either ϕ or ¬ϕ.

3 If T contains a sentence ∃x ϕ(x), then there is a closed term t such
that T also contains ϕ(t).

Then T has a model.

Proof.

Note that if T0 is a finite subset of T and T0 |= ϕ, then ϕ ∈ T by the
first two properties. We construct a model M by taking the closed terms
in the language in L and identifying s and t whenever s = t ∈ T (this is
an equivalence relation), and we say that ([t1], . . . , [tn]) ∈ RM in case
R(t1, . . . , tn) ∈ T and f M([t1], . . . , [tn]) = [f (t1, . . . , tn)] (this is
well-defined). Now show by induction on the structure of the term t that
tM = [t] and the structure of the formula ϕ that M |= ϕ if and only if
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Proof of Compactness Theorem, continued

Lemma

Suppose T is finitely consistent. Then T can be extended to a theory T ′

which is finitely consistent and which for any sentence ϕ contains either ϕ
or ¬ϕ.

Proof.

Use Zorn’s Lemma to extend T to a maximal finitely consistent theory T ′.
We will show that if such a T ′ does not contain a formula ϕ, it has to
contain ¬ϕ. So suppose ϕ 6∈ T ′. Note that because T ′ is maximal, the
theory T ′ ∪ {ϕ} cannot be finitely consistent, meaning that there is a
finite subtheory T0 ⊆ T ′ such that T0 ∪ {ϕ} has no models.

It now follows that T ′ ∪ {¬ϕ} is finitely consistent. For let T1 ⊆ T ′ be a
finite. Since T0 ∪ T1 ⊆ T ′ is finite and T ′ is finitely consistent, T0 ∪ T1

has a model M. As M models T0 it cannot model ϕ and must model ¬ϕ.
So T1 ∪ {¬ϕ} is consistent. But if T ′ ∪ {¬ϕ} is finitely consistent and T ′

is maximal, then T ′ ∪ {¬ϕ} = T ′. So ¬ϕ ∈ T ′, as desired.
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Proof of Compactness Theorem, finished

Lemma

Suppose T is a finitely consistent L-theory. Then L can be extended to a
language L′ and T to a finitely consistent L′-theory T ′ such that for any
L-sentence of the form ∃x ϕ(x) in T ′ there is a term t in L′ such that
ϕ(t) ∈ T ′.

Proof.

For any sentence of the form ∃x ϕ(x) which belongs to T we add a fresh
constant c to the language L′ and the sentence ϕ(c) to the theory T ′.

Proof of the Compactness Theorem

Starting from any finitely consistent theory T we can, by alternatingly
applying the previous two lemmas, create a theory which has all the three
properties of the first lemma. So T has a model.
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Section 4

The method of diagrams
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Diagrams

Definition

If M is a model in a language L, then the collection of quantifier-free
LM -sentences true in M is called the diagram of M and written Diag(M).
The collection of all LM -sentences true in M is called the elementary
diagram of M and written ElDiag(M).

Lemma

The following amount to the same thing:

A model N of Diag(M).

An embedding h : M → N.

As do the following:

A model N of ElDiag(M).

An elementary embedding h : M → N.
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Upward Löwenheim-Skolem

Upward Löwenheim-Skolem

Suppose M is an infinite L-structure and κ is a cardinal number with
κ ≥ |M|, |L|. Then there is an elementary embedding i : M → N with
|N| = κ.

Proof.

Let Γ be the elementary diagram of M and ∆ be the set of sentences
{ci 6= cj : i 6= j ∈ κ} where the ci are κ-many fresh constants. By the
Compactness Theorem, the theory Γ ∪∆ has a model A; we have |A| ≥ κ.
By the downwards version A has an elementary substructure N of
cardinality κ. So, since N is a model of Γ, there is an elementary
embedding i : M → N.
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Characterisation universal theories

Theorem

T has a universal axiomatisation iff models of T are closed under
substructures.

Proof.

Suppose T is a theory such that its models are closed under substructures.
Let T∀ = {ϕ : T |= ϕ and ϕ is universal }. Clearly, T |= T∀. We need to
prove the converse.

So suppose M is a model of T∀. It suffices to show that T ∪Diag(M) is
consistent. Because once we do that, it will have a model N. But since N
is a model of Diag(M), it will be an extension of M; and because N is a
model of T and models of T are closed under substructures, M will be a
model of T .
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Proof of claim

Claim

If M |= T∀ where T∀ = {ϕ : T |= ϕ and ϕ is universal }, then
T ∪Diag(M) is consistent.

Proof.

Suppose not. Then, by the compactness theorem, there would be a finite
set of sentences ψ1, . . . , ψn ∈ Diag(M) which are inconsistent with T .
Write ψ =

∧
i ψ and note that ψ ∈ Diag(M) and ψ is already inconsistent

with T . Replace the constants from M in ψ by variables x1, . . . , xn and we
obtain ψ′; because the constants from M do not appear in T , the theory
T is already inconsistent with ∃x1, . . . , xn ψ′. So T |= ¬∃x1, . . . , xn ψ′ and
T |= ∀x1, . . . , xn ¬ψ′. Therefore the sentence ∀x1, . . . , xn ¬ψ′ belongs to
T∀; but it is false in M as M is a model of ψ. This contradicts the
assumption that M |= T∀.
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Chang- Loś-Suszko Theorem

Definition

A ∀∃-sentence is a sentence which consists of a sequence of universal
quantifiers, then a sequence of existential quantifiers and then a
quantifier-free formula. A theory T can be axiomatised by ∀∃-sentences if
there is a set T ′ of ∀∃-sentences which has the same models as T .

A theory T is preserved by directed unions if for any directed system
consisting of models of T and embeddings between them, also the colimit
is a model T . T is preserved by unions of chains if for any chain of models
of T and embeddings between them, also the colimit is a model of T .

Chang- Loś-Suszko Theorem

The following statements are equivalent:

(1) T is preserved by directed unions.

(2) T is preserved by unions of chains.

(3) T can be axiomatised by ∀∃-sentences.

Proof.

The easy direction is: Π2-sentences are preserved by directed unions. We
do the other direction.
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Chang- Loś-Suszko Theorem, proof
Proof. We just show (2) ⇒ (3). Suppose T is preserved by unions of
chains. Again, let

T∀∃ = {ϕ : ϕ is a ∀∃-sentence and T |= ϕ},

and let B be a model of T∀∃. We will construct a chain of embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .

such that:
1 Each An is a model of T .
2 The composed embeddings Bn → Bn+1 are elementary.
3 Every universal sentence in the language LBn true in Bn is also true in

An (when regarding An is an LBn -structure via the embedding
Bn → An).

This will suffice, because when we take the colimit of the chain, then it is:

the colimit of the An, and hence a model of T , by assumption on T .

the colimit of the Bn, and hence elementary equivalent to each Bn.

So B is a model of T , as desired.
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Chang- Loś-Suszko Theorem, proof continued

Construction of An: We need An to be a model of T and every universal
sentence in the language LBn true in Bn to be true in An as well. So let

T ′ = T ∪ {ϕ ∈ LBn : ϕ universal and Bn |= ϕ};

to show that T ′ is consistent. Suppose not. Then there is a universal
sentence ∀x1, . . . xn ϕ(x1, . . . , xn, b1, . . . , bk) with bi ∈ Bn that is
inconsistent with T . So

T |= ∃x1, . . . , xn¬ϕ(x1, . . . , xn, b1, . . . , bk)

and
T |= ∀y1, . . . , yk ∃x1, . . . , xn¬ϕ(x1, . . . , xn, y1, . . . , yk)

because the bi do not occur in T . But this contradicts the fact that Bn is
a model of T∀∃.
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Chang- Loś-Suszko Theorem, proof finished

Construction of Bn+1: We need An → Bn+1 to be an embedding and
Bn → Bn+1 to be elementary. So let

T ′ = Diag(An) ∪ ElDiag(Bn)

(identifying the element of Bn with their image along the embedding
Bn → An); to show that T ′ is consistent. Suppose not. Then there is a
quantifier-free sentence

ϕ(b1, . . . , bn, a1, . . . , ak)

with bi ∈ Bn and ai ∈ An \ Bn which is true in An, but is inconsistent with
ElDiag(Bn). Since the ai do not occur in Bn, we must have

Bn |= ∀x1, . . . , xk¬ϕ(b1, . . . , bn, x1, . . . , xk).

This contradicts the fact that all universal LBn -sentences true in Bn are
also true in An. 2
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Section 5

Theorems of Robinson, Craig and Beth
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Robinson’s Consistency Theorem

Robinson’s Consistency Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.
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First lemma

Lemma

Let L ⊆ L′, A an L-structure and B an L′-structure. Suppose moreover
A ≡ B � L. Then there is an L′-structure C and a diagram of elementary
embeddings (f in L and f ′ in L′)

A

f   

B

f ′~~
C .

Proof. Consider T = ElDiag(A) ∪ ElDiag(B) (making sure we use
different constants for the elements from A and B!). We need to show T
has a model; so suppose T is inconsistent. Then, by Compactness, a finite
subset of T has no model; taking conjunctions, we have sentences
ϕ(a1, . . . , an) ∈ ElDiag(A) and ψ(b1, . . . , bm) ∈ ElDiag(B) that are
contradictory. But as the aj do not occur in LB , we must have that
B |= ¬∃x1, . . . , xn ϕ(x1, . . . , xn). This contradicts A ≡ B � L. 2
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Second lemma

Lemma

Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an
L′-structure. Any pair of L-elementary embeddings f : A→ B and
g : A→ C fit into a commuting square A

g

��

f

��
B

h ��

C

k��
D

where D is an L′-structure, h is an L-elementary embedding and k is an
L′-elementary embedding.

Proof.

Without loss of generality we may assume that L contains constants for all
elements of A. Then simply apply the first lemma.
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Robinson’s consistency theorem

Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.

Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is
complete, their reducts to L are elementary equivalent, so, by the first
lemma, there is a diagram

A0

f0

  
B0

h0
// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding.
Now by applying the second lemma to f0 and the identity on A, we obtain
. . .
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Robinson’s consistency theorem, proof finished

A0

f0   

k0 // A1

B0
h0
// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way

we obtain a diagram A0

f0   

k0 // A1

f1

  

k1 // A2
// . . .

B0
h0
// B1

g0

OO

h1
// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi
are L2-elementary. The colimit C of this directed system is both the
colimit of the Ai and of the Bi . So A0 and B0 embed elementarily into C
by the elementary systems lemma; hence C is a model of both T1 and T2,
as desired. 2
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Craig Interpolation

Craig Interpolation Theorem

Let ϕ and ψ be sentences in some language such that ϕ |= ψ. Then there
is a sentence θ such that

1 ϕ |= θ and θ |= ψ;

2 every predicate, function or constant symbol that occurs in θ occurs
also in both ϕ and ψ.

Proof.

Let L be the common language of ϕ and ψ. We will show that T0 |= ψ
where T0 = {σ ∈ L : ϕ |= σ}. This is sufficient: for then there are
θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by Compactness. So
θ := θ1 ∧ . . . ∧ θn is the interpolant.
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Craig Interpolation, continued

Lemma

Let L be the common language of ϕ and ψ. If ϕ |= ψ, then T0 |= ψ where
T0 = {σ ∈ L : ϕ |= σ}.

Proof.

Suppose not. Then T0 ∪ {¬ψ} has a model A. Write T = ThL(A). We
now have T0 ⊆ T and:

1 T is a complete L-theory.

2 T ∪ {¬ψ} is consistent (because A is a model).

3 T ∪ {ϕ} is consistent.

(Proof of 3: Suppose not. Then, by Compactness, there would a sentence
σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)

Now we can apply Robinson’s Consistency Theorem to deduce that
T ∪ {¬ψ,ϕ} is consistent. But that contradicts ϕ |= ψ.
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Beth Definability Theorem

Definition

Let L be a language a P be a predicate symbol not in L, and let T be an
L ∪ {P}-theory. T defines P implicitly if any L-structure M has at most
one expansion to an L ∪ {P}-structure which models T . There is another
way of saying this: let T ′ be the theory T with all occurrences of P
replaced by P ′. Then T defines P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn
(
P(x1, . . . , xn)↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn
(
P(x1, . . . , xn)↔ ϕ(x1, . . . , xn)

)
.

Beth Definability Theorem

T defines P implicitly if and only if T defines P explicitly.

(Right-to-left direction is obvious.)
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Beth Definability Theorem, proof
Proof. Suppose T defines P implicitly. Add new constants c1, . . . , cn to
the language. Then we have T ∪ T ′ |= P(c1, . . . , cn)→ P ′(c1, . . . , cn). By
Compactness and taking conjunctions we can find an L ∪ {P}-formula ψ
such that T |= ψ and

ψ ∧ ψ′ |= P(c1, . . . , cn)→ P ′(c1, . . . , cn)

(where ψ′ is ψ with all occurrences of P replaced by P ′). Taking all the
Ps to one side and the P ′s to another, we get

ψ ∧ P(c1, . . . , cn) |= ψ′ → P ′(c1, . . . , cn)

So there is a Craig Interpolant θ such that

ψ ∧ P(c1, . . . , cn) |= θ and θ |= ψ′ ∧ P ′(c1, . . . , cn)

By symmetry also

ψ′ ∧ P ′(c1, . . . , cn) |= θ and θ |= ψ ∧ P(c1, . . . , cn)

So θ = θ(c1, . . . , cn) is, modulo T , equivalent to P(c1, . . . , cn) and
θ(x1, . . . , xn) defines P explicitly. 2
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