
CHAPTER 6

Types

1. Terminology

One of the most important notions in model theory is that of a type. Intuitively, a type is
a complete list of properties ϕ(x1, . . . , xn) satisfied by some tuple (a1, . . . , an).

Definition 6.1. Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables. If A
is an L-structure and a1, . . . , an ∈ A, then the type of (a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an)};

we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A is understood. An n-
type in L is a set of formulas of the form tpA(a1, . . . , an) for some L-structure A and some
a1, . . . , an ∈ A. (I will sometimes call these things complete types to distinguish them from the
partial types defined below.)

Some observations:

– If i:A → B is an elementary embedding and a1, . . . , an ∈ A, then (a1, . . . , an) and
(f(a1), . . . , f(an)) have the same type.

– Two n-tuples (a1, . . . , an) from A and (b1, . . . , bn) satisfy the same n-type precisely
when (A, a1, . . . , an) ≡ (B, b1, . . . , bn). (This is supposed to mean: add new constants
c1, . . . , cn to the language and regard A and B as (L ∪ C)-structures by interpreting
ci as ai in A and as bi in B.)

It will occasionally be useful to also consider “incomplete” (or even inconsistent) lists of
properties: this is a partial type.

Definition 6.2. A partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

– If p(x1, . . . , xn) is a partial n-type in L, we say (a1, . . . , an) realizes p in A if every
formula in p is true of a1, . . . , an in A.

– If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say that p is
realized or satisfied in A if there is some n-tuple in A that realizes p in A. If no such
n-tuple exists, then we say that A omits p.

What distinguishes the types among the partial types? Clearly, they can be realized in some
model, and they have to be complete: they contain ϕ(x1, . . . , xn) or ¬ϕ(x1, . . . , xn) for every
L-formula ϕ whose free variables are among the fixed variables x1, . . . , xn. This is sufficient:
for if a partial n-type p is realized by (a1, . . . , an), we must have p ⊆ tp(a1, . . . , an). If p
is also complete, then p ⊇ tp(a1, . . . , an) follows as well. (For if ϕ 6∈ p, then ¬ϕ ∈ p, so
¬ϕ ∈ tp(a1, . . . , an), hence ϕ 6∈ tp(a1, . . . , an).)
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2 6. TYPES

2. Types and theories

Definition 6.3. Let T be a theory in L and let p = p(x1, . . . , xn) be a partial n-type in
L. If T has a model realizing p, then we say that p is consistent with T or that p is a type of
T . The set of all complete n-types consistent with T is denoted by Sn(T ).

Observe:

Lemma 6.4. Let T be a theory and p be a partial n-type consistent with T . Then p can be
extended to a complete n-type q which is still consistent with T .

Proof. If p(x) is some partial n-type consistent with T then, by definition, there is some
model M of T in which there is some n-tuple of elements a realizing p(x). Then q = tpM (a) is
a complete type consistent with T and extending p. �

Suppose p is consistent with T and M is a model of T : does this mean that p will be
realized in M? The answer is no: the types consistent with T are those types that are realized
in some model of T . It may very well happen that M is a model of T and p is an n-type
consistent with T , but p is not realized in M , even when the theory T is complete. So what
can we say?

Definition 6.5. If p(x1, . . . , xn) is a partial n-type in L and A is an L-structure, we say
that p is finitely satisfiable in A if any finite subset of p is realized in A.

Proposition 6.6. Let M be a model of a complete theory T . Then a partial type p is
consistent with T if and only if it is finitely satisfiable in M .

Proof. First suppose that p is consistent with T . To show that p is finitely satisfiable in
M , let ϕ1(x), . . . , ϕn(x) be finitely many formulas in p. We must have

T |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

for if this is not true, then T |= ¬∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
by completeness of T . But then p

cannot be satisfied in any model of T , contradicting the fact that p is consistent with T . So, if
M is a model of T , we must have

M |= ∃x
(
ϕ1(x) ∧ . . . ϕn(x)

)
;

since ϕ1(x), . . . , ϕn(x) were arbitrary, the type p is finitely satisfiable in M .

Conversely, suppose that p is finitely satisfiable in M . Add a fresh constant c to the
language and look at the theory

T ′ = T ∪ {ϕ(c) : ϕ ∈ p}.

If p is finitely satisfiable in M , then M is a model for every finite subset of T ′. So by the
compactness theorem T ′ has a model N : this is a model of T in which p is realized, showing
that p is consistent with T . �

The partial types that are finitely satisfiable have some properties that will often be used.
The next lemma summarises a number of them.

Lemma 6.7. Let M be a model and p be a partial type.

(1) If M ≡ N and p is finitely satisfiable in M , then p is also finitely satisfiable in N .
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(2) p is finitely satisfiable in M if and only if p is realized in some elementary extension
of M .

(3) If p is finitely satisfiable in M , then p can be extended to a complete type q which is
still finitely satisfiable in M .

Proof. (1) If M ≡ N then M and N are models of the same complete theory T . So
if p is finitely satisfiable in M , then it is consistent with T and hence finitely satisfiable
in N (using the previous proposition twice, once for M and once for N).

(2) Consider the theory T = ElDiag(M) ∪ {ϕ(c) : ϕ ∈ p}, where c is a fresh constant
which does not occur in L. If p is finitely satisfiable in M , then M is a model of
every finite subset of T , so, by the compactness theorem, T has a model N . This, by
construction, is a model in which M embeds and in which p is realized.

Conversely, if p is realized in some elementary extension of M , then this extension
is a model which is elementary equivalent to M and in which p is (finitely) satisfied,
so p is finitely satisfiable in M by (1).

(3) By (2) p is realized in some elementary extension, by some element a say. Then the
type of a in this elementary extension is a complete type extending p.

�

3. Isolated types

The set Sn(T ) is not just a set, but it is in fact a topological space. To see this, consider
sets in Sn(T ) of the form

[ϕ(x1, . . . , xn)] = {p ∈ Sn(T ) : ϕ ∈ p},

where ϕ(x1, . . . , xn) is some formula. Since

[ϕ ∧ ψ] = [ϕ] ∩ [ψ] and [>] = Sn(T )

these sets form a basis: the topology generated from the sets is called the logic topology and
we have:

Theorem 6.8. The space Sn(T ) with the logic topology is a compact Hausdorff space.

Proof. If p and q are two n-types and p 6= q, then there is some formula ϕ such that ϕ ∈ p
and ϕ 6∈ q (or vice versa). But the latter means that ¬ϕ ∈ q, so [ϕ] and [¬ϕ] are two disjoint
open sets with p being an element of the first set and q being an element of the second. So
Sn(T ) is Hausdorff.

To see that Sn(T ) is compact, let (Ui)i∈I be a collection of opens such that
⋃
i∈I Ui. The

task is to find a finite subset I0 ⊆ I such that
⋃
i∈I0 Ui = Sn(T ). Since every open set is a union

of basis elements, we may just as well assume that each Ui is of the form [ϕi]. Now suppose
that

⋃
i∈I [ϕi] = Sn(T ) but there is no finite subset I0 such that

⋃
i∈I0 [ϕi] = Sn(T ).

Consider the partial type

p(x) = {¬ϕi(x) : i ∈ I}.

We claim that p(x) is consistent with T : for if not, there would be i1, . . . , in ∈ I such that

{¬ϕi1 , . . . ,¬ϕin}
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would be inconsistent with T , by the compactness theorem. But then any p ∈ Sn(T ) must
contain at least one of the ϕik : for it contains either ϕik or ¬ϕik and cannot contain all ¬ϕik .
Therefore

[ϕi1 ] ∪ . . . ∪ [ϕin ] = Sn(T ),

contradicting our assumption.

So the type p(x) is consistent with T . But that means that p can be extended to a complete
type q(x) which is still consistent with T (see Lemma 6.4). So q ∈ Sn(T ), but q 6∈ [ϕi] for any
i as q extends p. This contradicts our assumption that

⋃
i∈I [ϕi] = Sn(T ). We conclude that

Sn(T ) is compact. �

Definition 6.9. Let T be an L-theory and p(x) be a partial type. Then p(x) is isolated
in T if there is a formula ϕ(x) such that ∃xϕ(x) is consistent with T and

T |= ϕ(x)→ σ(x)

for all σ(x) ∈ p(x). A formula ϕ(x) is called complete or isolating over T in case we have

T |= ϕ(x)→ ψ(x) or T |= ϕ(x)→ ¬ψ(x)

for any formula ϕ(x).

Proposition 6.10. Let T be a theory and p be a complete type of T . Then the following
are equivalent:

(1) The type p is isolated.
(2) The type p is an isolated point in the space Sn(T ).
(3) The type p contains a complete formula.
(4) There is a formula ϕ(x1, . . . , xn) ∈ p such that

ψ(x1, . . . , xn) ∈ p⇔ T |= ϕ(x1, . . . , xn)→ ψ(x1, . . . , xn).

Proof. These are all different ways of saying that {p} = [ϕ] for some formula ϕ. �

Proposition 6.11. Let T be a complete theory and p be a partial type which is consistent
with T . If p is isolated, then p is realized in any model of T .

Proof. Let M be a model of T and suppose that ϕ(x) is a formula such that ∃xϕ(x) is
consistent with T and

T |= ϕ(x)→ σ(x)

for all σ(x) ∈ p(x). If ∃xϕ(x) is consistent with T and T is complete, we must have

T |= ∃xϕ(x),

and therefore
M |= ∃xϕ(x).

So we have some n-tuple m such that M |= ϕ(m). This implies that M |= σ(m) for every
σ ∈ p, so m realizes p. �



CHAPTER 7

ω-saturated models

1. Definition

In this chapter we study an important class of models: ω-saturated models. The idea is
that such models are “rich”: in particular, if M is an ω-saturated model of a complete theory
T , then any type of T will be realized in M (see below). Roughly speaking this means that
any type of object (or type of a sequence of objects) that occurs in some model of T already
occurs in M : so any type of thing whose existence is compatible with T lives in M .

First, some notational conventions. Let A be an L-structure and X a subset of A. We
often refer to the elements in X as parameters. In addition, we will use the following notation:

• We write LX for the language L extended with constants for all elements of X.
• We write (A, a)a∈X for the LX -expansion of A where we interpret the constant a ∈ X

as itself.

Definition 7.1. Let A be an L-structure. We say that A is ω-saturated if the following
condition holds:

if X is any finite subset of A having cardinality and p(x) is any 1-type in LX
that is finitely satisfiable in (A, a)a∈X , then p(x) can be realized in (A, a)a∈X .

We first make a number of observations:

(1) If Y ⊆ A is finite and A is ω-saturated, then so is (A, y)y∈Y . The reason for this is
that any 1-type over a finite set of paramaters X in (A, y)y∈Y is also a 1-type over
the finite set of parameters X ∪ Y in A.

(2) The definition of ω-saturation only talks about 1-types; however, if p(x1, . . . , xn) is an
n-type over a finite set of parameters X that is finitely satisfiable in an ω-saturated
model A, then it is realized. To see this, consider the types

p1(x1), p2(x1, x2), . . . , pn(x1, . . . , xn)

which are the types obtained from p by considering only those formulas that con-
tain x1, . . . , xi free. Then p1 is realized, because it is finitely satisfiable in A and
A is ω-saturated; moreover, if a1, . . . , ai realize pi, then pi+1 is finitely satisfied in
(A, y)y∈X∪{a1,...,ai}, by Lemma 7.2 below, and hence realized by some ai+1 by the
previous remark. So we see that each pi is realized, which includes p = pn.

(3) In the same vein we can observe that the fact that the definition of ω-saturation
only takes about complete types is not a genuine restriction: for, by Lemma 6.7, any
partial type that is finitely satisfied can be extended to a complete type that is finitely
satisfied.
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Lemma 7.2. Let p(x1, . . . , xn, y) be an (n + 1)-type and let q(x1, . . . , xn) be the n-type
obtained from p by taking only those ϕ ∈ p that do not contain y free. If p is finitely satisfiable
in M and (a1, . . . , an) realizes p in M , then also p(a1, . . . , an, y) is finitely satisfiable in M .

Proof. Let ϕ1(x, y), . . . , ϕn(x, y) be finitely many formulas in p. The formula

ψ(x): = ∃y
(
ϕ1(x, y) ∧ . . . ∧ ϕn(x, y)

)
has to belong to p: if it would not, its negation would have to belong to p, and p could not
be finitely satisfiable. This means that ψ ∈ q, by definition, so M |= ψ(a). We conclude that
p(a, y) is finitely satisfiable. �

As promised, we have:

Lemma 7.3. Let M be an ω-saturated model of a complete theory T . Then M realizes any
type over T .

Proof. Let M be a model of a complete theory T . If p belongs to Sn(T ) then p is finitely
satisfiable in M by Proposition 6.6. So if M is ω-saturated, then p will be realized. �

2. Existence

Examples of ω-saturated structures are: any dense linear order, any random graph. A
non-example is (N, <). However, we do have:

Theorem 7.4. Every structure has an ω-saturated elementary extension. So any consistent
theory has an ω-saturated model.

The proof relies on the following lemma:

Lemma 7.5. Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X ⊆ A, every 1-type in LX which is finitely satisfied in (A, a)a∈X is
realized in (B, a)a∈X .

Proof. Let (pi(xi))i∈I be the collection of all such 1-types and bi be new constants.
Consider:

T : =
⋃
i∈I

pi(bi).

Since the pi are finitely satisfiable in (A, a)a∈A, every finite subset of T can be satisfied in
(A, a)a∈A. So, by the compactness theorem, T has a model B. Since T contains ElDiag(A),
the model A embeds into B. �

Proof. (Of Theorem 7.4.) Let A be an L-structure. We will build an elementary chain of
L-structures (Ai : i ∈ N). We set A0 = A and at successor stages we apply the previous lemma.
Now let B be the colimit of the entire chain.

We claim B is ω-saturated: for if X ⊆ B is a finite subset, then X is already a finite subset
of some Ai and any 1-type p with parameters from X will be realized in Ai+1, by construction,
say by a ∈ Ai+1. Since the embedding from Ai+1 in B is elementary, the type p will also be
realized by a in B. �



3. PROPERTIES OF ω-SATURATED MODELS 7

3. Properties of ω-saturated models

In this section we establish some special properties of ω-saturated models.

Definition 7.6. Let A and B be L-structures and X ⊆ A. A map f :X → B will be called
an elementary map if

A |= ϕ(a1, . . . , an)⇔ B |= ϕ(f(a1), . . . , f(an))

for all L-formulas ϕ and a1, . . . , an ∈ X. Note that this is equivalent to

(A, x)x∈X ≡ (B, fx)x∈X .

A model M is called ω-homogeneous, if for any finite subset X of M , elementary map f :X →M
and a ∈M , the map f can be extended to an elementary map g whose domain includes a.

Theorem 7.7. If M is ω-saturated, then M is ω-homogeneous.

Proof. Suppose we are given a finite subset X of M , an elementary map f :X →M and
an element a ∈M . Let p be the type of a. Since (M,x)x∈X ≡ (M,fx)x∈X , we have by Lemma
6.7 that p is finitely satisfiable in (M,fx)x∈X . Since this model is ω-saturated, there is an
element b realizing p in (M,fx)x∈X , so that

(M,a, x)x∈X ≡ (M, b, fx)x∈X

and we can extend f by putting g(a) = b. �

Theorem 7.8. Let M be an ω-saturated model. If A is countable and elementary equivalent
to M , then there is an elementary embedding from A to M .

Proof. Let {a1, a2, . . .} be an enumeration of A. We construct an increasing sequence
of elementary maps fn: {a1, . . . , an} → M . The desired embedding will then be f =

⋃
n fn.

We start by putting f0 = ∅, which is an elementary map because A and M are elementary
equivalent.

If fn has been defined, write mi = f(ai). Consider p = tp(ai+1) in (A, a1, . . . , an).
Because fn is an elementary map, the models (A, a1, . . . , an) and (M,m1, . . . ,mn) are ele-
mentarily equivalent, so the type p, which is realized in (A, a1, . . . , an) is finitely satisfied in
(M,m1, . . . ,mn). Because (M,m1, . . . ,mn) is ω-saturated there is an element mn+1 realizing
p and we can extend fn by putting fn+1(an+1) = mn+1. �





CHAPTER 8

Countable ω-saturated models

1. Small theories

The model (Q, <) is not just ω-saturated, but also countable. We have seen that every
consistent theory has an ω-saturated model (Theorem 7.4), but it is not true that every theory
has a countable ω-saturated model, like the theory of dense linear orders.

For example, take a language L consisting of a countable number of unary predicates
P0, P1, P2, . . ., and consider the following L-structure M : its elements are the finite subsets of
the natural numbers and for such an m ∈ M we will say that it has the property Pn precisely
when n ∈ m. Let T = Th(M). For each function f :N→ {0, 1} we have a partial type

pf = {Pi(x) : f(i) = 1} ∪ {¬Pi(x) : f(i) = 0}.

These are finitely satisfiable in M , so consistent with T , meaning that an ω-saturated model
would have to realize all pf . But an element realizing pf cannot also realize pg when g 6= f ,
hence an ω-saturated model of T would have to have size at least that of the continuum. (A
fancier version of this example would take the theory T = Th(N,+, ·, 0, 1) and consider partial
types pf containing formulas saying that x is divisible by the nth prime number if f(n) = 1,
and not divisible by that prime number if f(n) = 0.)

Indeed, a countable ω-saturated model has to harmonize two antagonistic tendencies: on
the one hand such models are rich, because ω-saturated; on the other hand, they are small,
because only countable. You may suspect that theories can only have such models if their type
spaces are not too big, and you would be right.

Definition 8.1. A theory T is nice (this is not standard terminology), if it is complete,
formulated in a countable language and has infinite models. (Note that nice theories cannot
have finite models.) A theory is small if all its type spaces are countable.

Theorem 8.2. A nice theory T has a countable ω-saturated model if and only if it is small.

Proof. If T is complete and has an ω-saturated model M , then every n-type is realized
in M . So if M is countable, there can be at most countably many n-types for any n.

For the other direction, we take a closer look at the proof of Theorem 7.4 and assume that
A is a model of small theory T . First of all, we may assume that A is countable (by downward
Löwenheim-Skolem). In that case how many 1-types p(a, x) are there where a is a finite set of
parameters from A? The answer is that there at most countably many, because the collection
of finite sequences with parameters from A is countable and there are countably many types of
the form p(y, x). This means that the model B in the proof of Lemma 7.5 may be taken to be
countable as well. And that in turn means that in the proof of Theorem 7.4 we may consider
a countable chain of countable models: but then its colimit, which was an ω-saturated model,
is countable as well. �
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2. Properties

Theorem 8.3. Any two countable ω-saturated models that are elementarily equivalent are
isomorphic.

Proof. Let {a1, a2, a3, . . .} and {b1, b2, b3, . . .} be enumerations of two countable ω-saturated
models A and B. The idea is to construct elementary maps fn from some subset of A to B,
such that the domain of fn includes a1, . . . , an and the range includes all of b1, . . . , bn. The
union f =

⋃
n fn will then be an isomorphism between A and B. We start by putting fn = ∅,

which is an elementary map if A and B are elementarily equivalent. If fn:Xn → B has been
constructed, then we start by finding an element b which realizes in (B, x)x∈Xn

the type of an
over Xn and then by finding an element a which realizes in (A, an, x)x∈Xn

the type of bn over
{b} ∪ f(Xn). Then we put fn+1 = fn ∪ {(an, b), (a, bn)}. �

Definition 8.4. A model M is called strongly ω-homogeneous if any elementary map
f :X →M , where X is a finite subset of M , can be extended to an automorphism of M .

Theorem 8.5. A countable ω-saturated model is strongly ω-homogeneous.

Proof. The proof is a variation on the previous one. �



CHAPTER 9

The number of countable models

1. The omitting types theorem

In the previous chapter we have seen that we can read off from the type spaces of a nice
theory T whether a countable ω-saturated model exists: it exists if and only if all the type
spaces are countable. We will see that there is a similar characterisation for when the theory
T is ω-categorical: this happens precisely when all the type spaces are finite (this is the Ryll-
Nardzewski Theorem). This result relies on another theorem, the Omitting Types Theorem.
As we have seen, realizing a type is easy: just go to an ω-saturated model. Omitting a type is
much harder, and we know that it is impossible in case the type is isolated. But if the type is
not isolated and the language is countable, then we can manage to omit it.

Theorem 9.1. Let T be a consistent theory in a countable language. If a partial type p(x)
is not isolated in T , then there is a countable model of T which omits p(x).

The proof relies on a lemma:

Lemma 9.2. Suppose T is a consistent theory in a language L and C is a set of constants
in L. If for any formula ψ(x) in the language L there is a constant c ∈ C such that

T |= ∃xψ(x)→ ψ(c),

then T has a model whose universe consists entirely of interpretations of elements of C.

Proof. Extend T to a maximally consistent theory using the Lemma on page 4 of the
slides for week 2 and then apply the Lemma on page 3 of the slides for week 2. �

Proof. (Of Theorem 9.1.) Let C = {ci ; i ∈ N} be a countable collection of fresh con-
stants and LC be the language L extending with these constants. Let {ψi(x) : i ∈ N} be an
enumeration of the formulas with one free variable in the language LC . We will now induc-
tively create a sequence of sentences ϕ0, ϕ1, ϕ2, . . .. The idea is to apply to previous lemma to
T ∪ {ϕ0, ϕ1, . . .}.

If n = 2i, we take a fresh constant c ∈ C (one that does not occur in ϕm with m < n) and
put

ϕn = ∃xψi(x)→ ψ(c).

This makes sure the condition in Lemma 9.2 is satisfied and we can create a model from the
constants in C.

If n = 2i + 1 we make sure that ci omits p(x), as follows. Consider δ =
∧
m<n ϕm. δ is

really of the form δ(ci, c) where c is a sequence of constants not containing ci. Since p(x) is not
isolated, there must be a formula σ(x) ∈ p(x) such that

T 6|= ∃y δ(x, y)→ σ(x);

11
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in other words, such that T ∪ {∃y δ(x, y)} ∪ {¬σ(x)} is consistent. Put ϕ2n = ¬σ(ci).

The proof is now finished by showing by induction that each T ∪{ϕ0, . . . , ϕn} is consistent
and then applying the previous lemma. �

2. ω-categoricity

Proposition 9.3. The following are equivalent for any theory T :

(1) All n-types are isolated.
(2) Every Sn(T ) is finite.
(3) For for every n there are only finite many formulas ϕ(x1, . . . , xn) up to equivalence

relative to T .

Proof. (1) ⇔ (2) holds because Sn(T ) is a compact Hausdorff space.

(2) ⇒ (3) If there are only finitely many n-types

p1(x), . . . , pm(x),

then each of these isolated, so there are formulas ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn) isolating
p1, . . . , pm. We claim that each formula is equivalent over T to a disjunction of the ψi.

Let ϕ(x1, . . . , xn) be arbitrary and put

I = {i ∈ {1, . . . ,m} :ϕ ∈ pi}.
If i ∈ I, then T |= ψi → ϕ, because ψi isolates pi, so T |=

∨
i∈I ψi → ϕ. Conversely, if

T 6|= ϕ→
∨
i∈I ψi, then

{ϕ(x)} ∪ {¬ψi(x) : i ∈ I}
is a partial type consistent with T , so can be extended to a complete type p ∈ Sn(T ). Since
ϕ ∈ p we must have that p = pi for some i ∈ I; on the other hand, p also contains ¬ψi(x), so
cannot be equal to pi. Contradiction.

(3) ⇒ (2): If every formula ϕ(x1, . . . , xn) is equivalent modulo T to one of

ψ1(x1, . . . , xn), . . . , ψm(x1, . . . , xn),

then every n-type is completely determined by saying which ψi it does and which it does not
contain. �

Theorem 9.4. For a nice theory T the following are equivalent:

(1) T is ω-categorical;
(2) all n-types are isolated;
(3) all models of T are ω-saturated;
(4) all countable models of T are ω-saturated.

Proof. (1)⇒ (2) If T contains a non-isolated type then there is a countable model where
it is realized and a countable model where it is not realized (by the Omitting Types Theorem).

(2)⇒ (3) Let p(a, x) be 1-type with n parameters from a model A and assume that p(a, x)
is finitely satisfied in A. Since p(y, x) is isolated, there is a formula ϕ(y, x) isolating it: but
then ϕ(a, x) isolates p(a, x). Moreover, since p(a, x) is finitely satisfied in A we have an element
a ∈ A satisfying ϕ(a, x): but then a realizes the type p(a, x).

(3) ⇒ (4) is clear.



2. ω-CATEGORICITY 13

(4)⇒ (1) holds, because elementarily equivalent countable ω-saturated models of cardinal-
ity are isomorphic (this was Theorem 8.3). �

Corollary 9.5. If A is a model in a countable language and a1, . . . , an are elements from
A, then Th(A) is ω-categorical iff Th(A, a1, . . . , an) is ω-categorical.

Proof. Every m-type p(a, x) of Th(A, a1, . . . , an) determines an (n + m)-type p(y, x) of
Th(A): so if there are only finitely many (n+m)-types consistent with Th(A), then there are
only finitely many m-types consistent with Th(A, a1, . . . , an).

Conversely, every m-type p consistent with Th(A) can be extended to an n-type consistent
with Th(A, a)a∈A (by Robinson’s Consistency Theorem). Since these extensions have to be
different for different types, Th(A) cannot have more n-types than Th(A, a)a∈A. So if the
latter has only finitely many n-types, then so does the former. �

Theorem 9.6. (Vaught’s Theorem) A nice theory cannot have exactly two countable models
(up to isomorphism).

Proof. Suppose T is a nice theory with precisely two countable models. Clearly, T cannot
be ω-categorical, but it has to be small: because T is a theory in a countable language every
n-type can be realized in some countable model. Moreover, since every countable model can
realize only countably many n-types and there are only two countable models, the total number
of n-types has to be countable.

We will now show that T has at least three models. First of all, there is a countable ω-
saturated model A, because T is small. In addition, because T is not ω-categorical, there is a
non-isolated type p which is omitted in some countable model B. Of course, it is realized in A
by some tuple a. Since Th(A, a) also not ω-categorical by the previous corollary, it has a model
C different from A. Since C realizes p, it must be different from B as well. Contradiction. �





CHAPTER 10

Prime models

1. Existence of prime models

In this chapter we will study prime models: these are models of a theory that can be
elementarily embedded into any other model of the theory. We will see that also the existence
of prime models can be “read off” from the type spaces.

Definition 10.1. Let T be a theory. A model M of T is called prime if it can be ele-
mentarily embedded into any model of T . A model M of T is called atomic if it only realises
isolated types (or, put differently, omits all non-isolated types) in Sn(T ).

Theorem 10.2. A model of a nice theory T is prime iff it is countable and atomic.

Proof. ⇒: Let A be a prime model of a nice theory T . As a nice theory has countable
models and A embeds in any model, A has to be countable as well. Moreover, if p is a non-
isolated type of T , then there is a model B of T in which it is omitted, by the omitting types
theorem. Since A embeds elementarily into B, the type p will be omitted in A as well.

⇐: Let A be a countable and atomic model of a nice theory T and M be any other model of
T . Let {a1, a2, . . .} be an enumeration of A; by induction on n we will construct an increasing
sequence of elementary maps fn: {a1, . . . , an} →M . We start with f0 = ∅, which is elementary
as A and M are elementarily equivalent. (They are both models of a complete theory T .)

Suppose fn has been constructed. The type of a1, . . . , an+1 in A is isolated, hence generated
by a single formula ϕ(x1, . . . , xn+1). In particular, A |= ∃xn+1 ϕ(a1, . . . , an, xn+1), and since
fn is elementary, M |= ∃xn+1 ϕ(fn(a1), . . . , fn(an), xn+1). So choose m ∈ M such that M |=
ϕ(fn(a1), . . . , fn(an),m) and put f(an+1) = m. �

Theorem 10.3. A nice theory T has a prime model iff the isolated n-types are dense in
Sn(T ) for all n.

Proof. Recall that a formula ϕ(x) is called complete in T if it generates an isolated type in
Sn(T ): that is, it is consistent and for any other formula ψ(x) we have either T |= ϕ(x)→ ψ(x)
or T |= ϕ(x) → ¬ψ(x). To say that the isolated types are dense means that every non-empty
(basic) open set contains at least one isolated type: so the n-types are dense iff every consistent
formula ϕ(x) follows from some complete formula.

⇒: Let A be a prime model of T . Because a consistent formula ϕ(x) is realised in all
models of a complete theory, it is realized in A as well, by a say. Since A is atomic, ϕ(x)
belongs to the isolated type tpA(a).

⇐: We define for each natural number n a partial n-type

pn(x1, . . . , xn) = {¬ϕ(x1, . . . , xn) : ϕ is complete },

15
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and claim that these are not isolated. Because if pn would be isolated there would be a consistent
formula ψ(x) such that

T |= ψ(x)→ ¬ϕ(x1, . . . , xn)

for any complete formula ϕ(x1, . . . , xn). But this would mean that ψ(x) could not be a conse-
quence of any complete formula, contradicting the fact that the isolated types are dense. So
by the generalised omitting types theorem there is a countable model A omitting all pn. But a
structure omitting all pn has to be atomic. �

2. More on small theories

The aim of this section is to prove that small theories have prime models. In view of the
previous theorem this basically amounts to showing that the isolated types are dense in all the
type spaces of a small theory. In order to prove this we need to understand these small theories
a bit better.

Definition 10.4. Let {0, 1}∗ be the set of finite sequences consisting of zeros and ones. A
binary tree of formulas in variables x = x1, . . . , xn (in T ) is a collection {ϕs(x) : s ∈ {0, 1}∗}
such that T |=

(
ϕs0(x) ∨ ϕs1(x))→ ϕs(x)

)
and T |= ¬

(
ϕs0(x) ∧ ϕs1(x)

)
.

Theorem 10.5. The following are equivalent for a nice theory T :

(1) |Sn(T )| < 2ω.
(2) There is no binary tree of consistent formulas in x1, . . . , xn.
(3) |Sn(T )| ≤ ω.

Proof. (1) ⇒ (2): We show that the existence of a binary tree of consistent formulas
implies that the type space has size at least that of the continuum. If {ϕs(x) : s ∈ {0, 1}∗} is a
binary tree of consistent formulas, then

pα = {ϕs : s ⊆ α}
is a consistent partial type for every α:N → {0, 1}. Since consistent partial types can be
extended to complete types and nothing can realize both pα and pβ when α and β are distinct,
we see that the existence of a binary tree of consistent formulas implies that there are at least
2ω many types.

(2)⇒ (3): We show that the uncountability of Sn(T ) implies that there must exist a binary
tree of consistent formulas. If |Sn(T )| > ω, then we have |[ϕ]| > ω for any tautology ϕ. So
we can construct a binary tree of consistent formulas by repeated application of the following
claim.

Claim: If |[ϕ]| > ω, then there is a formula ψ(x) such that |[ϕ∧ψ]| > ω and |[ϕ∧¬ψ]| > ω.
Proof: Suppose not. Define

p(x): = {ψ(x) : |[ϕ ∧ ψ]| > ω}.
By assumption this collection contains a formula ψ(x) or its negation, but not both. In addition,
if p contains both ψ0 ∨ ψ1, then

|[ϕ ∧ (ψ0 ∨ ψ1)]| = |[ϕ ∧ ψ0] ∪ [ϕ ∧ ψ1]| > ω,

so p will contain either ψ0 or ψ1. This implies that if p contains ψ1, . . . , ψn then it also contains
ψ1 ∧ . . . ∧ ψn: for if ψ1 ∧ . . . ∧ ψn 6∈ p, then ¬(ψ1 ∧ . . . ∧ ψn) ∈ p, hence ¬ψi ∈ p for some i.
Since each ψ ∈ p is consistent, this implies that each finite subset of p is consistent; hence p is
consistent and therefore a complete type.



2. MORE ON SMALL THEORIES 17

But now we arrive at a contradiction, as follows: if ψ 6∈ p, then |[ϕ∧ψ]| ≤ ω, by definition.
In addition, the language is countable, so

[ϕ] =
⋃
ψ 6∈p

[ϕ ∧ ψ] ∪ {p}

is a countable union of countable sets and hence countable, contradicting our assumption for
ϕ.

(3) ⇒ (1): This is clear, because ω < 2ω. �

Corollary 10.6. If T is nice and small, then isolated types are dense. So T has a prime
model.

Proof. If isolated types are not dense, then there is a consistent ϕ(x) which is not a
consequence of a complete formula. Call such a formula perfect. We claim that perfect formulas
can be “decomposed” into two consistent formulas which are jointly inconsistent. Repeated
application of this claim leads to a binary tree of consistent formulas, so T cannot be small, by
the previous theorem.

To see that any perfect formula ϕ can be decomposed into two perfect formulas, note that
perfect formulas cannot be complete, so there is a formula ψ such that both ϕ∧ ψ and ϕ∧¬ψ
are consistent. But as these formulas imply ϕ and ϕ is not a consequence of a complete formula,
these formulas have to be perfect as well. �





APPENDIX A

Topology

Definition A.1. A topological space is a pair (X,Ω) consisting a set X and a collection Ω
of subsets of X, where the subsets in Ω have the following properties:

(i) Both ∅ and X belong to Ω.
(ii) If U, V ∈ Ω, then also U ∩ V ∈ Ω.
(iii) If Ui ∈ Ω for some collection of subsets (Ui)i∈I of X, then also

⋃
i∈I Ui ∈ Ω.

Such a collection Ω is also called a topology on X. The elements in X are called the points and
the elements in Ω the opens of the topological space.

Some more terminology: a set whose complement is open is called closed and a set which is
both open and closed is called clopen. If U is open and x ∈ U , then U is called a neighborhood
of x. A subset A ⊆ X is called dense if any non-empty open set contains at least one element
from A.

Definition A.2. Let X be a set. A collection B of subsets of X that are is under binary
intersections (that is, if U, V ∈ B, then U ∪ V ∈ B) and such that

⋃
B = X is called a basis.

Proposition A.3. Let X be a set and B be a basis. Then we can define a topology on X
by saying that a subset U is open precisely when it arises as a union of elements in B, that is,
can be written as:

U =
⋃
S, for some S ⊆ B.

The topology defined in this way is called the topology generated by the basis B.

Definition A.4. A topological space (X,Ω) is called Hausdorff, if for any two points
x, y ∈ X with x 6= y there are disjoint open sets U and V with x ∈ U and y ∈ V .

Proposition A.5. Singleton sets are closed in a Hausdorff space.

Proof. Let (X,Ω) be a Hausdorff space and fix x ∈ X. Then for every y ∈ X which is
distinct from x one can define an open set Ny which contains y but does not contain x. But
then ⋃

y∈X,y 6=x

Ny = X \ {x}

is open, so {x} is closed. �

Definition A.6. A point x ∈ X is isolated in a topological space (X,Ω) in case {x} is
open.

Definition A.7. A topological space (X,Ω) is called compact if for any collection of subsets
(Ui)i∈I such that

⋃
i∈I Ui = X there is a finite subset I0 ⊆ I such that

⋃
i∈I0 Ui = X.
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Proposition A.8. Let (X,Ω) be a compact Hausdorff space. Then every point is isolated
in (X,Ω) iff X is finite.

Proof. ⇒: If every point in X is isolated then we can write X as a union of open subsets,
as follows:

X =
⋃
x∈X
{x}

So if (X,Ω) is compact, then there is a finite subset X0 ⊆ X such that

X =
⋃
x∈X0

{x}.

But then X =
⋃
x∈X0

{x} = X0 is finite.

⇐: Suppose X is finite and let x ∈ X be arbitrary. For any y ∈ X different from x we can
find an open subset Uy which contains x but does not contain y. Then

{x} =
⋂

y∈Y,y 6=x

Uy

is a finite intersection of open sets and hence open. �


