
MODEL THEORY: EXAMPLES

BENNO VAN DEN BERG

1. Some useful tests

First, some useful tests for completeness:

Theorem 1.1. (Vaught’s Test) If a theory T in a language L is consistent, has no
finite models and is λ-categorical for some λ ≥ |L|, then T is complete.

Proof. If T were not complete, there would a sentence ψ such that neither ψ and ¬ψ
would follow from T . But then T ∪ {ψ} and T ∪ {¬ψ} would have infinite models.
Since λ ≥ |L|, both would actually have models of cardinality λ by the theorems
of Skolem and Löwenheim. But these cannot be isomorphic, because they are not
elementarily equivalent, contradicting the λ-categoricity of T . �

Theorem 1.2. If a theory T has quantifier elimination and there is a model M of
T that can be embedded into every other model of T , then T is complete.

Proof. If N is any model of T , then M can be embedded into it. So M and N witness
the same quantifier-free formulas with parameters from M . But since T has quantifier
elimination, this implies that the same is true for all formulas with parameters from
M . So the embedding is elementary and M and N are elementarily equivalent. Hence
all models of T are elementary equivalent and so T must be complete. �

And now some tests for quantifier elimination. The first one is simple:

Proposition 1.3. A theory T has quantifier elimination if any formula of the form
∃y ϕ(x1, . . . , xn, y) with ϕ quantifier-free is equivalent over T to a quantifier-free for-
mula.

Proof. Rewrite a formula into an equivalent form using only ¬,∧ and ∃. And then
work inside-out to eliminate all existential quantifiers. �

The second is less simple and more useful. We need the following notion:

Definition 1.4. Let M and N be models. A local isomorphism is a map

f : {m1, . . . ,mn} ⊆M → N
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such that
M |= ϕ(m1, . . . ,mn) ⇔ N |= ϕ(f(m1), . . . , f(mn))

holds for all quantifier-free formulas ϕ. (Note that this is equivalent to it holding for
all atomic formulas.)

Theorem 1.5. Let κ be an infinite cardinal. A theory T has quantifier elimination
if and only if, given

(1) two models M and N of T , where N is κ-saturated,
(2) a local isomorphism f : {a1, . . . , an} ⊆M → N , and
(3) an element m ∈M ,

there is a local isomorphism g: {a1, . . . , an,m} → N which extends f .

Proof. Necessity is clear: if T has quantifier elimination, then any local isomorphism
is an elementary map; and since N is κ-saturated, it is also ω-homogeneous.

Conversely, let L be the language of T and suppose ∃y ϕ(x1, . . . , xn, y) with ϕ
quantifier-free is a formula which is not equivalent over T to a quantifier-free formula
in L. Extend the language with constants c1, . . . , cn and work in the extended lan-
guage. Now let T0 be the collection of all quantifier-free sentences which are a conse-
quence over T of ¬∃y ϕ(c1, . . . , cn, x). Then the union of T , T0 and ∃y ϕ(c1, . . . , cn, y)
has a model M .

Next, consider T1, which consists of the theory T , all quantifier-free sentences in the
extended language which are true in M , as well as the sentence ¬∃y ϕ(c1, . . . , cn, y).
This theory T1 is consistent: for if not, there would be a quantifier-free sentence
ψ(c1, . . . , cn) which is false in M and and which is a consequence of ¬∃xϕ(c1, . . . , cn)
over T . But such a sentence must belong to T0 and therefore be true in M . Contra-
diction!

So T1 has a model N and we may assume that N is κ-saturated. Now let f be the
map which sends the interpretation of ci in M to its interpretation in N and let m be
such that M |= ϕ(c1, . . . , cn,m). f is a local isomorphism, but cannot be extended
to one whose domain includes m, because ∃y ϕ(c1, . . . , cn, y) fails in N . �

2. Dense linear orders

The theory DLO of dense linear orders without endpoints is the theory in the
language ≤ saying that:

(1) ≤ is a partial order: it is reflexive (x ≤ x), anti-symmetric (x ≤ y and y ≤ x
imply x = y), and transitive (x ≤ y and y ≤ z imply x ≤ z).

(2) The order ≤ is linear: either x ≤ y or y ≤ x.
(3) It is dense: writing x < y for x ≤ y ∧ ¬x = y, this says that x < y implies

that there is a z with x < z < y.
(4) It has no endpoints: for every x there are y and z such that y < x < z.
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Examples are Q and R.

Theorem 2.1. The theory DLO is ω-categorical.

Proof. Let M and N be two countable dense linear orders without endpoints. Fix
enumerations M = {m0,m1, . . .} and N = {n0, n1, . . .}. We will construct an in-
creasing sequence of local isomorphisms fk from some subset of M to N such that mi

belongs to the domain of f2i and ni belongs to the codomain of f2i+1. Then f =
⋃

i fi

will be the desired isomorphism between M and N . We start with f0 = ∅.

So suppose k + 1 = 2i and we have constructed fj for all j ≤ k and we want to
construct fk+1. If mi already belongs to the domain of fk, we do not need to do
anything and we put fk+1 = fk. If not, then we determine the relative position of
mi to all m belonging to the domain of dom(fk). There are only a few possibilities:
(1) mi is small than all of these, (2) mi is bigger than all of these, or (3) mi is in
between two elements m < m′ in the domain and then we may choose for m and
m′ its nearest neighbours so that no other element from the domain is in between
m and m′. In case (1) we choose for fk+1(mi) an element strictly smaller than all
the elements in the image of fk, in case (2) an element strictly bigger than all the
elements in the image of fk and in case (3) an element strictly between f(m) and
f(m′). This is possible since N is a dense linear order without endpoints.

If k + 1 = 2i + 1, we argue in the same way in order to find a suitable preimage
for ni. �

We see from the proof: if M is a countable dense linear order, then any local
isomorphism from a subset of M to itself can be extended to an automorphism of the
entire structure M . And since every n-type is realized in M , we see that the n-types
in variables x1, . . . , xn correspond to possible ways to order the xi (while allowing for
some of them to coincide). In particular, there are only finitely many of them and
each of them is generated by a single quantifier-free formula. From this it follows:

Theorem 2.2. The theory DLO has quantifier elimination.

Proof. Let [ϕ] be the open corresponding to a formula ϕ. It consists of finitely many
n-types, each of which is generated by a quantifier-free formula. So let ψ1, . . . , ψk be
the quantifier-free formulas generating the n-types belonging to [ϕ]. Then DLO |=
ϕ↔ ψ1 ∨ . . . ∨ ψk. �

In fact, this would also have followed easily from Theorem 1.5.

Exercise 2.3. Show that DLO is not λ-categorical for any λ > ω.

3. Atomless Boolean algebras

Definition 3.1. A (bounded) lattice L is a partial order in which every finite subset
A ⊆ L has a least upper bound (a supremum or join, written

∨
A) and a greatest

lower bound (an infimum or meet, written
∧
A). More concretely this means that L
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has a smallest element 0, a largest element 1 and that for any two elements p, q ∈ L
there are elements p ∧ q and p ∨ q such that:

x ≤ p ∧ q ⇔ x ≤ p and x ≤ q,

p ∨ q ≤ x ⇔ p ≤ x and p ≤ x.

Exercise 3.2. Show that in any lattice ∧ and ∨ are associative, commutative and
idempotent (that is, x ∧ x = x and x ∨ x = x hold). In addition, show that the
absorbative laws x = x ∧ (x ∨ y) and x = x ∨ (x ∧ y) hold, as well as 0 ∧ x = 0 and
1 ∨ y = y.

Exercise 3.3. Conversely, show that if L is a set equipped with two binary operations
∧ and ∨ and in which there are elements 0, 1 ∈ L such that all the properties from the
previous exercise hold, then there is a unique ordering on L turning L into a lattice.
(Hint: observe that in a lattice we have x ≤ y iff x = x ∧ y iff y = x ∨ y.)

Definition 3.4. A lattice L is called distributive if both distributive laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

are satisfied. A distributive lattice L is called a Boolean algebra if for any element
x ∈ L there is an element ¬x ∈ L (its complement) for which

x ∧ ¬x = 0 and x ∨ ¬x = 1

hold.

Example 3.5. For any set X the powerset P(X) is a Boolean algebra with order
given by inclusion, meets and joins given by intersection and union, complements
given by set-theoretic complement and smallest and largest elements ∅ and X.

Example 3.6. If X is a topological space, then the clopens in X also form a Boolean
algebra with the same operations as in the previous example.

Exercise 3.7. Show that in any lattice one distributive law implies the other.

Exercise 3.8. Let L be a distributive lattice and suppose x ∈ L is a complemented
element, meaning that there is an element y ∈ L such that x ∧ y = 0 and x ∨ y = 1.
Show that for any other element p ∈ L, we have

x ∧ p = 0 =⇒ p ≤ y and x ∨ p = 1 =⇒ y ≤ p.

Deduce that complements are unique.

Exercise 3.9. Show that if B is a Boolean algebra, then Bop, which is B with the
order reversed, is a Boolean algebra as well. In fact, B and Bop are isomorphic with
the isomorphism given by negating (taking complements). Deduce the De Morgan
laws: ¬(p ∧ q) = ¬p ∨ ¬q and ¬(p ∨ q) = ¬p ∧ ¬q.

For what follows we need to understand finitely generated Boolean algebras. Recall
that a Boolean algebra B is finitely generated if there are elements b1, . . . , bn ∈ B
such that there is no proper Boolean subalgebra of B also containing the elements
b1, . . . , bn.
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Theorem 3.10. Finitely generated Boolean algebras are finite.

Proof. Suppose B is generated by b1, b2, . . . , bn. Let C be the collection of elements
in B that can be written as “conjunctions” of the form c1 ∧ c2 ∧ . . . ∧ cn where ci
is either bi or its complement, and let D the collection of elements in B that can
be written as “disjunctions” of elements in C. The collections C and D are finite,
because they contains at most 2n and 2(2n) elements, respectively. But D is a Boolean
subalgebra of B, because it contains 0 (no disjuncts), 1 (all disjuncts) and is closed
under disjunction (clear), conjunction (by the distributive laws) and negation (by
the De Morgan laws). So B = D is finite; in fact, it contains at most 2(2n) many
elements. �

So we need to understand finite Boolean algebras. But these are always of the
form P(X), where X is finite. To show this, we need some definitions.

Definition 3.11. An element a in a Boolean algebra B is called an atom if a > 0
and there are no elements strictly in between a and 0. A Boolean algebra in which
for any element x > 0 there is an atom a such that x ≥ a is called atomic. A Boolean
algebra in which there are no atoms is called atomless.

Proposition 3.12. Finite Boolean algebras are atomic.

Proof. Let B is a finite Boolean algebra. Suppose x0 ∈ B is an element different
from 0 and there are no atoms a with x0 ≥ a. This means that x0 itself is no atom,
so there is an element x1 with x0 > x1 > 0. Of course, x1 cannot be atom, by our
assumption on x0, so there must be an element x2 such that x0 > x1 > x2 > 0.
Continuing in this way we create an infinitely descending sequence of elements in B,
which contradicts its finiteness. �

Proposition 3.13. If B is an atomic Boolean algebra and x < y, then there is an
atom a ∈ B which lies below y, but not below x.

Proof. If x < y, then y ∧ ¬x 6= 0 (for if y ∧ ¬x = 0, then ¬x ≤ ¬y and x ≥ y by the
exercises). So there is an atom a with y∧¬x ≥ a. So we have y ≥ a and ¬x ≥ a; but
the latter implies that x 6≥ a, for if also x ≥ a, then 0 = x ∧ ¬x ≥ a. �

Theorem 3.14. All finite Boolean algebras B are of the form P(X) for a finite set
X. In fact, X can be chosen to be the collection of atoms in B.

Proof. Let B be a finite Boolean algebra and let A be its collection of atoms. Then
we define maps f :B → P(A) by sending b ∈ B to the set f(b) = {a ∈ A : a ≤ b}
and g:P(A) → B by sending a set X ⊆ A to g(X) =

∨
X. It will suffice to prove

that f and g are order preserving and each other’s inverses (since all operations in a
Boolean algebra are uniquely determined in terms of its order, any order isomorphism
between Boolean algebras must be an isomorphism of Boolean algebras). That they
are order preserving is clear, so we only check that they are each other’s inverses.
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So if b is an element in B and X = {a ∈ A : a ≤ b}, then b is an upper bound for
X, so b ≥

∨
X. Here we must have equality: for if b >

∨
X, then the previous two

results imply that there is an atom a′ such that b ≥ a′ but not
∨
X ≥ a′. But the

former implies that a′ ∈ X so we should have
∨
X ≥ a′ after all. Contradiction! We

deduce g(f(b)) = b.

Conversely, let X be a set of atoms in B and b =
∨
X. Clearly, all atoms in X are

below b, but the converse is true as well: for suppose a′ is an atom and b ≥ a′. Then

0 < a′ = (a′ ∧ b) = a′ ∧
∨

a∈X

a =
∨

a∈X

(a′ ∧ a).

So there must be an element a ∈ X such that a′ ∧ a is not zero. But since a and a′

are atoms and a′ ∧a is below each of them, we must have a = a∧a′ = a′. We deduce
f(g(X)) = X, which finishes the proof. �

Theorem 3.15. The theory ABA of atomless Boolean algebras is ω-categorical.

Proof. Observe that atomless Boolean algebras have to be infinite (by Proposition
3.12) and that there is a countable and atomless Boolean algebra: look at the clopens
in Cantor space.

Let A and B be two countable atomless Boolean algebras and fix enumerations
a1, a2, . . . of A and b1, b2, . . . of B. Again, we will construct a sequence (fn)n∈N of
local isomorphisms from A to B with ai in the domain of f2i and bi in the codomain
of f2i−1. Put f0 = ∅.

Now suppose fk has been constructed for all k < n and we want to build fn. Write
C for the Boolean subalgebra of A generated by a0, . . . , an−1 and D for the Boolean
subalgebra of B generated by b0, . . . , bn−1. The local isomorphism fn−1 induces an
isomorphism f of Boolean algebras from C to D and without loss of generality we
may assume that a0, . . . , an−1 are the atoms of C and b0, . . . , bn−1 are the atoms of
D and f(ai) = bi.

For any x ∈ A, there are three possibilities for x ∧ ai: it can be 0, or ai or
something in between. Let us call the function which says for every i which of these
three possibilities happens, the profile of x. Similarly, we can define the profile of
elements y ∈ B, but then with respect to the bi instead of the ai.

The proof will be finished once I show:

(1) For any x ∈ A there is a y ∈ B which has the same profile, and vice versa.
(2) If x ∈ A and y ∈ B have the same profile, then the local isomorphism can be

extended to one which sends x to y.

I will only sketch the argument: as for (1), let I = {i < n : x ∧ ai = ai} and
J = {j < n : 0 < (x ∧ aj) < aj}. For any j ∈ J we consider bj : since it is not an
atom in B, we can choose an element yj ∈ B with 0 < yj < bj .

Now put y: =
∨

i∈I bi∧
∨

j∈J yj . Using that the bi are atoms in D and we therefore
have that bi ∧ bj = 0 whenever i 6= j, we see that y has the same profile as x.



MODEL THEORY: EXAMPLES 7

As for (2): the crucial observation here is that if J = {j < n : 0 < (x ∧ aj) < aj},
then the atoms of the Boolean subalgebra generated by a0, . . . , an−1 and x are the
ai with i ∈ Jc together with aj ∧ x and aj ∧ ¬x for every j ∈ J . Sending these to bi,
bj ∧ y and bj ∧ ¬y, respectively, we have a maps from atoms to atoms which extends
uniquely to a map of Boolean algebras: this one extends the original map and sends
x to y. �

Theorem 3.16. The theory of atomless Boolean algebras has quantifier elimination.

Proof. An n-type in variables x1, . . . , xn should say what the profile of xi is in terms
of the atoms of the Boolean subalgebra generated by x1, . . . , xi−1: call this a sequence
of profiles. I claim that a sequence of profiles completely determines the n-type: by
this I mean that if a1, . . . , an is a tuple in a model A and b1, . . . , bn is a tuple in a
model B and they determine the same sequence of profiles, then they realize the same
type. For by the downward Lowenheim-Skolem Theorem, we may assume that both
A and B are countable, in which case the proof of the previous theorem implies that
there is an isomorphism from A to B sending ai to bi. Since a sequence of profiles
can be formulated using a single quantifier-free sentence, and there are only finitely
many n-types, the theory ABA has quantifier elimination. �

Again, we could also have used Theorem 1.5.

Exercise 3.17. Show that all Boolean algebras of the form P(X) are atomic, but
that there are atomic Boolean algebras which are not of this form.

Exercise 3.18. Not so easy: show that ABA is not λ-categorical for any λ > ω.

4. Vector spaces

For a fixed field K, the language of K-vector spaces contains symbols + and 0,
for vector addition and the null vector, as well as unary operations fk, one for every
k ∈ K, for scalar multiplication with k. The theory IV SK of infinite vector spaces
over K expresses that (+, 0) is an infinite Abelian group on which K acts as a set of
scalars.

Theorem 4.1. The theory IV SK is λ-categorical for all λ > |K|.

Proof. Because vector spaces are completely determined by their dimension and if V
is a vector space over a field K of cardinality λ > |K|, then its dimension is λ. �

Theorem 4.2. The theory IV SK has quantifier elimination.

Proof. We will use Theorem 1.5. So let V and W be two infinite K-vector spaces,
where W is ω-saturated, and let f : {v1, . . . , vn} → W be a local isomorphism. If
v ∈ V , then there are two possibilities: v is a linear combination k1v1 + . . .+knvn, in
which case v should be sent to k1f(v1) + . . .+ knf(vn). Or v is linearly independent
from v1, . . . , vn: in case K is finite, we use that W is infinite, and in case K is infinite,
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we use ω-saturation of W to find a vector w ∈W which is linearly independent from
f(v1), . . . , f(vn). Then extend f by putting f(v) = w. �

5. Algebraically closed fields

Recall that a field K is called algebraically closed if every non-constant polynomial
has a root in K. For convenience, we will only consider fields of characteristic 0 and
only consider ACF0, the theory of algebraically closed fields of characteristic 0.

5.1. Recap on fields. Consider an inclusion K ⊆ L of fields. Recall that L can be
considered as a K-vector space and that we write [K:L] for its dimension.

Proposition 5.1. If we have two field extensions K ⊆ L ⊆ M , then [M :K] =
[M :L][L:K].

If K ⊆ L and ξ ∈ L, then there are two possibilities:

(1) ξ is algebraic over K. This means that there is a polynomial p(x) with
coefficients from K such that p(ξ) = 0. In this case we can consider the
monic polynomial m(x) ∈ K[x] with m(ξ) = 0 which has least possible
degree: this is called the minimal polynomial of ξ. This polynomial has to be
irreducible and K(ξ), the smallest subfield of L which contains both K and
ξ, is isomorphic to K[x]/(m(x)). In this case [K(ξ):K] is finite.

(2) ξ is transcendental over K. In this case K(ξ) is isomorphic to the quotient
field K(x) and [K(ξ):K] is infinite.

An extension K ⊆ L is called algebraic if all elements in L are algebraic over K.
From Proposition 5.1 it follows that:

(1) K(ξ) is algebraic over K precisely when ξ is algebraic over K.
(2) If K ⊆ L and L ⊆ M are two field extensions and they are both algebraic,

then so is K ⊆M .

5.2. Algebraic closure.

Definition 5.2. If K ⊆ L is a field extension, then L is an algebraic closure of K, if
L is algebraic over K, but no proper extension of L is algebraic over K.

Theorem 5.3. Algebraic closures are algebraically closed.

Proof. Let L be the algebraic closure of K and p(x) be a non-constant polynomial
with coefficients from L without any roots in L. Without loss of generality we may
assume that p(x) is irreducible (otherwise replace p(x) with one of its irreducible
factors); but then L[x]/(p(x)) is a proper algebraic extension of L and K, which is a
contradiction. �

Theorem 5.4. Every field K has an algebraic closure.
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Proof. Let X the collection of algebraic field extensions of K and order by embedding
of fields. We restrict attention to those fields which have the same cardinality as K
and therefore X is a set (essentially). Clearly, every chain of embeddings has an
upper bound in X, so X has a maximal element L. This field is an algebraic closure
of X: for if L ⊂ M is a proper extension of fields and ξ ∈ M − L, then ξ cannot be
algebraic over K. For otherwise, L ⊂ L(ξ) ∈ X, contradicting maximality of L. �

Theorem 5.5. Algebraic closures are unique up to (non-unique) isomorphism.

Proof. By a back and forth argument. Let L and M be algebraic closures of K.
Since L and M have the same (infinite) cardinality as K, which is κ say, we can fix
enumerations {li : i ∈ κ} and {mi : i ∈ κ} of L and M , respectively. By induction on
i ∈ κ we will construct an increasing sequence of isomorphisms fi:Li →Mi between
subfields of L and M such that

⋃
Li = L and

⋃
Mi = M . We start by declaring f0

to be isomorphism between the isomorphic copies of K inside L and M ; and at limit
stages we simply take the union.

If i+1 = 2j, then look at the minimal polynomialm(x) = anx
n+an−1x

n−1+. . .+a0

of lj over Li: such a thing exists because L is algebraic over K and hence over Li.
BecauseM is algebraically closed, there exists a rootm ∈M of the polynomial n(x) =
fi(an)xn + fi(an−1)xn−1 + . . . + f(a0); since fi is an isomorphism, the polynomial
n(x) is irreducible over Mi and n(x) must be the minimal polynomial of m over Mi.
So we can extend the isomorphism by sending lj to m:

fi+1:Li(lj) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).

If i+1 = 2j+1, then we can use a similar argument to show that the isomorphism
fi can be extended to one whose codomain includes mj . �

5.3. Categoricity. A similar argument shows:

Theorem 5.6. The theory ACF0 is λ-categorical for any uncountable λ.

Proof. Let L and M be two algebraically closed fields of the same uncountable cardi-
nality λ and fix enumerations {li : i ∈ λ} and {mi : i ∈ λ} of L and M , respectively.
By induction on i ∈ λ we will construct an increasing sequence of isomorphisms
fi:Li →Mi between subfields of L and M of cardinality strictly less than λ such that⋃
Li = L and

⋃
Mi = M . We start by declaring f0 to be isomorphism between the

isomorphic copies of the rationals inside L and M ; and at limit stages we simply take
the union.

If i + 1 = 2j, then there are two possibilities for lj vis-à-vis Li: it can either
be algebraic or transcendental. If it is algebraic, we proceed as in the proof of the
previous theorem. We look at the minimal polynomial m(x) = anx

n + an−1x
n−1 +

. . .+a0 of lj over Li and use that M is algebraically closed to find an element m ∈M
with minimal polynomial n(x) = fi(an)xn +fi(an−1)xn−1 + . . .+f(a0) over Mi. And
we extend the isomorphism by sending lj to m:

fi+1:Li(li) ∼= Li[x]/(m(x)) ∼= Mi[x]/(n(x)) ∼= Mi(m).
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If, one the other hand, lj is transcendental over Li, we use the fact that |Mi| < |M |
to deduce that M also contains an element m ∈ M which transcendental over Mi.
And the isomorphism can be extended by sending lj to m:

fi+1:Li(lj) ∼= Li(x) ∼= Mi(x) ∼= Mi(m).

If i+1 = 2j+1, then we can use a similar argument to show that the isomorphism
fi can be extended to one whose codomain includes mj . �

Note, however, that the theory ACF0 is not ω-categorical: consider, for example,
the algebraic closures of Q and Q(π).

Corollary 5.7. The theory ACF0 is complete.

5.4. Quantifier elimination.

Theorem 5.8. The theory ACF0 has quantifier elimination.

Proof. We use Theorem 1.5. So let L and M be two algebraically closed fields,
where M in addition is ω-saturated. We assume we are given a local isomorphism
f : {l1, . . . , ln} → M and an element l ∈ L and we want to extend the local isomor-
phism f to one whose domain includes l.

Because it is a local isomorphism, the map f extends to an embedding of fields
f : Q(l1, . . . , ln) → M . If l is algebraic over Q(l1, . . . , ln) with minimal polynomial
m(x) = akx

k+ak−1x
k−1+. . .+a0, then we send l to an elementm ∈M whose minimal

polynomial is f(ak)xk + f(ak−1)xk−1 + . . .+ f(a0) over Im(f). If l is transcendental
over L(l1, . . . , ln), we use that M is ω-saturated to find an element m ∈ M which is
transcendental over f(l1), . . . , f(ln) and we send l to m. �

6. Real closed ordered fields

6.1. Ordered fields.

Definition 6.1. An ordered field is a field equipped with a linear order ≤ satisfying

(1) if x ≤ y, then x+ z ≤ y + z,
(2) if x ≤ y and 0 ≤ z, then xz ≤ yz.

Let us call elements x for which x ≥ 0 positive; otherwise x is called negative.
Note that if x is negative, then x < 0 and

−x = 0− x ≥ x− x = 0,

so −x is positive. Using property (2) and the observation that x2 = (−x)2, it follows
that 1 = 12 is positive and also 2, 3, 4, . . . are positive. But −1 is negative and hence
ordered fields always have characteristic 0.

Definition 6.2. If K is a field, then we call a subset P ⊆ F a positive cone, if:

(1) P is closed under sums and products.
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(2) −1 6∈ P .
(3) for any x, either x or −x belongs to P .

Proposition 6.3. If K is an ordered field, then the elements x ∈ K satisfying x ≥ 0
form a positive cone. Conversely, if P is a positive cone on a field K, then K can be
ordered by putting x ≤ y iff y − x ∈ P .

In ordered fields sums of squares have to be positive. In fact, we have:

Proposition 6.4. Let K be a field and r ∈ K. If both −1 and r cannot be written
as a sum of squares, then K can be ordered in such a way that r becomes negative.

Proof. Let S be the collection of those elements in K that can be written as sums of
squares. This set has the following properties:

(1) it is closed under sums and products,
(2) it contains all squares,
(3) and it does not contain −1.

Such a set is called a semipositive cone. We use two properties of such sets: first, if
X is a semipositive cone and s ∈ X−{0}, then ( 1

s )2 ∈ X and hence also 1
s ∈ X. And

if X is a semipositive cone and s 6∈ X, then X − sX is also semipositive cone. For if
there would be x0, x1 such that x0 − sx1 = −1, then x1 6= 0 and

s =
1 + x0

x1
∈ X.

So put Y : = S−rS. This is a semipositive cone, and, using Zorn’s Lemma, we can
extend Y to a maximal semipositive cone Ymax. Then Ymax is a positive cone, for if
x 6∈ Ymax, then −x ∈ Ymax − xYmax = Ymax. �

6.2. Some analysis in ordered fields. Now suppose that K is an ordered field.

Proposition 6.5. Let p(x) = xd+ad−1x
d−1+. . .+a0 and m = max(|ad−1|, . . . , |a0|)+

1. Then all roots of p(x) lie between −m and m.

Proof. If |x| ≥ m, then

|P (x)− xd| ≤ (|m| − 1) (|x|d−1 + |x|d−2 + . . .+ 1) ≤ (|m| − 1)
|x|d − 1
|x| − 1

≤ |x|d − 1

so P (x) 6= 0. �

Proposition 6.6. If p(x) ∈ K[x] and p(0) > 0, then there is an ε > 0 such that
P (x) > 0 for all x ∈ [−ε,+ε].
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Proof. Let p(x) = adx
d+ad−1x

d−1+. . .+a0. Then putm = max(|ad|, |ad−1|, . . . , |a0|)
and ε = min(1, P (0)

2md ). Then x ∈ [−ε,+ε] implies

|p(x)− p(0)| ≤ |adx
d + ad−1x

d−1 + . . .+ a0 − a0|
≤ mεd +mεd−1 + . . .+mε

≤ mdε

≤ 1
2
p(0)

and hence p(x) > 0. �

Proposition 6.7. If p′(a) > 0, then there is an ε > 0 such that p(x) > p(a) for every
x ∈ (a, a+ ε] and p(x) < p(a) for every x ∈ [a− ε, a).

Proof. Write p(x) = (x− a)q(x) + p(a). Then p′(x) = q(x) + (x− a)q′(x), so q(a) =
p′(a) > 0. Then choose ε such that q(x) > 0 for all x ∈ [a−ε, a+ε] using the previous
result. �

6.3. Real closed ordered fields.

Definition 6.8. An ordered field will be called real closed if it satisfies the interme-
diate value theorem for polynomials: if for any polynomial P (x) and elements a < b
such that P (a) < 0 and P (b) > 0 there is an element c ∈ (a, b) such that P (c) = 0.

For example, the field R is real closed, but Q is not.

Proposition 6.9. In a real closed field an element is positive iff it can be written as
a square.

Proof. We already know that squares are positive. So suppose a > 0 and consider
p(x) = x2 − a. Then p(a+ 1) = (a+ 1)2 − a = a2 + 2a+ 1− a = a2 + a+ 1 > 0 and
p(0) < 0, so there is an element r such that p(r) = 0 and hence r2 = a. �

Exercise 6.10. Use this to say in the language of fields (without order!) that the
field can be ordered in such a way that it becomes real closed.

Theorem 6.11. Let K be a real closed field and p(x) be a polynomial over K. If
a < b ∈ K and p′(x) > 0 for all x ∈ (a, b), then p(a) < p(b).

Proof. First suppose that p′(a) > 0 and p′(b) > 0. Then we can use Proposition 6.7 to
find c, d with a < c < d < b such that p(a) < p(c) and p(d) < p(b). So if p(a) ≥ p(b),
then p(c) > p(b) > p(d) and there is an e0 ∈ (c, d) such that p(e0) = p(b). By
repeating this argument for ei and b instead of a and b we find for every i ∈ N an
ei+1 ∈ (ei, b) such that p(ei+1) = p(b), contradicting the fact that a polynomial can
have only finitely many zeros.

In the general case choose arbitrary c, d such that a < c < d < b. We have
p(c) < p(d) by the previous argument. In addition, we have p(a) ≤ p(c), for if
p(a) > p(c), then there is an e ∈ (a, c) such that p(e) > p(c) by continuity of
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p. But that again contradicts the previous argument. Similary, p(c) ≤ p(d), so
p(a) < p(b). �

Corollary 6.12. (Rolle’s Theorem for real closed ordered fields) Let K be a real
closed ordered field and p(x) be a polynomial over K. If p(a) = p(b) for a < b, then
there exists c ∈ (a, b) with P ′(c) = 0.

Proof. For if P ′(c) 6= 0 for all c ∈ (a, b), then P ′ is either strictly positive or strictly
negative on (a, b), by real closure. �

6.4. Real closure.

Definition 6.13. Let K ⊆ L be an order preserving embedding between ordered
fields. L is a real closure of K, if L is algebraic over K and no ordered field properly
extending L is algebraic over K.

Note, by the way, that an inclusion of ordered fields K ⊆ L is order preserving iff
it is order reflecting, because ordered fields are linearly ordered.

Theorem 6.14. If L is a real closure of K, then L is real closed.

Proof. Suppose there are polynomials in L[x] for which the intermediate value the-
orem for polynomials fails. Let p be a counterexample of minimal degree: so the
intermediate value theorem holds for polynomials in L[x] with degree smaller than
p, but there are a < b ∈ L with p(a) < 0 and p(b) > 0 for which no ξ ∈ (a, b) with
p(ξ) = 0 exists.

In that case p has to be irreducible so L[x]/(p(x)) is a field extending L, still
algebraic over K. So once we show that L[x]/(p(x)) can be ordered in a way which
extends to the order on L, we have obtained our desired contradiction.

Let A = {x ∈ [a, b] : (∃y ≥ x) p(y) < 0} and B = [a, b] − B = {x ∈ [a, b] : (∀y ≥
x) p(y) > 0}. Since polynomials are continuous, both A and B are open and have no
greatest or least element, respectively. So if q(x) is any non-zero polynomial, then
q has only finitely many roots, so there are a0 ∈ A and b0 ∈ B such that q has no
roots in the interval [a0, b0]. If q(x) has a degree strictly smaller than p(x), then
the intermediate value theorem holds for q(x) and q(x) is either strictly positive or
strictly negative on [a0, b0]. If the former holds we declare q(x) positive. It is easy to
see that this defines a positive cone on L[x]/(p(x)) extending the one on L. So we
have our desired contradiction. �

Theorem 6.15. Real closures exist and are unique up to unique isomorphism.

Proof. The existence of real closures follows from Zorn’s Lemma: consider all ordered
extensions of a field K which are still algebraic over K and all field embeddings
between them which preserve the ordering. Since fields algebraic over K have the
same infinite cardinality as K, this is essentially a set. Since chains have upper
bounds given by unions, a maximal element must exist, which is a real closure of K.
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Now suppose both L0 and L1 are real closures of an ordered field K. By Zorn’s
Lemma, again, there are subfields K0 ⊆ L0 and K1 ⊆ L1 between which there exists
an order preserving isomorphism f which leaves K invariant and which is maximal
with these properties. If either L0 − K0 or L1 − K1 is non-empty, then we may
assume, without loss of generality, that there is an element ξ ∈ L0−K0 with minimal
polynomial p(x) over K such that all other elements ξ′ ∈ Li − Ki have a minimal
polynomial over K whose degree is at least that of p.

Since p is minimal, we have p′(ξ) 6= 0, so p changes sign in ξ. Moreover, in L1

and L2 it holds that in between any two roots of p(x) lies a root of p′(x), by Rolle’s
Theorem. Since roots of p′(x) have a minimal polynomial whose degree is strictly
smaller than that of p(x), these roots of p′(x) lie already in K0 and K1. So for ξ
there are three possibilities:

(1) ξ lies in between two roots of p′(x), call them x0 and x1, and it is the only
root lying in this interval. In that case p has different signs in x0 and x1. So
the same applies to f(x0) and f(x1) and the polynomial p can have only one
root in K1 in between these points. Then ξ should be sent to this root.

(2) ξ is bigger than the largest root of p′(x). Let x0 be this largest root and let
x1 be a number in K bounding the zeros of p from above (using Proposition
6.5). Then again p changes sign between x0 and x1 and ξ should be sent to
the unique root of p in K1 between f(x0) and f(x1).

(3) ξ is smaller than the smallest root of p′(x). Then the same argument as in
(2) applies.

This determines a field isomorphism between K(ξ) ∼= K[x]/(p(x)) ∼= K(ξ′). The
question now is why this field isomorphism should be order preserving. But this
follows from the following observation: if q(x) is any non-zero polynomial of degree
strictly smaller than p(x), then q is strictly positive or negative on some interval
[x2, x3] with x2, x3 ∈ K0 and x0 < x2 < ξ < x3 < x1. So the sign of q(ξ) in L0

can be determined by checking the sign of q(x2) and the sign of q(ξ′) in L1 can be
determined by checking to sign of q(f(x2)). But both answers should agree because
f is an order preserving isomorphism.

So we have an isomorphism between L0 and L1. This isomorphism is necessarily
unique because it should send the nth root from the left of the polynomial p(x) ∈ K[x]
in L0 to the nth root from the left of p(x) in L1. �

6.5. Quantifier elimination.

Theorem 6.16. The theory RCOF of real closed ordered fields has quantifier elimi-
nation.

Proof. We use Theorem 1.5. So let K,L be two real closed ordered fields, where
L in addition is ω1-saturated, and suppose f : {k1, . . . , kn} → L is a local isomor-
phism and k ∈ K. Then Q(k1, . . . , kn), considered as an ordered subfield of K,
and Q(f(k1), . . . , f(kn)), considered as an ordered subfield of L, are isomorphic.
So we can use the previous theorem to extend f to an isomorphism f of ordered
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fields between the real closure K of Q(k1, . . . , kn) inside K and the real closure L of
Q(f(k1), . . . , f(kn)) inside L. If k ∈ K, then we send k to f(k). So the interesting
case is where k is transcendental over K. To simplify notation, we will assume K = L.

In that case we should send k to an element l ∈ L which is transcendental over
the subfield K and for which

(∀x ∈ K)x ≤ k ⇔ x ≤ l

holds. Such an element certainly exists because |K| = ω and L is assumed to be
ω+-saturated. And this is enough, for to see that the composite isomorphism

K(k) ∼= K(x) ∼= K(l)

is order preserving it suffices to check that p(k) and p(l) have the same sign for every
irreducible polynomial p ∈ K[x]. This is true for irreducible polynomials of degree
one (by construction), and if p has degree greater than one, then p has no roots in
K or L (since K is maximal as an algebraic extension over Q(k1, . . . , kn) inside K or
L). So p does not change sign inside K or L and p(k) and p(l) have the same sign as
p(0). �

Corollary 6.17. The theory RCOF is complete.

Proof. Since the theory of real closed ordered fields has quantifier elimination and
has a model which can be embedded into any other model (to wit, the real numbers
which are algebraic over Q), this theory is complete by Theorem 1.2. �

Remark 6.18. The theory RCOF is not λ-categorical for any infinite λ, but that is
not so easy to prove!

6.6. Hilbert’s 17th Problem.

Theorem 6.19. (Hilbert’s 17th Problem) Let K be a real closed field. If f ∈
K(x1, . . . , xn) is such that f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ K, then f can
be written as

f = g2
1 + . . .+ g2

n

for suitable gi ∈ K(x1, . . . , xn).

Proof. Suppose f cannot be written as a sum of squares in K(x1, . . . , xn). The same
applies to −1, because −1 cannot be written as a sum of squares in K. So we can
order K(x1, . . . , xn) in such a way that f becomes negative. This order extends the
original order on K because K is real closed and hence positive elements in K can be
written as squares (see Proposition 6.9). Now embed K(x1, . . . , xn) with this order
into a real closed field L. So we have embeddings of fields

K ⊆ K(x1, . . . , xn) ⊆ L,

all of which preserve and reflect the ordering. So the inclusion K ⊆ L reflects truth
of atomic sentences, and hence of quantifier-free sentences and hence, as the theory of
real closed fields has quantifier elimination, of all sentences. Therefore the sentence

∃x1, . . . , xn f(x1, . . . , xn) < 0,
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which is true in L, must be true in K as well. �

Remark 6.20. Hilbert’s 17th Problem asked whether Theorem 6.19 holds in case K
is the reals. This was settled by Artin in 1927, who proved the result for general real
closed fields. The model-theoretic proof we just gave is due to Robinson.


