Diagrams

Definition

A *literal* is an atomic sentence or the negation of an atomic sentence. If M is a model in a language L, then the collection of L_M -literals true in M is called the *diagram* of M and written Diag(M). The collection of all L_M -sentences true in M is called the *elementary diagram* of M and written ElDiag(M).

Lemma

The following amount to the same thing:

- A model N of Diag(M).
- An embedding $h: M \to N$.

As do the following:

- A model N of $\operatorname{ElDiag}(M)$.
- An elementary embedding $h: M \to N$.

Upward Löwenheim-Skolem

Upward Löwenheim-Skolem

Suppose *M* is an infinite *L*-structure and κ is a cardinal number with $\kappa \ge |M|, |L|$. Then there is an elementary embedding $i : M \to N$ with $|N| = \kappa$.

Proof.

Let Γ be the elementary diagram of M and Δ be the set of sentences $\{c_i \neq c_j : i \neq j \in \kappa\}$ where the c_i are κ -many fresh constants. By the Compactness Theorem, the theory $\Gamma \cup \Delta$ has a model A; we have $|A| \ge \kappa$. By the downwards version A has an elementary substructure N of cardinality κ . So, since N is a model of Γ , there is an elementary embedding $i : M \to N$.

Characterisation universal theories

Theorem

T has a universal axiomatisation iff models of T are closed under substructures.

Proof.

Suppose T is a theory such that its models are closed under substructures. Let $T' = \{\varphi : T \models \varphi \text{ and } \varphi \text{ is universal } \}$. Clearly, $T \models T'$. We need to prove the converse.

So suppose M is a model of T'. It suffices to show that $T \cup \text{Diag}(M)$ is consistent. Because once we do that, it will have a model N. But since N is a model of Diag(M), it will be an extension of M; and because N is a model of T and models of T are closed under substructures, M will be a model of T.

Proof of claim

Claim

If $M \models T'$ where $T' = \{\varphi : T \models \varphi \text{ and } \varphi \text{ is universal }\}$, then $T \cup \text{Diag}(M)$ is consistent.

Proof.

Suppose not. Then, by the compactness theorem, there would be a finite set of literals $\psi_1, \ldots, \psi_n \in \text{Diag}(M)$ which are inconsistent with T. Replace the constants from M in ψ_1, \ldots, ψ_n by variables x_1, \ldots, x_n and we obtain ψ'_1, \ldots, ψ'_n ; because the constants from M do not appear in T, the theory T is already inconsistent with $\exists x_1, \ldots, x_n (\psi'_1 \land \ldots, \land \psi'_n)$. But then it follows that $T \models \neg \exists_1, \ldots, x_n (\psi'_1 \land \ldots, \psi'_n)$ and $T \models \forall x_1, \ldots, x_n (\neg (\psi'_1 \land \ldots, \psi'_n))$, and hence $\forall x_1, \ldots, x_n (\neg (\psi'_1 \land \ldots, \psi'_n)) \in T'$. But this contradicts the fact that M is a model of T'.

Two exercises

Exercise

Prove: a theory has an existential axiomatisation iff its models are closed under extensions.

Exercise

For two *L*-structures *A* and *B*, we have $A \equiv B$ iff *A* and *B* have a common elementary extension.

Directed systems

See Chapters IV-VI in the lecture notes by Jaap van Oosten.

Definition

A partially ordered set (K, \leq) is called *directed*, if K is non-empty and for any two elements $x, y \in K$ there is an element $z \in K$ such that $x \leq z$ and $y \leq z$.

Definition

A directed system of L-structures consists of a family $(M_k)_{k \in K}$ of L-structures indexed by K, together with homomorphisms $f_{kl} : M_k \to M_l$ for $k \leq l$. These homomorphisms should satisfy:

- f_{kk} is the identity homomorphism on M_k ,
- if $k \leq l \leq m$, then $f_{km} = f_{lm}f_{kl}$.

If we have a directed system, then we can construct its *colimit*.

The colimit

First, we take the disjoint union of all the universes:

$$\sum_{k\in K}M_k=\{(k,a): k\in K, a\in M_k\},\$$

and then we define an equivalence relation on it:

$$(k,a) \sim (l,b) :\Leftrightarrow (\exists m \geq k, l) f_{km}(a) = f_{lm}(b).$$

Let M be the set of equivalence classes and denote the equivalence class of (k, a) by [k, a].

The colimit, continued

M has an L-structure: we put

$$f^{M}([k_{1},a_{1}],\ldots,[k_{n},a_{n}]) = [k,f^{M_{k}}(f_{k_{1}k}(a_{1}),\ldots,f_{k_{n}k}(a_{n})],$$

where k is an element $\geq k_1, \ldots, k_n$. (Check that this makes sense!)

And we put

$$R^M([k_1,a_1],\ldots,[k_n,a_n])$$

iff there is a $k \geq k_1, \ldots, k_n$ such that

$$(f_{k_1k}(a_1),\ldots,f_{k_nk}(a_n))\in R^{M_k}.$$

In addition, we have maps $f_k : M_k \to M$ sending *a* to [k, a].

Omnibus theorem

The following theorem collects the most important facts about colimits of filtered systems. Especially useful is part 5.

Theorem

- All f_k are homomorphisms.
- **2** If $k \leq l$, then $f_l f_{kl} = f_k$.
- If N is another L-structure for which there are homomorphisms $g_k : M_k \to N$ such that $g_I f_{kl} = g_k$ whenever $k \leq l$, then there is a unique homomorphisms $g : M \to N$ such that $gf_k = g_k$ for all $k \in K$ ("universal property").
- If all maps f_{kl} are embeddings, then so are all f_k .
- If all maps f_{kl} are elementary embeddings, then so are all f_k ("elementary system lemma").

Proof.

Exercise!

Next goal

Our next big goal will be to prove:

Robinson's Consistency Theorem

Let L_1 and L_2 be two languages and $L = L_1 \cap L_2$. Suppose T_1 is an L_1 -theory, T_2 an L_2 -theory and both extend a complete L-theory T. If both T_1 and T_2 are consistent, then so is $T_1 \cup T_2$.

We first treat the special case where $L_1 \subseteq L_2$.

First lemma

Lemma

Let $L \subseteq L'$, A an L-structure and B an L'-structure. Suppose moreover $A \equiv B \upharpoonright L$. Then there is an L'-structure C and a diagram of elementary embeddings (f in L and f' in L')

Proof. Consider $T = \text{ElDiag}(A) \cup \text{ElDiag}(B)$ (making sure we use different constants for the elements from A and B!). We need to show Thas a model; so suppose T is inconsistent. Then, by Compactness, a finite subset of T has no model; taking conjunctions, we have sentences $\varphi(a_1, \ldots, a_n) \in \text{ElDiag}(A)$ and $\psi(b_1, \ldots, b_m) \in \text{ElDiag}(B)$ that are contradictory. But as the a_j do not occur in L_B , we must have that $B \models \neg \exists x_1, \ldots, x_n \varphi(x_1, \ldots, x_n)$. This contradicts $A \equiv B \upharpoonright L$. \Box

Second lemma

Lemma

Let $L \subseteq L'$ be languages, suppose A and B are L-structures and C is an L'-structure. Any pair of L-elementary embeddings $f : A \to B$ and $g : A \to C$ fit into a commuting square

where D is an L'-structure, h is an L-elementary embedding and k is an L'-elementary embedding.

Proof.

Without loss of generality we may assume that L contains constants for all elements of A. Then simply apply the first lemma.

Robinson's consistency theorem

Theorem

. . .

Let L_1 and L_2 be two languages and $L = L_1 \cap L_2$. Suppose T_1 is an L_1 -theory, T_2 an L_2 -theory and both extend a complete *L*-theory *T*. If both T_1 and T_2 are consistent, then so is $T_1 \cup T_2$.

Proof. Let A_0 be a model of T_1 and B_0 be a model of T_2 . Since T is complete, their reducts to L are elementary equivalent, so, by the first lemma, there is a diagram

with h_0 an L_2 -elementary embedding and f_0 an L-elementary embedding. Now by applying the second lemma to f_0 and the identity on A, we obtain

Robinson's consistency theorem, proof finished

where g_0 is *L*-elementary and k_0 is *L*₁-elementary. Continuing in this way we obtain a diagram $A_0 \xrightarrow{k_0} A_1 \xrightarrow{k_1} A_2 \longrightarrow \cdots$ $f_0 \qquad f_1 \qquad f_0 \qquad f_1 \qquad g_1 \qquad g_1 \qquad g_2 \longrightarrow \cdots$

where the k_i are L_1 -elementary, the f_i and g_i are L-elementary and the h_i are L_2 -elementary. The colimit C of this directed system is both the colimit of the A_i and of the B_i . So A_0 and B_0 embed elementarily into C by the elementary systems lemma; hence C is a model of both T_1 and T_2 , as desired. \Box