
Diagrams

Definition

A literal is an atomic sentence or the negation of an atomic sentence. If M
is a model in a language L, then the collection of LM -literals true in M is
called the diagram of M and written Diag(M). The collection of all
LM -sentences true in M is called the elementary diagram of M and written
ElDiag(M).

Lemma

The following amount to the same thing:

A model N of Diag(M).

An embedding h : M → N.

As do the following:

A model N of ElDiag(M).

An elementary embedding h : M → N.
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Upward Löwenheim-Skolem

Upward Löwenheim-Skolem

Suppose M is an infinite L-structure and κ is a cardinal number with
κ ≥ |M|, |L|. Then there is an elementary embedding i : M → N with
|N| = κ.

Proof.

Let Γ be the elementary diagram of M and ∆ be the set of sentences
{ci 6= cj : i 6= j ∈ κ} where the ci are κ-many fresh constants. By the
Compactness Theorem, the theory Γ ∪∆ has a model A; we have |A| ≥ κ.
By the downwards version A has an elementary substructure N of
cardinality κ. So, since N is a model of Γ, there is an elementary
embedding i : M → N.
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Characterisation universal theories

Theorem

T has a universal axiomatisation iff models of T are closed under
substructures.

Proof.

Suppose T is a theory such that its models are closed under substructures.
Let T ′ = {ϕ : T |= ϕ and ϕ is universal }. Clearly, T |= T ′. We need to
prove the converse.

So suppose M is a model of T ′. It sufffices to show that T ∪Diag(M) is
consistent. Because once we do that, it will have a model N. But since N
is a model of Diag(M), it will be an extension of M; and because N is a
model of T and models of T are closed under substructures, M will be a
model of T .

3 / 14



Proof of claim

Claim

If M |= T ′ where T ′ = {ϕ : T |= ϕ and ϕ is universal }, then
T ∪Diag(M) is consistent.

Proof.

Suppose not. Then, by the compactness theorem, there would be a finite
set of literals ψ1, . . . , ψn ∈ Diag(M) which are inconsistent with T .
Replace the constants from M in ψ1, . . . , ψn by variables x1, . . . , xn and we
obtain ψ′

1, . . . , ψ
′
n; because the constants from M do not appear in T , the

theory T is already inconsistent with ∃x1, . . . , xn (ψ′
1 ∧ . . . ,∧ψ′

n ). But
then it follows that T |= ¬∃1, . . . , xn (ψ′

1 ∧ . . . ψ′
n ) and

T |= ∀x1, . . . , xn (¬(ψ′
1 ∧ . . . ψ′

n) ), and hence
∀x1, . . . , xn (¬(ψ′

1 ∧ . . . ψ′
n) ) ∈ T ′. But this contradicts the fact that M is

a model of T ′.
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Two exercises

Exercise

Prove: a theory has an existential axiomatisation iff its models are closed
under extensions.

Exercise

For two L-structures A and B, we have A ≡ B iff A and B have a common
elementary extension.
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Directed systems

See Chapters IV-VI in the lecture notes by Jaap van Oosten.

Definition

A partially ordered set (K ,≤) is called directed, if K is non-empty and for
any two elements x , y ∈ K there is an element z ∈ K such that x ≤ z and
y ≤ z .

Definition

A directed system of L-structures consists of a family (Mk)k∈K of
L-structures indexed by K , together with homomorphisms fkl : Mk → Ml

for k ≤ l . These homomorphisms should satisfy:

fkk is the identity homomorphism on Mk ,

if k ≤ l ≤ m, then fkm = flmfkl .

If we have a directed system, then we can construct its colimit.
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The colimit

First, we take the disjoint union of all the universes:∑
k∈K

Mk = {(k, a) : k ∈ K , a ∈ Mk},

and then we define an equivalence relation on it:

(k, a) ∼ (l , b) :⇔ (∃m ≥ k, l) fkm(a) = flm(b).

Let M be the set of equivalence classes and denote the equivalence class
of (k, a) by [k, a].
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The colimit, continued

M has an L-structure: we put

f M([k1, a1], . . . , [kn, an]) = [k, f Mk (fk1k(a1), . . . , fknk(an)],

where k is an element ≥ k1, . . . , kn. (Check that this makes sense!)

And we put
RM([k1, a1], . . . , [kn, an])

iff there is a k ≥ k1, . . . , kn such that

(fk1k(a1), . . . , fknk(an)) ∈ RMk .

In addition, we have maps fk : Mk → M sending a to [k, a].
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Omnibus theorem
The following theorem collects the most important facts about colimits of
filtered systems. Especially useful is part 5.

Theorem
1 All fk are homomorphisms.

2 If k ≤ l , then fl fkl = fk .

3 If N is another L-structure for which there are homomorphisms
gk : Mk → N such that gl fkl = gk whenever k ≤ l , then there is a
unique homomorphisms g : M → N such that gfk = gk for all k ∈ K
(“universal property”).

4 If all maps fkl are embeddings, then so are all fk .

5 If all maps fkl are elementary embeddings, then so are all fk
(“elementary system lemma”).

Proof.

Exercise!
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Next goal

Our next big goal will be to prove:

Robinson’s Consistency Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.

We first treat the special case where L1 ⊆ L2.
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First lemma

Lemma

Let L ⊆ L′, A an L-structure and B an L′-structure. Suppose moreover
A ≡ B � L. Then there is an L′-structure C and a diagram of elementary
embeddings (f in L and f ′ in L′)

A

f   @
@@

@@
@@

@ B

f ′
~~}}

}}
}}

}

C .

Proof. Consider T = ElDiag(A) ∪ ElDiag(B) (making sure we use
different constants for the elements from A and B!). We need to show T
has a model; so suppose T is inconsistent. Then, by Compactness, a finite
subset of T has no model; taking conjunctions, we have sentences
ϕ(a1, . . . , an) ∈ ElDiag(A) and ψ(b1, . . . , bm) ∈ ElDiag(B) that are
contradictory. But as the aj do not occur in LB , we must have that
B |= ¬∃x1, . . . , xn ϕ(x1, . . . , xn). This contradicts A ≡ B � L. 2
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Second lemma

Lemma

Let L ⊆ L′ be languages, suppose A and B are L-structures and C is an
L′-structure. Any pair of L-elementary embeddings f : A → B and
g : A → C fit into a commuting square A

g

��@
@@

@@
@@

f

��~~
~~

~~
~

B

h ��@
@@

@@
@@

C

k��~~
~~

~~
~

D
where D is an L′-structure, h is an L-elementary embedding and k is an
L′-elementary embedding.

Proof.

Without loss of generality we may assume that L contains constants for all
elements of A. Then simply apply the first lemma.
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Robinson’s consistency theorem

Theorem

Let L1 and L2 be two languages and L = L1 ∩ L2. Suppose T1 is an
L1-theory, T2 an L2-theory and both extend a complete L-theory T . If
both T1 and T2 are consistent, then so is T1 ∪ T2.

Proof. Let A0 be a model of T1 and B0 be a model of T2. Since T is
complete, their reducts to L are elementary equivalent, so, by the first
lemma, there is a diagram

A0

f0

  A
AA

AA
AA

A

B0 h0

// B1

with h0 an L2-elementary embedding and f0 an L-elementary embedding.
Now by applying the second lemma to f0 and the identity on A, we obtain
. . .
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Robinson’s consistency theorem, proof finished

A0

f0   A
AA

AA
AA

A
k0 // A1

B0 h0

// B1

g0

OO

where g0 is L-elementary and k0 is L1-elementary. Continuing in this way

we obtain a diagram A0

f0   A
AA

AA
AA

A
k0 // A1

f1

  A
AA

AA
AA

A
k1 // A2

// . . .

B0 h0

// B1

g0

OO

h1

// B2

g1

OO

// . . .

where the ki are L1-elementary, the fi and gi are L-elementary and the hi

are L2-elementary. The colimit C of this directed system is both the
colimit of the Ai and of the Bi . So A0 and B0 embed elementarily into C
by the elementary systems lemma; hence C is a model of both T1 and T2,
as desired. 2
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