
Amalgamation Theorem

Amalgamation Theorem

Let L1, L2 be languages and L = L1 ∩ L2, and suppose A,B and C are
structures in the languages L, L1 and L2, respectively. Any pair of
L-elementary embeddings f : A → B and g : A → C fit into a commuting
square
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where D is an L1 ∪ L2-structure, h is an L1-elementary embedding and k is
an L2-elementary embedding.

Proof.

Immediate consequence of Robinson’s Consistency Theorem. (Why?)
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Craig Interpolation

Craig Interpolation Theorem

Let ϕ and ψ be sentences in some language such that ϕ |= ψ. Then there
is a sentence θ such that

1 ϕ |= θ and θ |= ψ;

2 every predicate, function or constant symbol that occurs in θ occurs
also in both ϕ and ψ.

Proof.

Let L be the common language of ϕ and ψ. We will show that T0 |= ψ
where T0 = {σ ∈ L : ϕ |= σ}. This is sufficient: for then there are
θ1, . . . , θn ∈ T0 such that θ1, . . . , θn |= ψ by Compactness. So
θ := θ1 ∧ . . . ∧ θn is the interpolant.
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Craig Interpolation, continued

Lemma

Let L be the common language of ϕ and ψ. If ϕ |= ψ, then T0 |= ψ where
T0 = {σ ∈ L : ϕ |= σ}.

Proof.

Suppose not. Then T0 ∪ {¬ψ} has a model A. Write T = ThL(A). We
now have T0 ⊆ T and:

1 T is a complete L-theory.

2 T ∪ {¬ψ} is consistent (because A is a model).

3 T ∪ {ϕ} is consistent.

(Proof of 3: Suppose not. Then, by Compactness, there would a sentence
σ ∈ T such that ϕ |= ¬σ. But then ¬σ ∈ T0 ⊆ T . Contradiction!)

Now we can apply Robinson’s Consistency Theorem to deduce that
T ∪ {¬ψ,ϕ} is consistent. But that contradicts ϕ |= ψ.
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Beth Definability Theorem

Definition

Let L be a language a P be a predicate symbol not in L, and let T be an
L ∪ {P}-theory. T defines P implicitly if any L-structure M has at most
one expansion to an L ∪ {P}-structure which models T . There is another
way of saying this: let T ′ be the theory T with all occurrences of P
replaced by P ′. Then T defines P implicitly iff

T ∪ T ′ |= ∀x1, . . . xn

(
P(x1, . . . , xn) ↔ P ′(x1, . . . , xn)

)
.

T defines P explicitly, if there is an L-formula ϕ(x1, . . . , xn) such that

T |= ∀x1, . . . , xn

(
P(x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

)
.

Beth Definability Theorem

T defines P implicitly if and only if T defines P explicitly.

(Right-to-left direction is obvious.)
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Beth Definability Theorem, proof

Proof. Suppose T defines P implicitly. Add new constants c1, . . . , cn to
the language. Then we have T ∪ T ′ |= P(c1, . . . , cn) → P ′(c1, . . . , cn). By
Compactness and taking conjunctions we can find an L ∪ {P}-formula ψ
such that T |= ψ and

ψ ∧ ψ′ |= P(c1, . . . , cn) → P ′(c1, . . . , cn)

(where ψ′ is ψ with all occurrences of P replaced by P ′). Taking all the
Ps to one side and the P ′s to another, we get

ψ ∧ P(c1, . . . , cn) |= ψ′ → P ′(c1, . . . , cn)

So there is a Craig Interpolant θ such that

ψ ∧ P(c1, . . . , cn) |= θ and θ |= ψ′ ∧ P ′(c1, . . . , cn)

By symmetry also

ψ′ ∧ P ′(c1, . . . , cn) |= θ and θ |= ψ ∧ P(c1, . . . , cn)

So θ = θ(c1, . . . , cn) is, modulo T , equivalent to P(c1, . . . , cn) and
θ(x1, . . . , xn) defines P explicitly. 2
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Chang- Loś-Suszko Theorem

Definition

A Π2-sentence is a sentence which consists first of a sequence of universal
quantifiers, then a sequence of existential quantifers and then a
quantifier-free formula.

Definition

A theory T is preserved by directed unions if, for any directed system
consisting of models of T and embeddings between them, also the colimit
is a model T .

Chang- Loś-Suszko Theorem

A theory is preserved under directed unions if and only if T can be
axiomatised by Π2-sentences.

Proof.

The easy direction is: Π2-sentences are preserved by directed unions. We
do the other direction.
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Chang- Loś-Suszko Theorem, proof

Proof. Suppose T is preserved by direction unions. Again, let

T0 = {ϕ : ϕ is Π2 and T |= ϕ},

and let B be a model of T0. We will construct a directed chain of
embeddings

B = B0 → A0 → B1 → A1 → B2 → A2 . . .

such that:
1 Each An is a model of T .
2 The composed embeddings Bn → Bn+1 are elementary.
3 Every universal sentence in the language LBn true in Bn is also true in

An (when regarding An is an LBn -structure via the embedding
Bn → An).

This will suffice, because when we take the colimit of the chain, then it is:

the colimit of the An, and hence a model of T , by assumption on T .

the colimit of the Bn, and hence elementary equivalent to each Bn.

So B is a model of T , as desired.
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Chang- Loś-Suszko Theorem, proof continued

Construction of An: We need An to be a model of T and every universal
sentence in the language LBn true in Bn to be true in An as well. So let

T ′ = T ∪ {ϕ ∈ LBn : ϕ universal and Bn |= ϕ};

to show that T ′ is consistent. Suppose not. Then there is a universal
sentence ∀x1, . . . xn ϕ(x1, . . . , xn, b1, . . . , bk) with bi ∈ Bn that is
inconsistent with T . So

T |= ∃x1, . . . , xn¬ϕ(x1, . . . , xn, b1, . . . , bk)

and
T |= ∀y1, . . . , yk ∃x1, . . . , xn¬ϕ(x1, . . . , xn, y1, . . . , yk)

because the bi do not occur in T . But this contradicts the fact that Bn is
a model of T0.
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Chang- Loś-Suszko Theorem, proof finished

Construction of Bn+1: We need An → Bn+1 to be an embedding and
Bn → Bn+1 to be elementary. So let

T ′ = Diag(An) ∪ ElDiag(Bn)

(identifying the element of Bn with their image along the embedding
Bn → An); to show that T ′ is consistent. Suppose not. Then there is a
quantifier-free sentence

ϕ(b1, . . . , bn, a1, . . . , ak)

with bi ∈ Bn and ai ∈ An \ Bn which is true in An, but is inconsistent with
ElDiag(Bn). Since the ai do not occur in Bn, we must have

Bn |= ∀x1, . . . , xk¬ϕ(b1, . . . , bn, x1, . . . , xk).

This contradicts the fact that all universal LBn -sentences true in Bn are
also true in An. 2
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Types

Fix n ∈ N and let x1, . . . , xn be a fixed sequence of distinct variables.

Definition

A partial n-type in L is a collection of formulas ϕ(x1, . . . , xn) in L.

If A is an L-structure and a1, . . . , an ∈ A, then the type of
(a1, . . . , an) in A is the set of L-formulas

{ϕ(x1, . . . , xn) : A |= ϕ(a1, . . . , an)};

we denote this set by tpA(a1, . . . , an) or simply by tp(a1, . . . , an) if A
is understood.

A n-type in L is a set of formulas of the form tpA(a1, . . . , an) for
some L-structure A and some a1, . . . , an ∈ A.
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Logic topology

Definition

Let T be a theory in L and let Γ = Γ(x1, . . . , xn) be a partial n-type in L.

Γ is consistent with T if T ∪ Γ has a model.

The set of all n-types that contain T is denoted by Sn(T ). These are
exactly the n-types in L that are consistent with T .

The set Sn(T ) can be given the structure of a topological space, where
the basic open sets are given by

[ϕ(x1, . . . , xn)] = {Γ(x1, . . . , xn) ∈ Sn(T ) : ϕ ∈ Γ}.

This is called the logic topology.
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Type spaces

Theorem

The space Sn(T ) with the logic topology is a totally disconnected,
compact Hausdorff space. Its closed sets are the sets of the form

{Γ ∈ Sn(T ) : Γ′ ⊆ Γ}

where Γ′ is a partial n-type. In fact, two partial n-types are equivalent over
T iff they determine the same closed set. Furthermore, the clopen sets in
the type space are precisely the ones of the form [ϕ(x1, . . . , xn)].
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