Amalgamation Theorem

Amalgamation Theorem

Let L_1, L_2 be languages and $L = L_1 \cap L_2$, and suppose A, B and C are structures in the languages L, L_1 and L_2 , respectively. Any pair of L-elementary embeddings $f : A \to B$ and $g : A \to C$ fit into a commuting square

where D is an $L_1 \cup L_2$ -structure, h is an L_1 -elementary embedding and k is an L_2 -elementary embedding.

Proof.

Immediate consequence of Robinson's Consistency Theorem. (Why?)

Craig Interpolation

Craig Interpolation Theorem

Let φ and ψ be sentences in some language such that $\varphi \models \psi$. Then there is a sentence θ such that

$$\ \, \mathbf{0} \ \, \varphi \models \theta \ \, \text{and} \ \, \theta \models \psi;$$

2 every predicate, function or constant symbol that occurs in θ occurs also in both φ and $\psi.$

Proof.

Let *L* be the common language of φ and ψ . We will show that $T_0 \models \psi$ where $T_0 = \{ \sigma \in L : \varphi \models \sigma \}$. This is sufficient: for then there are $\theta_1, \ldots, \theta_n \in T_0$ such that $\theta_1, \ldots, \theta_n \models \psi$ by Compactness. So $\theta := \theta_1 \land \ldots \land \theta_n$ is the interpolant.

Craig Interpolation, continued

Lemma

Let *L* be the common language of φ and ψ . If $\varphi \models \psi$, then $T_0 \models \psi$ where $T_0 = \{ \sigma \in L : \varphi \models \sigma \}.$

Proof.

Suppose not. Then $T_0 \cup \{\neg \psi\}$ has a model *A*. Write $T = \text{Th}_L(A)$. We now have $T_0 \subseteq T$ and:

- T is a complete L-theory.
- 2 $T \cup \{\neg\psi\}$ is consistent (because A is a model).
- **3** $T \cup \{\varphi\}$ is consistent.

(Proof of 3: Suppose not. Then, by Compactness, there would a sentence $\sigma \in T$ such that $\varphi \models \neg \sigma$. But then $\neg \sigma \in T_0 \subseteq T$. Contradiction!)

Now we can apply Robinson's Consistency Theorem to deduce that $T \cup \{\neg \psi, \varphi\}$ is consistent. But that contradicts $\varphi \models \psi$.

Beth Definability Theorem

Definition

Let *L* be a language a *P* be a predicate symbol not in *L*, and let *T* be an $L \cup \{P\}$ -theory. *T* defines *P* implicitly if any *L*-structure *M* has at most one expansion to an $L \cup \{P\}$ -structure which models *T*. There is another way of saying this: let *T'* be the theory *T* with all occurrences of *P* replaced by *P'*. Then *T* defines *P* implicitly iff

$$T \cup T' \models \forall x_1, \dots, x_n (P(x_1, \dots, x_n) \leftrightarrow P'(x_1, \dots, x_n)).$$

T defines P explicitly, if there is an L-formula $\varphi(x_1, \ldots, x_n)$ such that

$$T \models \forall x_1, \ldots, x_n (P(x_1, \ldots, x_n) \leftrightarrow \varphi(x_1, \ldots, x_n)).$$

Beth Definability Theorem

T defines P implicitly if and only if T defines P explicitly.

(Right-to-left direction is obvious.)

Beth Definability Theorem, proof

Proof. Suppose T defines P implicitly. Add new constants c_1, \ldots, c_n to the language. Then we have $T \cup T' \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n)$. By Compactness and taking conjunctions we can find an $L \cup \{P\}$ -formula ψ such that $T \models \psi$ and

$$\psi \wedge \psi' \models P(c_1,\ldots,c_n) \rightarrow P'(c_1,\ldots,c_n)$$

(where ψ' is ψ with all occurrences of *P* replaced by *P'*). Taking all the *P*s to one side and the *P'*s to another, we get

$$\psi \wedge P(c_1,\ldots,c_n) \models \psi' \rightarrow P'(c_1,\ldots,c_n)$$

So there is a Craig Interpolant $\boldsymbol{\theta}$ such that

$$\psi \wedge P(c_1, \ldots, c_n) \models \theta$$
 and $\theta \models \psi' \wedge P'(c_1, \ldots, c_n)$

By symmetry also

$$\psi' \wedge P'(c_1, \ldots, c_n) \models \theta \text{ and } \theta \models \psi \wedge P(c_1, \ldots, c_n)$$

So $\theta = \theta(c_1, \ldots, c_n)$ is, modulo *T*, equivalent to $P(c_1, \ldots, c_n)$ and $\theta(x_1, \ldots, x_n)$ defines *P* explicitly. \Box

Chang-Łoś-Suszko Theorem

Definition

A Π_2 -sentence is a sentence which consists first of a sequence of universal quantifiers, then a sequence of existential quantifiers and then a quantifier-free formula.

Definition

A theory T is *preserved by directed unions* if, for any directed system consisting of models of T and embeddings between them, also the colimit is a model T.

Chang-Łoś-Suszko Theorem

A theory is preserved under directed unions if and only if T can be axiomatised by Π_2 -sentences.

Proof.

The easy direction is: Π_2 -sentences are preserved by directed unions. We do the other direction.

Chang-Łoś-Suszko Theorem, proof

Proof. Suppose T is preserved by direction unions. Again, let

$$T_0 = \{ \varphi \, : \, \varphi \text{ is } \Pi_2 \text{ and } T \models \varphi \},$$

and let B be a model of T_0 . We will construct a directed chain of embeddings

$$B = B_0 \rightarrow A_0 \rightarrow B_1 \rightarrow A_1 \rightarrow B_2 \rightarrow A_2 \dots$$

such that:

- Each A_n is a model of T.
- **2** The composed embeddings $B_n \rightarrow B_{n+1}$ are elementary.
- Severy universal sentence in the language L_{B_n} true in B_n is also true in A_n (when regarding A_n is an L_{B_n} -structure via the embedding $B_n \rightarrow A_n$).

This will suffice, because when we take the colimit of the chain, then it is:

• the colimit of the A_n , and hence a model of T, by assumption on T.

• the colimit of the B_n , and hence elementary equivalent to each B_n . So B is a model of T, as desired.

Chang-Łoś-Suszko Theorem, proof continued

Construction of A_n : We need A_n to be a model of T and every universal sentence in the language L_{B_n} true in B_n to be true in A_n as well. So let

$${\mathcal T}'={\mathcal T}\cup\{arphi\in {\mathcal L}_{{\mathcal B}_n}\,:\,arphi$$
 universal and ${\mathcal B}_n\modelsarphi\};$

to show that T' is consistent. Suppose not. Then there is a universal sentence $\forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n, b_1, \ldots, b_k)$ with $b_i \in B_n$ that is inconsistent with T. So

$$T \models \exists x_1, \ldots, x_n \neg \varphi(x_1, \ldots, x_n, b_1, \ldots, b_k)$$

and

$$T \models \forall y_1, \ldots, y_k \exists x_1, \ldots, x_n \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_k)$$

because the b_i do not occur in T. But this contradicts the fact that B_n is a model of T_0 .

Chang-Łoś-Suszko Theorem, proof finished

Construction of B_{n+1} : We need $A_n \to B_{n+1}$ to be an embedding and $B_n \to B_{n+1}$ to be elementary. So let

$$T' = \operatorname{Diag}(A_n) \cup \operatorname{ElDiag}(B_n)$$

(identifying the element of B_n with their image along the embedding $B_n \rightarrow A_n$); to show that T' is consistent. Suppose not. Then there is a quantifier-free sentence

$$\varphi(b_1,\ldots,b_n,a_1,\ldots,a_k)$$

with $b_i \in B_n$ and $a_i \in A_n \setminus B_n$ which is true in A_n , but is inconsistent with $ElDiag(B_n)$. Since the a_i do not occur in B_n , we must have

$$B_n \models \forall x_1, \ldots, x_k \neg \varphi(b_1, \ldots, b_n, x_1, \ldots, x_k).$$

This contradicts the fact that all universal L_{B_n} -sentences true in B_n are also true in A_n . \Box

Types

Fix $n \in \mathbb{N}$ and let x_1, \ldots, x_n be a fixed sequence of distinct variables.

Definition

- A partial n-type in L is a collection of formulas $\varphi(x_1, \ldots, x_n)$ in L.
- If A is an L-structure and a₁,..., a_n ∈ A, then the type of (a₁,..., a_n) in A is the set of L-formulas

$$\{\varphi(x_1,\ldots,x_n): A\models \varphi(a_1,\ldots,a_n)\};$$

we denote this set by $tp_A(a_1, \ldots, a_n)$ or simply by $tp(a_1, \ldots, a_n)$ if A is understood.

 A *n*-type in L is a set of formulas of the form tp_A(a₁,..., a_n) for some L-structure A and some a₁,..., a_n ∈ A.

Logic topology

Definition

Let T be a theory in L and let $\Gamma = \Gamma(x_1, \ldots, x_n)$ be a partial *n*-type in L.

- Γ is consistent with T if $T \cup \Gamma$ has a model.
- The set of all *n*-types that contain T is denoted by $S_n(T)$. These are exactly the *n*-types in L that are consistent with T.

The set $S_n(T)$ can be given the structure of a topological space, where the basic open sets are given by

$$[\varphi(x_1,\ldots,x_n)] = \{ \Gamma(x_1,\ldots,x_n) \in S_n(T) : \varphi \in \Gamma \}.$$

This is called the *logic topology*.

Type spaces

Theorem

The space $S_n(T)$ with the logic topology is a totally disconnected, compact Hausdorff space. Its closed sets are the sets of the form

 $\{\Gamma \in S_n(T) : \Gamma' \subseteq \Gamma\}$

where Γ' is a partial *n*-type. In fact, two partial *n*-types are equivalent over T iff they determine the same closed set. Furthermore, the clopen sets in the type space are precisely the ones of the form $[\varphi(x_1, \ldots, x_n)]$.