Amalgamation Theorem

Amalgamation Theorem

Let L_{1}, L_{2} be languages and $L=L_{1} \cap L_{2}$, and suppose A, B and C are structures in the languages L, L_{1} and L_{2}, respectively. Any pair of L-elementary embeddings $f: A \rightarrow B$ and $g: A \rightarrow C$ fit into a commuting square

where D is an $L_{1} \cup L_{2}$-structure, h is an L_{1}-elementary embedding and k is an L_{2}-elementary embedding.

Proof.

Immediate consequence of Robinson's Consistency Theorem. (Why?)

Craig Interpolation

Craig Interpolation Theorem

Let φ and ψ be sentences in some language such that $\varphi \vDash \psi$. Then there is a sentence θ such that
(1) $\varphi \vDash \theta$ and $\theta \models \psi$;
(2) every predicate, function or constant symbol that occurs in θ occurs also in both φ and ψ.

Proof.

Let L be the common language of φ and ψ. We will show that $T_{0} \models \psi$ where $T_{0}=\{\sigma \in L: \varphi \models \sigma\}$. This is sufficient: for then there are $\theta_{1}, \ldots, \theta_{n} \in T_{0}$ such that $\theta_{1}, \ldots, \theta_{n} \models \psi$ by Compactness. So $\theta:=\theta_{1} \wedge \ldots \wedge \theta_{n}$ is the interpolant.

Craig Interpolation, continued

Lemma

Let L be the common language of φ and ψ. If $\varphi \models \psi$, then $T_{0} \models \psi$ where $T_{0}=\{\sigma \in L: \varphi \models \sigma\}$.

Proof.

Suppose not. Then $T_{0} \cup\{\neg \psi\}$ has a model A. Write $T=\operatorname{Th}_{L}(A)$. We now have $T_{0} \subseteq T$ and:
(1) T is a complete L-theory.
(2) $T \cup\{\neg \psi\}$ is consistent (because A is a model).
(- $T \cup\{\varphi\}$ is consistent.
(Proof of 3: Suppose not. Then, by Compactness, there would a sentence $\sigma \in T$ such that $\varphi \models \neg \sigma$. But then $\neg \sigma \in T_{0} \subseteq T$. Contradiction!)

Now we can apply Robinson's Consistency Theorem to deduce that $T \cup\{\neg \psi, \varphi\}$ is consistent. But that contradicts $\varphi \models \psi$.

Beth Definability Theorem

Definition

Let L be a language a P be a predicate symbol not in L, and let T be an $L \cup\{P\}$-theory. T defines P implicitly if any L-structure M has at most one expansion to an $L \cup\{P\}$-structure which models T. There is another way of saying this: let T^{\prime} be the theory T with all occurrences of P replaced by P^{\prime}. Then T defines P implicitly iff

$$
T \cup T^{\prime} \models \forall x_{1}, \ldots x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

T defines P explicitly, if there is an L-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
T \models \forall x_{1}, \ldots, x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \varphi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Beth Definability Theorem

T defines P implicitly if and only if T defines P explicitly.
(Right-to-left direction is obvious.)

Beth Definability Theorem, proof

Proof. Suppose T defines P implicitly. Add new constants c_{1}, \ldots, c_{n} to the language. Then we have $T \cup T^{\prime} \models P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)$. By Compactness and taking conjunctions we can find an $L \cup\{P\}$-formula ψ such that $T \models \psi$ and

$$
\psi \wedge \psi^{\prime} \models P\left(c_{1}, \ldots, c_{n}\right) \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

(where ψ^{\prime} is ψ with all occurrences of P replaced by P^{\prime}). Taking all the $P \mathrm{~s}$ to one side and the P^{\prime} s to another, we get

$$
\psi \wedge P\left(c_{1}, \ldots, c_{n}\right) \models \psi^{\prime} \rightarrow P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

So there is a Craig Interpolant θ such that

$$
\psi \wedge P\left(c_{1}, \ldots, c_{n}\right) \models \theta \text { and } \theta \models \psi^{\prime} \wedge P^{\prime}\left(c_{1}, \ldots, c_{n}\right)
$$

By symmetry also

$$
\psi^{\prime} \wedge P^{\prime}\left(c_{1}, \ldots, c_{n}\right) \models \theta \text { and } \theta \models \psi \wedge P\left(c_{1}, \ldots, c_{n}\right)
$$

So $\theta=\theta\left(c_{1}, \ldots, c_{n}\right)$ is, modulo T, equivalent to $P\left(c_{1}, \ldots, c_{n}\right)$ and $\theta\left(x_{1}, \ldots, x_{n}\right)$ defines P explicitly. \square

Chang-Łoś-Suszko Theorem

Definition

A Π_{2}-sentence is a sentence which consists first of a sequence of universal quantifiers, then a sequence of existential quantifers and then a quantifier-free formula.

Definition

A theory T is preserved by directed unions if, for any directed system consisting of models of T and embeddings between them, also the colimit is a model T.

Chang-Łoś-Suszko Theorem

A theory is preserved under directed unions if and only if T can be axiomatised by Π_{2}-sentences.

Proof.

The easy direction is: Π_{2}-sentences are preserved by directed unions. We do the other direction.

Chang-Łoś-Suszko Theorem, proof

Proof. Suppose T is preserved by direction unions. Again, let

$$
T_{0}=\left\{\varphi: \varphi \text { is } \Pi_{2} \text { and } T \models \varphi\right\},
$$

and let B be a model of T_{0}. We will construct a directed chain of embeddings

$$
B=B_{0} \rightarrow A_{0} \rightarrow B_{1} \rightarrow A_{1} \rightarrow B_{2} \rightarrow A_{2} \ldots
$$

such that:
(1) Each A_{n} is a model of T.
(2) The composed embeddings $B_{n} \rightarrow B_{n+1}$ are elementary.
(3) Every universal sentence in the language $L_{B_{n}}$ true in B_{n} is also true in A_{n} (when regarding A_{n} is an $L_{B_{n}}$-structure via the embedding $B_{n} \rightarrow A_{n}$).
This will suffice, because when we take the colimit of the chain, then it is:

- the colimit of the A_{n}, and hence a model of T, by assumption on T.
- the colimit of the B_{n}, and hence elementary equivalent to each B_{n}. So B is a model of T, as desired.

Chang-Łoś-Suszko Theorem, proof continued

Construction of A_{n} : We need A_{n} to be a model of T and every universal sentence in the language $L_{B_{n}}$ true in B_{n} to be true in A_{n} as well. So let

$$
T^{\prime}=T \cup\left\{\varphi \in L_{B_{n}}: \varphi \text { universal and } B_{n} \models \varphi\right\} ;
$$

to show that T^{\prime} is consistent. Suppose not. Then there is a universal sentence $\forall x_{1}, \ldots x_{n} \varphi\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{k}\right)$ with $b_{i} \in B_{n}$ that is inconsistent with T. So

$$
T \models \exists x_{1}, \ldots, x_{n} \neg \varphi\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{k}\right)
$$

and

$$
T \models \forall y_{1}, \ldots, y_{k} \exists x_{1}, \ldots, x_{n} \neg \varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)
$$

because the b_{i} do not occur in T. But this contradicts the fact that B_{n} is a model of T_{0}.

Chang-Łoś-Suszko Theorem, proof finished

Construction of B_{n+1} : We need $A_{n} \rightarrow B_{n+1}$ to be an embedding and $B_{n} \rightarrow B_{n+1}$ to be elementary. So let

$$
T^{\prime}=\operatorname{Diag}\left(A_{n}\right) \cup \operatorname{ElDiag}\left(B_{n}\right)
$$

(identifying the element of B_{n} with their image along the embedding $B_{n} \rightarrow A_{n}$); to show that T^{\prime} is consistent. Suppose not. Then there is a quantifier-free sentence

$$
\varphi\left(b_{1}, \ldots, b_{n}, a_{1}, \ldots, a_{k}\right)
$$

with $b_{i} \in B_{n}$ and $a_{i} \in A_{n} \backslash B_{n}$ which is true in A_{n}, but is inconsistent with $\operatorname{ElDiag}\left(B_{n}\right)$. Since the a_{i} do not occur in B_{n}, we must have

$$
B_{n} \models \forall x_{1}, \ldots, x_{k} \neg \varphi\left(b_{1}, \ldots, b_{n}, x_{1}, \ldots, x_{k}\right) .
$$

This contradicts the fact that all universal $L_{B_{n}}$-sentences true in B_{n} are also true in A_{n}. \square

Types

Fix $n \in \mathbb{N}$ and let x_{1}, \ldots, x_{n} be a fixed sequence of distinct variables.

Definition

- A partial n-type in L is a collection of formulas $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in L.
- If A is an L-structure and $a_{1}, \ldots, a_{n} \in A$, then the type of $\left(a_{1}, \ldots, a_{n}\right)$ in A is the set of L-formulas

$$
\left\{\varphi\left(x_{1}, \ldots, x_{n}\right): A \models \varphi\left(a_{1}, \ldots, a_{n}\right)\right\} ;
$$

we denote this set by $\operatorname{tp}_{A}\left(a_{1}, \ldots, a_{n}\right)$ or simply by $\operatorname{tp}\left(a_{1}, \ldots, a_{n}\right)$ if A is understood.

- A n-type in L is a set of formulas of the form $\operatorname{tp}_{A}\left(a_{1}, \ldots, a_{n}\right)$ for some L-structure A and some $a_{1}, \ldots, a_{n} \in A$.

Logic topology

Definition

Let T be a theory in L and let $\Gamma=\Gamma\left(x_{1}, \ldots, x_{n}\right)$ be a partial n-type in L.

- Γ is consistent with T if $T \cup \Gamma$ has a model.
- The set of all n-types that contain T is denoted by $S_{n}(T)$. These are exactly the n-types in L that are consistent with T.

The set $S_{n}(T)$ can be given the structure of a topological space, where the basic open sets are given by

$$
\left[\varphi\left(x_{1}, \ldots, x_{n}\right)\right]=\left\{\Gamma\left(x_{1}, \ldots, x_{n}\right) \in S_{n}(T): \varphi \in \Gamma\right\} .
$$

This is called the logic topology.

Type spaces

Theorem

The space $S_{n}(T)$ with the logic topology is a totally disconnected, compact Hausdorff space. Its closed sets are the sets of the form

$$
\left\{\Gamma \in S_{n}(T): \Gamma^{\prime} \subseteq \Gamma\right\}
$$

where Γ^{\prime} is a partial n-type. In fact, two partial n-types are equivalent over T iff they determine the same closed set. Furthermore, the clopen sets in the type space are precisely the ones of the form $\left[\varphi\left(x_{1}, \ldots, x_{n}\right)\right]$.

