Fix $n \in \mathbb{N}$ and let x_1, \ldots, x_n be a fixed sequence of distinct variables.

Definition

- A *partial n-type in* L is a collection of formulas $\varphi(x_1, \ldots, x_n)$ in L.
- If A is an L-structure and $a_1, \ldots, a_n \in A$, then the *type of (a_1, \ldots, a_n) in* A is the set of L-formulas
 \[
 \{ \varphi(x_1, \ldots, x_n) : A \models \varphi(a_1, \ldots, a_n) \};
 \]
 we denote this set by $tp_A(a_1, \ldots, a_n)$ or simply by $tp(a_1, \ldots, a_n)$ if A is understood.
- A *n-type in* L is a set of formulas of the form $tp_A(a_1, \ldots, a_n)$ for some L-structure A and some $a_1, \ldots, a_n \in A$.
Definition

- If $\Gamma(x_1, \ldots, x_n)$ is a partial n-type in L, we say (a_1, \ldots, a_n) realizes Γ in A if every formula in Γ is true of a_1, \ldots, a_n in A.

- If $\Gamma(x_1, \ldots, x_n)$ is a partial n-type in L and A is an L-structure, we say that Γ is realized or satisfied in A if there is some n-tuple in A that realizes Γ in A. If no such n-tuple exists, then we say that A omits Γ.

- If $\Gamma(x_1, \ldots, x_n)$ is a partial n-type in L and A is an L-structure, we say that Γ is finitely satisfiable in A if any finite subset of Γ is realized in A.

Realizing and omitting types
Exercises

Exercise
Show that a partial n-type is an n-type iff it is finitely satisfiable and contains $\varphi(x_1, \ldots, x_n)$ or $\neg\varphi(x_1, \ldots, x_n)$ for every L-formula φ whose free variables are among the fixed variables x_1, \ldots, x_n.

Exercise
Show that a partial n-type can be extended to an n-type iff it is satisfiable.

Exercise
Suppose $A \equiv B$. If $\Gamma(x_1, \ldots, x_n)$ is finitely satisfiable in A, then it is also finitely satisfiable in B.
Logic topology

Definition

Let T be a theory in L and let $\Gamma = \Gamma(x_1, \ldots, x_n)$ be a partial n-type in L.

- Γ is consistent with T if $T \cup \Gamma$ has a model.
- The set of all n-types consistent with T is denoted by $S_n(T)$. These are exactly the n-types in L that contain T.

The set $S_n(T)$ can be given the structure of a topological space, where the basic open sets are given by

$$[\varphi(x_1, \ldots, x_n)] = \{\Gamma(x_1, \ldots, x_n) \in S_n(T) : \varphi \in \Gamma\}.$$

This is called the logic topology.
Theorem

The space $S_n(T)$ with the logic topology is a totally disconnected, compact Hausdorff space. Its closed sets are the sets of the form

$$\{ \Gamma \in S_n(T) : \Gamma' \subseteq \Gamma \}$$

where Γ' is a partial n-type. In fact, two partial n-types are equivalent over T iff they determine the same closed set. Furthermore, the clopen sets in the type space are precisely the ones of the form $[\varphi(x_1, \ldots, x_n)]$.
κ-saturated models

Let A be an L-structure and X a subset of A. We write L_X for the language L extended with constants for all elements of X and $(A, a)_{a \in X}$ for the L_X-expansion of A where we interpret the constant $a \in X$ as itself.

Definition

Let A be an L-structure and let κ be an infinite cardinal. We say that A is κ-saturated if the following condition holds: if X is any subset of A having cardinality $< \kappa$ and $\Gamma(x)$ is any 1-type in L_X that is finitely satisfiable in $(A, a)_{a \in X}$, then $\Gamma(x)$ is itself satisfied in $(A, a)_{a \in X}$.

Remark

1. If A is infinite and κ-saturated, then A has cardinality at least κ.
2. If A is finite, then A is κ-saturated for every κ.
3. If A is κ-saturated and X is a subset of A having cardinality $< \kappa$, then $(A, a)_{a \in X}$ is also κ-saturated.
Property of κ-saturated models

Theorem

Suppose κ is an infinite cardinal, A is κ-saturated and $X \subseteq A$ is a subset of cardinality $< \kappa$. Suppose $\Gamma(y_i : i \in I)$ is a collection of L_X-formulas with $|I| \leq \kappa$. If Γ is finitely satisfiable in $(A, a)_{a \in X}$, then Γ is satisfiable in $(A, a)_{a \in X}$.

Proof.

Without loss of generality we may assume that $I = \kappa$ and Γ is complete: contains either φ or $\neg \varphi$ for every L_X-formula φ with free variables among \{\[y_i : i \in \kappa\}\}.

Write $\Gamma_{\leq j}$ for the collection of those elements of Γ that only contain variables y_i with $i \leq j$. By induction on j we will find an element a_j such that $(a_i)_{i \leq j}$ realizes $\Gamma_{\leq j}$. Consider Γ' which is $\Gamma_{\leq j}$ with all y_i replaced by a_i for $i < j$. This is a 1-type which is finitely satisfiable in $(A, a)_{a \in X \cup \{a_i : i < j\}}$ (check!). Since $(A, a)_{a \in X \cup \{a_i : i < j\}}$ is κ-saturated, we find a suitable a_j. \(\Box\)