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Goal

Recall our goal was to prove:

Theorem
For every infinite cardinal number &, every structure has a x-saturated

elementary extension.

We first prove a lemma.
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A lemma

Lemma

Let A be an L-structure. There exists an elementary extension B of A such
that for every subset X C A, every 1-type in Lx which is finitely satisfied
in (A, a)aex is realized in (B, a).ex.

Proof.

Let (Ii(xi))ics be the collection of all such 1-types and b; be new
constants. Then every finite subset of

M= Jrib)
i€l

is satisfied in (A, a)aeca, so it has a model B. Since I contains ElDiag(A),
the model A embeds into B. Ol
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Existence of rich models

Theorem

For every infinite cardinal number s, every structure has a x-saturated
elementary extension.

Proof.

Let A be an L-structure. We will build an elementary chain of L-structures
(A 1 i €rKT). We set Ag = A, at successor stages we apply the previous
lemma and at limit stages we take the colimit. Now let B be the colimit of
the entire chain. We claim B is kT -saturated (which is more than we
need).

So let X C B be a subset of cardinality < x* and '(x) be a 1-type in Lx
that is finitely satisfied in (A, a).ex. Since kT is regular, there is an

i € k* such that X C A;. And since A embeds elementarily into A;, the
type I'(x) is also finitely satisfied in (A;, a).ex. So it is realized in A 1,
and therefore also in B, because A;;1 embeds elementarily into B. ]
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Even richer models
Now that we have this we can be even more ambitious:
Theorem

For every infinite cardinal number &, every structure has a x-saturated
elementary extension all whose reducts are strongly xk-homogeneous.

We need a lemma:

Lemma

Suppose A is k-saturated and B is an elementary substructure of A
satisfying |B| < k. Then any elementary map f between subsets of B can
be extended to an elementary embedding of B into A.

Proof.

If f: S — B is the elementary mapping, then (B, b)pcs = (A, f(b))pes-
Since |S| < &, also (A, f(b))pes is k-saturated und hence xT-universal. So
(B, b)pes embeds elementarily into (A, f(b))pes: so we have an
elementary embedding of B into A extending f. O
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Existence of very rich models

Theorem

For every infinite cardinal number &, every structure has a k-saturated
elementary extension all whose reducts are strongly xk-homogeneous.

Proof.

Let A be an L-structure. Again, we will build an elementary chain of
L-structures (M, : « € k™). We set My = A, at successor stages o + 1
we take an |M,|*-saturated elementary extension of M, and at limit
stages we take the colimit. Now let M be the colimit of the entire chain.
We claim M is as desired.

Any subset of S of M that has cardinality < x, must be a subset of some
M, (using again that ™ is regular). So M is k" -saturated. It remains to

show that every reduct of M is strongly xk-homogeneous. [
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Existence of very rich models, proof finished

Proof.

Let f be any mapping between subsets of M that is elementary, with
domain and range having cardinality < x. Again, domain and range will
belong to some M,. Without loss of generality we may assume that « is a
limit ordinal. We extend f to a map f, : M, — My41 using the lemma.

We will build maps f3 for all @« < 3 < k™ in such a way that f3 is an
elementary embedding of Mg in Mg, and f3; extends fﬁfl. It follows
that 34 extends f3 and that the union h over all f3 with 3 even is an
automorphism of M.

The construction is: At limit stages we take unions over all previous even
stages. And at successor stages we apply the lemma.

This argument works equally well for reducts of M. [
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Definability

Definition
Let A be an L-structure and R C A” be a relation. The relation R is called
definable, if there a formula ¢(xi, ..., x,) such that

R={(a1,...,an) € A" : AEy(a1,...,an)}.

A homomorphism f : A — A leaves R setwise invariant if
{(f(a1),...,f(an) : (a1,...,an) € R} =R.

Proposition
Every elementary embedding from A to itself leaves all definable relations
setwise invariant.
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Definability results

Theorem

Let L be a language and P a predicate not in L. Suppose (A, R) is an
w-saturated L U {P}-structure and that A is strongly w-homogeneous.
Then the following are equivalent:

(1) R is definable in A.
(2) every automorphism of A leaves R setwise invariant.

Proof.

(1) = (2) always holds, because automorphisms are elementary
embeddings.

(2) = (1): Suppose R is not definable. By the next lemma there are
tuples a and b having the same type such that R(a) is true and R(b) is

false. But then there is an automorphism of A that sends a to b by strong

homogeneity. So R is not setwise invariant under automorphisms of A.

0J
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A lemma

Lemma

Suppose A is a structure and R is not definable in A. If (A, R) is
w-saturated, then there are tuples a and b having the same n-type in A
such that R(a) is true and R(b) is false.

Proof.

First consider the type

(x) ={e(x) € L : (A R) EVx (=P(x) — ¢(x)} U{P(x)}. This type is
finitely satisfiable in (A, R): for if not, then there would be a formula ¢(x)
such that (A, R) = =P(x) — ¢(x) and (A, R) = =(¢(x) A P(x)). But
then —¢(x) would define R. By w-saturation, there is an element a
realizing X(x). Now consider the type ['(x) = tps(a) U {=P(x)}. This
type is also finitely satisfiable in (A, R): for if not, then there would be a
formula ¢(x) € L such that (A, R) &= ¢(a) and

(A, R) = =(p(x) A =P(x)). This is impossible by construction of a. By
w-saturation there is an element b realizing I'(x). So we have that a and b
have the same type in A, while R(a) is true and R(b) is false. O
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Svenonius’ Theorem

Svenonius’ Theorem

Let A be an L-structure and R be a relation on A. Then the following are

equivalent:

(1) R is definable in A.

(2) every automorphism of an elementary extension (B, S) of (A, R)
leaves S setwise invariant.

Proof.
(1) = (2): If R is definable in A, then S is definable in B by the same
formula; so it will be left setwise invariant by any automorphism.

(2) = (1): Let (B,S) be an w-saturated and strongly w-homogeneous
extension of (A, R). S will be definable in (B, S) by the previous theorem;
but then R in A will be definable by the same formula. O
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Omitting types theorem

Definition
Let T be an L-theory and ¥(x) be a partial type. Then ¥(x) is isolated in
T if there is a formula ¢(x) such that 3x ¢(x) is consistent with T and

T Eo(x) = o(x)

for all o(x) € X(x).

Exercise
A type is isolated iff it is an isolated point in the type space S1(T).

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Y (x) is not isolated in T, then there is a countable model of T which
omits X(x).
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Reminder

Recall from Grondslagen van de Wiskunde:

Theorem

Suppose T is a consistent theory in a language L and C is a set of
constants in L. If for any formula ¢(x) in the language L there is a
constant ¢ € C such that

T = 3xp(x) = (c),

then T has a model whose universe consists entirely of interpretations of
elements of C.

Proof.

Extend T to a maximally consistent theory and then build a model from
the constants in C. O
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Omitting types theorem, proof

Omitting types theorem

Let T be a consistent theory in a countable language. If a partial type
Y (x) is not isolated in T, then there is a countable model of T which
omits X(x).

Proof.

Let C = {c;; i € N} be a countable collection of fresh constants and L¢
be the language L extending with these constants. Let {¢;(x) : i € N} be
an enumeration of the formulas with one free variable in the language Lc.
We will now inductively create a sequence of sentences g, 1, @2, . - ..
The idea is to apply to previous theorem to T U {pg, 1, ...}

If n = 2i, we take a fresh constant ¢ € C (one that does not occur in ¢,
with m < n) and put
wn = Ixi(x) — P(c).

This makes sure we can create a model from the constants in C. O
14 /16




Omitting types theorem, proof finished

Proof.

If n=2i 4+ 1 we make sure that ¢; omits ¥(x), as follows. Consider

0 = Amen®m. 0 is really of the form §(c;, €) where € is a sequence of
constants not containing ¢;. Since ¥(x) is not isolated, there must be a
formula o(x) € ¥(x) such that T [~ 3y d(x,y) — o(x); in other words,
such that T U {3y d(x,y)} U{—o(x)} is consistent. Put ¢, = —o(c;).

The proof is now finished by showing by induction that each
T U{go,...,¢n} is consistent and then applying the theorem from
Grondslagen.
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Exercises

Exercise

Prove the generalised omitting types theorem: Let T be a consistent
theory in a countable language and let {I'; : i € N} be a sequence of
partial n;-types (for varying n;). If none of the I'; is isolated in T, then
there is a countable model which omits all I';.

Exercise
Let T be a complete theory. Show that models of T realise all isolated
partial types.

Exercise

Prove that the omitting types theorem is specific to the countable case:
give an example of a consistent theory T in an uncountable language and
a partial type in T which is not isolated, but which is nevertheless realised
in every model of T.
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