5th Homework sheet Proof Theory

- Deadline: 5 December.
- Submit your solutions by handing them to the lecturer at the beginning of the lecture.
- Good luck!

We work in a language with two unary function symbols f, S, a constant 0 and a binary relation symbol E. Let T be the universal theory expressing that E is a congruence:

$$
\begin{aligned}
& \forall x E(x, x) \\
& \forall x \forall y(E(x, y) \rightarrow E(y, x)) \\
& \forall x \forall y \forall z(E(x, y) \wedge E(y, z) \rightarrow E(x, z)) \\
& \forall x \forall y(E(x, y) \rightarrow E(S(x), S(y))) \\
& \forall x \forall y(E(x, y) \rightarrow E(f(x), f(y)))
\end{aligned}
$$

Now consider the sequent

$$
T, \forall x \neg E(S(x), 0) \Rightarrow \exists x \neg E(f(S(f(x))), x) .
$$

(a) (40 points) Show that the sequent is valid.

Hint: The idea is to think of E as equality. Then argue by contradiction: assume $\forall x E(f(S(f(x))), x)$ and prove that f is a "bijection" (i.e., both $\forall x \forall y(E(f(x), f(y)) \rightarrow E(x, y))$ and $\forall y \exists x E(f(x), y)$ are valid $)$.
(b) (60 points) Find terms $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}$ such that the sequent

$$
\begin{array}{cc}
T, \neg E\left(S\left(s_{1}\right), 0\right), \ldots, \neg E\left(S\left(s_{n}\right), 0\right) \\
\neg E\left(f\left(S\left(f\left(t_{1}\right)\right)\right), t_{1}\right), \ldots, \neg E\left(f\left(S\left(f\left(t_{m}\right)\right)\right), t_{m}\right)
\end{array} \quad \Rightarrow
$$

is valid.

