6th Exercise sheet Proof Theory 2 Dec 2015

Exercise 1 In the lecture we showed that there is a closed term **plus** of type $0 \rightarrow (0 \rightarrow 0)$ such that HA^{ω} proves

$$\mathbf{plus} m 0 = m$$
$$\mathbf{plus} m Sn = S(\mathbf{plus} m n)$$

(a) Show $\mathsf{HA}^{\omega} \vdash \forall x^0, y^0 (S(\mathbf{plus}\, y\, x) = \mathbf{plus}\, Sy\, x).$

Hint: Write $\varphi := \forall y^0 (S(\mathbf{plus} y x) = \mathbf{plus} Sy x)$ and prove $\forall x^0 \varphi$ by induction on x. And just use the equations above (and not the definition of **plus**).

- (b) Show that $\mathsf{HA}^{\omega} \vdash \forall x^0, y^0 (\mathbf{plus} x \, y = \mathbf{plus} \, y \, x)$.
- **Exercise 2** (a) Construct a closed term **times** of type $0 \to (0 \to 0)$ such that HA^{ω} proves

times m 0 = 0times m Sn = plus (times m n) m

(b) Construct a closed term **fact** of type $0 \rightarrow 0$ such that HA^{ω} proves

fact 0 = S0fact Sn = times (fact n) Sn

- (c) Construct a closed term **pred** of type $0 \rightarrow 0$ such that HA^{ω} proves
 - $\mathbf{pred} 0 = 0$ $\mathbf{pred} Sn = n.$

Exercise 3 Let φ be a formula of type σ in the language of HA^{ω} . Show that HA^{ω} proves that

$$\mathbf{R}^{\sigma} \mathbf{mr} \left[\varphi(0) \to \left(\forall x^0 \left(\varphi(x) \to \varphi(Sx) \right) \to \forall x^0 \varphi(x) \right) \right].$$

Exercise 4 Let $\varphi(x)$ be a formula of type σ and ψ be a formula of type τ in the language of HA^{ω} (the variable x is of type ρ and does occur freely in $\varphi(x)$, but not in ψ). Show that

$$t \operatorname{\mathbf{mr}}\left[\left(\exists x^{\rho} \,\varphi(x) \to \psi\right) \to \forall x^{\rho} \left(\varphi(x) \to \psi\right)\right]$$

where $t = \lambda s^{(\rho \times \sigma) \to \tau} . \lambda x^{\rho} . \lambda y^{\sigma} . s(\mathbf{p} x y)$.