CHAPTER 15

Systems for arithmetic

1. Arithmetic in all finite types

Definition 1.1. The finite types are defined by induction as follows: 0 is a finite type, and if σ and τ are finite types, then so are $\sigma \rightarrow \tau$ and $\sigma \times \tau$.

The system HA^{ω} is formulated in multi-sorted intuitionistic logic, with the sorts being the finite types. There will be infinitely many variables of each sort. In addition, there will be constants:
(1) for each pair of types σ, τ a combinator $\mathbf{k}^{\sigma, \tau}$ of sort $\sigma \rightarrow(\tau \rightarrow \sigma)$.
(2) for each triple of types ρ, σ, τ a combinator $\mathbf{s}^{\rho, \sigma, \tau}$ of type $(\rho \rightarrow(\sigma \rightarrow \tau)) \rightarrow((\rho \rightarrow$ $\sigma) \rightarrow(\rho \rightarrow \tau))$.
(3) for each pair of types ρ, σ combinators $\mathbf{p}^{\rho, \sigma}, \mathbf{p}_{0}^{\rho, \sigma}, \mathbf{p}_{1}^{\rho, \sigma}$ of types $\rho \rightarrow(\sigma \rightarrow \rho \times \sigma)$, $\rho \times \sigma \rightarrow \rho$ and $\rho \times \sigma \rightarrow \sigma$, respectively.
(4) a constant 0 of type 0 and a constant S of type $0 \rightarrow 0$.
(5) for each type σ a combinator \mathbf{R}^{σ} ("the recursor") of type $\sigma \rightarrow((0 \rightarrow(\sigma \rightarrow \sigma)) \rightarrow$ $(0 \rightarrow \sigma))$.
Definition 1.2. The terms of a certain type are defined inductively as follows:

- each variable or constant of type σ will be a term of type σ.
- if f is a term of type $\sigma \rightarrow \tau$ and x is a term of type σ, then $f(x)$ is a term of type τ.

The convention is that an expression like $f x y z$ has to be read as $(((f x) y) z)$. It will also sometimes be written as $f(x, y, z)$.

Definition 1.3. The formulas are defined inductively as follows:
$\bullet \perp$ is a formula and if s and t are terms of the same type σ, then $s={ }_{\sigma} t$ is a formula.

- if φ and ψ are formulas, then so are $\varphi \wedge \psi, \varphi \vee \psi, \varphi \rightarrow \psi$.
- if x is a variable of type σ and φ is a formula, then $\exists x^{\sigma} \varphi$ and $\forall x^{\sigma} \varphi$ are formulas.

The axioms and rules of $H A^{\omega}$ are:
(i) All the axioms and rules of intuitionistic logic (say in Hilbert-style).
(ii) Rules for equality at all types:

$$
\begin{gathered}
x={ }_{\sigma} x, \quad x={ }_{\sigma} y \rightarrow y={ }_{\sigma} x, \quad x={ }_{\sigma} y \wedge y={ }_{\sigma} z \rightarrow x={ }_{\sigma} z, \\
f={ }_{\sigma \rightarrow \tau} f^{\prime} \wedge x={ }_{\sigma} x^{\prime} \rightarrow f x={ }_{\tau} f^{\prime} x^{\prime} .
\end{gathered}
$$

(iii) The successor axioms:

$$
\neg S(x)={ }_{0} 0, \quad S(x)={ }_{0} S(y) \rightarrow x={ }_{0} y
$$

(iv) For any formula φ in the language of HA^{ω}, the induction axiom:

$$
\varphi(0) \rightarrow\left(\forall x^{0}(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x^{0} \varphi(x)\right)
$$

(v) The axioms for the combinators:

$$
\begin{aligned}
\mathbf{k} x y & =x \\
\mathbf{s} x y z & =x z(y z) \\
\mathbf{p}_{\mathbf{0}}(\mathbf{p} x y) & =x \\
\mathbf{p}_{\mathbf{1}}(\mathbf{p} x y) & =y \\
\mathbf{p}\left(\mathbf{p}_{0} x\right)\left(\mathbf{p}_{1} x\right) & =x
\end{aligned}
$$

as well as for the recursor:

$$
\begin{aligned}
\mathbf{R} x y 0 & =x \\
\mathbf{R} x y(S n) & =y n(\mathbf{R} x y n)
\end{aligned}
$$

In HA^{ω} we cannot prove the following extensionality axiom:

$$
\forall f^{\sigma \rightarrow \tau}, g^{\sigma \rightarrow \tau}\left(\left(\forall x^{\sigma} f x={ }_{\tau} g x\right) \rightarrow f={ }_{\sigma \rightarrow \tau} g\right)
$$

The result of adding this axiom to HA^{ω} will be denoted by $\mathrm{E}-\mathrm{H} \mathrm{A}^{\omega}$.
To both HA^{ω} and $\mathrm{E}-\mathrm{H} \mathrm{A}^{\omega}$ we can add classical logic (in the form of the Law of Excluded Middle $\varphi \vee \neg \varphi$ or Double Negation Elimination $\neg \neg \varphi \rightarrow \varphi$): the resulting systems will be denoted by PA ${ }^{\omega}$ and E-PA ${ }^{\omega}$, respectively.

Some remarks about these systems:
(1) All these systems satisfy the deduction theorem, so one can freely use natural deduction to prove things in these systems.
(2) For any formula $\varphi(x)$ in the language of HA^{ω} we have

$$
\mathrm{HA}^{\omega} \vdash x={ }_{\sigma} y \wedge \varphi(x) \rightarrow \varphi(y)
$$

Indeed, this is quite easy to prove by induction on the structure of φ. And from this it follows that the same is provable in all other systems, because HA^{ω} is a subsystem of all of them.
(3) It is sometimes convenient to regard disjunction as a defined connective in HA^{ω}. The reason for this is that $\varphi \vee \psi$ is provably equivalent to

$$
\exists n^{0}[(n=0 \rightarrow \varphi) \wedge(\neg n=0 \rightarrow \psi)]
$$

in HA^{ω}. Moreover, if we regard $\varphi \vee \psi$ as an abbreviation for this expression, the logical axioms for disjunction can be proved on the basis of the other axioms of HA^{ω}.

2. Lambda abstraction

In working with HA^{ω} lambda notation is essential. The following propositions explains and justifies its use:

Proposition 2.1. For any variable x and term t in the language of HA^{ω} there is another term denoted by λ x.t such that

$$
\mathrm{HA}^{\omega} \vdash(\lambda x . t) t^{\prime}=t\left[t^{\prime} / x\right]
$$

Proof. We define λx.t by induction on the complexity of t.
(i) If t is just x, then $\lambda x . t:=\mathbf{s k k}$.
(ii) If t consists just of a variable y distinct from x or t is a constant, then $\lambda x . t:=\mathbf{k} t$.
(iii) If $t=t_{0} t_{1}$, then $\lambda x . t:=\mathbf{s}\left(\lambda x . t_{0}\right)\left(\lambda x . t_{1}\right)$.

One can repeat λ-abstraction as in $\lambda x . \lambda y . t$; but instead of $\lambda x . \lambda y . t$ we will usually write $\lambda x y . t$.

Using this proposition one can define the usual arithmetical operations. For example, there is a closed term plus of type $0 \rightarrow(0 \rightarrow 0)$ such that:

$$
\begin{aligned}
\text { plus } m 0 & =m \\
\text { plus } m S n & =S(\text { plus } m n)
\end{aligned}
$$

From these equations the standard properties of addition (like associativity and commutativity) can be derived. Indeed, one can define plus as:

$$
\text { plus: }=\lambda m n \cdot \mathbf{R} m(\lambda x y \cdot S y) n
$$

(please check!). Exercise: also define multiplication and exponentiation and derive the standard "high school identities".

