
CHAPTER 15

Systems for arithmetic

1. Arithmetic in all finite types

Definition 1.1. The finite types are defined by induction as follows: 0 is a finite type,
and if σ and τ are finite types, then so are σ → τ and σ × τ .

The system HAω is formulated in multi-sorted intuitionistic logic, with the sorts being the
finite types. There will be infinitely many variables of each sort. In addition, there will be
constants:

(1) for each pair of types σ, τ a combinator kσ,τ of sort σ → (τ → σ).
(2) for each triple of types ρ, σ, τ a combinator sρ,σ,τ of type (ρ → (σ → τ)) → ((ρ →

σ)→ (ρ→ τ)).
(3) for each pair of types ρ, σ combinators pρ,σ,pρ,σ0 ,pρ,σ1 of types ρ → (σ → ρ × σ),

ρ× σ → ρ and ρ× σ → σ, respectively.
(4) a constant 0 of type 0 and a constant S of type 0→ 0.
(5) for each type σ a combinator Rσ (“the recursor”) of type σ → ((0 → (σ → σ)) →

(0→ σ)).

Definition 1.2. The terms of a certain type are defined inductively as follows:

• each variable or constant of type σ will be a term of type σ.
• if f is a term of type σ → τ and x is a term of type σ, then f(x) is a term of type τ .

The convention is that an expression like fxyz has to be read as (((fx)y)z). It will also
sometimes be written as f(x, y, z).

Definition 1.3. The formulas are defined inductively as follows:

• ⊥ is a formula and if s and t are terms of the same type σ, then s =σ t is a formula.
• if ϕ and ψ are formulas, then so are ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ.
• if x is a variable of type σ and ϕ is a formula, then ∃xσ ϕ and ∀xσ ϕ are formulas.

The axioms and rules of HAω are:

(i) All the axioms and rules of intuitionistic logic (say in Hilbert-style).
(ii) Rules for equality at all types:

x =σ x, x =σ y → y =σ x, x =σ y ∧ y =σ z → x =σ z,

f =σ→τ f
′ ∧ x =σ x

′ → fx =τ f
′x′.

(iii) The successor axioms:

¬S(x) =0 0, S(x) =0 S(y)→ x =0 y

1



2 15. SYSTEMS FOR ARITHMETIC

(iv) For any formula ϕ in the language of HAω, the induction axiom:

ϕ(0)→
(
∀x0 (ϕ(x)→ ϕ(Sx) )→ ∀x0 ϕ(x)

)
.

(v) The axioms for the combinators:

kxy = x

sxyz = xz(yz)

p0(pxy) = x

p1(pxy) = y

p(p0x)(p1x) = x

as well as for the recursor:

Rxy0 = x

Rxy(Sn) = yn(Rxyn)

In HAω we cannot prove the following extensionality axiom:

∀fσ→τ , gσ→τ
(

(∀xσfx =τ gx)→ f =σ→τ g
)
.

The result of adding this axiom to HAω will be denoted by E-HAω.

To both HAω and E-HAω we can add classical logic (in the form of the Law of Excluded
Middle ϕ ∨ ¬ϕ or Double Negation Elimination ¬¬ϕ → ϕ): the resulting systems will be
denoted by PAω and E-PAω, respectively.

Some remarks about these systems:

(1) All these systems satisfy the deduction theorem, so one can freely use natural deduc-
tion to prove things in these systems.

(2) For any formula ϕ(x) in the language of HAω we have

HAω ` x =σ y ∧ ϕ(x)→ ϕ(y).

Indeed, this is quite easy to prove by induction on the structure of ϕ. And from this
it follows that the same is provable in all other systems, because HAω is a subsystem
of all of them.

(3) It is sometimes convenient to regard disjunction as a defined connective in HAω. The
reason for this is that ϕ ∨ ψ is provably equivalent to

∃n0
[

(n = 0→ ϕ) ∧ (¬n = 0→ ψ)
]

in HAω. Moreover, if we regard ϕ∨ψ as an abbreviation for this expression, the logical
axioms for disjunction can be proved on the basis of the other axioms of HAω.

2. Lambda abstraction

In working with HAω lambda notation is essential. The following propositions explains and
justifies its use:

Proposition 2.1. For any variable x and term t in the language of HAω there is another
term denoted by λx.t such that

HAω ` (λx.t)t′ = t[t′/x].

Proof. We define λx.t by induction on the complexity of t.



2. LAMBDA ABSTRACTION 3

(i) If t is just x, then λx.t: = skk.
(ii) If t consists just of a variable y distinct from x or t is a constant, then λx.t: = kt.
(iii) If t = t0t1, then λx.t: = s(λx.t0)(λx.t1).

�

One can repeat λ-abstraction as in λx.λy.t; but instead of λx.λy.t we will usually write
λxy.t.

Using this proposition one can define the usual arithmetical operations. For example, there
is a closed term plus of type 0→ (0→ 0) such that:

plusm 0 = m

plusmSn = S(plusmn)

From these equations the standard properties of addition (like associativity and commutativity)
can be derived. Indeed, one can define plus as:

plus: = λmn.Rm(λxy.Sy)n

(please check!). Exercise: also define multiplication and exponentiation and derive the standard
“high school identities”.


