
CHAPTER 18

Normalisation

Closed terms of type 0 in the language of HAω can be rather complicated. Still, the idea is
that they are just numbers. So a natural question is: can one find for any closed term of type
0 a natural number n such that HAω ` t = Sn0? The answer is yes, and we will prove this in
the first section. We explore its proof-theoretic consequences in the second section.

1. Normalisation

If one looks at the axioms for the combinators in HAω, it is quite natural to read them in
a directed way. For example, the equation kxy = x is naturally read as saying that: one can
rewrite kxy to x (rather than saying that one can always replace x by kxy). In general, if t is
an expression on the left of the following table and t′ is an expression in the same row on the
right, then the natural thing is to rewrite t as t′, and not vice versa.

t t′

kt1t2 t1
st1t2t3 t1t3(t2t3)

pi(pt0t1) ti
p(p0t1)(p1t1) t1

Rt1t20 t1
Rt1t2(St3) t2t3(Rt1t2t3)

What we explore in this section is what happens if one starts from any term in the language
of HAω and one starts rewriting it using the axioms for the combinators only in the “natural
direction”.

Warning: From now on we will only look at closed terms. So in the sequel of this section
term will mean closed term.

Definition 1.1. An expression on the left of the above table is called a redex. If t is redex
and t′ is the corresponding expression on the right of the table, then we will say that t converts
to t′ and we will write t conv t′.

Definition 1.2. The reduction relation � is inductively defined by:

t � t
t conv t′ ⇒ t � t′
t � t′ ⇒ t′′t � t′′t′
t � t′ ⇒ tt′′ � t′t′′
t � t′, t′ � t′′ ⇒ t � t′′

If t � t′ we shall say that t reduces to t′. We write t �1 t
′ if t′ is obtained from t by converting

a single redex in t. Observe that � is the transitive and reflexive closure of �1.

Proposition 1.3. If t � t′, then HAω ` t = t′.

1



2 18. NORMALISATION

Proof. This is immediate from the inductive definition of t � t′. �

Definition 1.4. A term t is in normal form, if t does not contain a redex.

Proposition 1.5. An expression is in normal form iff it has one of the following forms:

0, St1,k, kt1, s, st1, st1t2,
R,Rt1,Rt1t2,Rt1t2t̂t3 . . . tn
pi,pit0 . . . tn,p,pt1,pt

′t′′

where:

– t1, . . . , tn are in normal form,
– t̂ is in normal form and not of the form 0 or Ss for some term s,
– t0 is in normal form and not of the form ps1s2, and
– t′ and t′′ are in normal form and not simultaneously of the form p0s and p1s.

Proof. Easy. �

Proposition 1.6. (i) If t is a closed term in normal form of type 0, then t is a
numeral (that is, an expression of the form Sn0 for some n).

(ii) If t is a closed term in normal form of type σ × τ , then t is of the form pt1t2 for
suitable t1, t2.

Proof. Most of the expressions that were listed in the previous proposition necessarily
have type σ → τ for certain σ and τ . Those which do not (necessarily) have this type are:

0, St1,Rt1t2t̂t3 . . . tn,pit0 . . . tn,pt
′t′′.

Now one shows (i) and (ii) by simultaneous induction on the length of t. (Incidentally, this
shows that terms t̂ and t0 as in the previous proposition do not really exist!) �

In view of Proposition 1.3 and Proposition 1.6 it now suffices to show that for any term
t of type 0 there is a normal form t′ such that t � t′. In other words, we want to show that
terms of type 0 are normalisable.

Definition 1.7. A term t is normalisable if there is a term t′ in normal form such that
t � t′.

In order to show this we use a computability predicate. This method was first employed by
Tait and we will do the same here.

Definition 1.8. The computable terms are defined by induction on type structure as
follows:

(1) A term t of type 0 is computable if it is normalisable.
(2) A term t of type σ → τ is computable if for any computable term t′ of type σ the

term tt′ is computable as well.
(3) A term t of type σ × τ is computable if both p0t and p1t are computable.

Lemma 1.9. (i) If s and t are computable, then so is st.
(ii) If s � t and t is computable, then s is computable as well.

Proof. (i): If st is well-defined, then s is of type σ → τ and t is of type σ for certain σ
and τ . So (i) follows from what it means for an expression of arrow type to be computable.

(ii) is proved by induction on the type ρ of both s and t.



2. PROOF-THEORETIC CONSEQUENCES 3

(a) If ρ = 0, computability means normalisability. So if t � t′ with t′ in normal form,
then also s � t′ by transitivity of �. Hence s is normalisable as well.

(b) ρ = σ → τ : Let t′ be a term of type σ. Our task is to show that st′ is computable.
But we have st′ � tt′ and that tt′ is computable, so st′ is computable by induction
hypothesis.

(c) ρ = σ × τ : We have to show that p0s and p1s are computable. But p0s � p0t and
p1s � p1t, so this follows from the induction hypothesis.

�

Theorem 1.10. All the closed terms in HAω are computable. In particular, closed terms
of type 0 are normalisable.

Proof. We will show that t is computable by induction on the structure of t.

(i) 0 is in normal form, hence obviously computable.
(ii) S is computable by Proposition 1.6.
(iii) To show that k is computable we need to show that if t1 and t2 are computable, then

kt1t2 is computable. But kt1t2 � t1, so this follows from part (ii) of the previous
lemma.

(iv) We leave the combinators s,p0,p1 and p to the reader.
(v) For the recursor R we need to show that for computable t1, t2, t3 the expression

Rt1t2t3 is computable as well. t3 is of type 0, so from Proposition 1.6 we get that
t3 � Sn0 for some n. So we prove the statement by induction on n:
(a) If n = 0, then

Rt1t2t3 � Rt1t20 � t1,
so the desired statement follows from part (ii) of the previous lemma.

(b) If Rt1t2(Sn0) is computable, then so is

Rt1t2t3 � Rt1t2(Sn+10) � t2(Sn0)(Rt1t2(Sn0))

by the previous lemma.
(vi) Induction step: We need to show that if t1 and t2 are computable, then so is t1t2.

That was part (i) of the previous lemma.

�

Remark 1.11. The previous theorem is just the tip of an iceberg. For instance, one
can show that all terms (not just of type 0) are normalisable. Moreover, one can show that
normal forms are unique: so if t � t1 and t � t2 and both t1 and t2 are in normal form,
then t1 and t2 are identical expressions. One can even show that any reduction sequence
t1 �1 t2 �1 t3 �1 t4 �1 . . . must necessarily terminate and therefore end with an expression in
normal form (this is called “strong normalisation”). We will not prove these things here.

2. Proof-theoretic consequences

We will now explore the consequences of the Theorem 1.10 for the proof theory of HAω and
PAω.

Corollary 2.1. For any closed term t of type 0 there is a natural number n such that
HAω ` t = Sn0.



4 18. NORMALISATION

Proof. Let t be a closed term of type 0. By the previous theorem there is a closed term
t′ in normal form such that t � t′. Proposition 1.6 tells us that t′ is of the form Sn0 for some
n and Proposition 1.3 tells us that HAω ` t = t′. �

Corollary 2.2. (Numerical existence property for HAω) If a sentence of the form ∃x0 ϕ(x)
is provable in HAω, then there is a numeral Sn0 such that ϕ(Sn0) is provable in HAω as well.
If ϕ is simple, the same holds for PAω.

Proof. Follows from the term extraction theorem in combination with the previous corol-
lary. �

Corollary 2.3. (Disjunction property for HAω) If a sentence of the form ϕ∨ψ is provable
in HAω, then either ϕ or ψ is provable in HAω.

Proof. Remember that we treat ϕ ∨ ψ as an abbreviation of

∃n0
(

(n = 0→ ϕ) ∧ (n 6= 0→ ψ)
)
.

So this follows from the previous corollary. �


