
CHAPTER 10

Semantics of classical predicate logic

1. Syntax of predicate logic

The symbols of predicate logic include:

• A countable set of parameters Par.
• A countable set of variables Var.
• A countable set of relation symbols R, where each relation symbol has an arity which

is a certain natural number. Relation symbols of arity 0 are called propositional
variables.

• A set of function symbols F , where each function symbol has an arity which is a
certain natural number. Function symbols of arity 0 are called constants.

• A special propositional constant ⊥.
• The logical connectives ∧,∨,→.
• In addition, there are also quantifiers ∀ and ∃.
• We include the brackets ( and ) as well as the comma.

Definition 1.1. The collection of semi-terms is defined inductively as follows:

• each parameters or variable is a semi-term.
• if t1, . . . , tn are semi-terms and f is a function symbol, then f(t1, . . . , tn) is a semi-

term.

The collection of semi-formulas is defined inductively as follows:

• ⊥ is a semi-formula.
• if t1, . . . , tn are semi-terms and R is an n-ary relation symbol, then R(t1, . . . , tn) is a

semi-formula.
• if ϕ and ψ are semi-formulas, then so are ϕ ∧ ψ,ϕ ∨ ψ and ϕ→ ψ.
• if ϕ is a semi-formula, then so are ∀xϕ and ∃xϕ for any variable x.

Definition 1.2. The collection F (t) for a semi-term t is defined inductively as:

• F (t) = {t} if t is a parameter or variable.
• F (f(t1, . . . , tn)) =

⋃n
i=1 F (ti).

The collection F (ϕ) for a semi-formula ϕ is defined inductively as:

• F (R(t1, . . . , tn)) =
⋃n
i=1 F (ti).

• F (ϕ�ψ) = F (ϕ) ∪ F (ψ) for � ∈ {∧,∨,→}.
• F (∃xϕ) = F (∀xϕ) = F (ϕ) \ {x}.
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2 10. SEMANTICS OF CLASSICAL PREDICATE LOGIC

Definition 1.3. A term is a semi-term t such that the set F (t) contains only parameters.
These parameters are said to occur in t. Similarly, a formula is a semi-formula ϕ such that the
set F (ϕ) contains only parameters. These parameters are said to occur in ϕ.

If ϕ is a semi-formula with x ∈ F (ϕ) and t is a term, then ϕ[t/x] is the result of substituting
t for x (that is, replacing every occurrence of x with t). If x is clear from the context, we will
also just write ϕ(t).

2. Models for classical predicate logic

Definition 2.1. A (classical) model M consists of:

• a non-empty set M .
• for each n-ary relation symbol R a relation RM ⊆Mn.
• for each n-ary function symbol f a function fM :Mn →M .

If M and N are models, then a homomorphism from M to N is a function τ :M → N such
that:

• for every n-ary relation symbol R and m1, . . . ,mn ∈M , we have

(m1, . . . ,mn) ∈ RM =⇒ (τ(m1), . . . , τ(mn)) ∈ RN .
• for every n-ary function symbol f and m1, . . . ,mn ∈M , we have

τ(fM (m1, . . . ,mn)) = fN (τ(m1), . . . , τ(mn)).

Definition 2.2. IfM is a model, then an assignment forM is a function α: Par→M . If
α is an assignment for M, a is a parameter and m ∈M , then α[m/a] is the assigment defined
by:

α[m/a](b) =

{
α(b) if b 6= a
m if b = a

Definition 2.3. If t is a term andM is a model together with an assignment α, then the
interpretation inM of the term t under the assignment α, written IMα (t), is defined inductively
as:

• IMα (a) = α(a) if a is a parameter.
• IMα (f(t1, . . . , tn)) = fM (IMα (t1), . . . , IMα (tn)).

Definition 2.4. If ϕ is a formula, M is a model and α is assignment for M, then M |=
ϕ[α], to be pronounced: ϕ is true in M under the assignment α, is defined inductively as
follows:

M |= ⊥[α] ⇔ Never!

M |= R(t1, . . . , tn)[α] ⇔ (IMα (t1), . . . , IMα (tn)) ∈ RM

M |= (ϕ ∧ ψ)[α] ⇔ M |= ϕ[α] and M |= ψ[α]

M |= (ϕ ∨ ψ)[α] ⇔ M |= ϕ[α] or M |= ψ[α]

M |= (ϕ→ ψ)[α] ⇔ M |= ϕ[α] implies M |= ψ[α]

M |= ∃xϕ[α] ⇔ M |= ϕ(a)[α[m/a]] for some parameter a

not occurring in ϕ and m ∈M
M |= ∀xϕ[α] ⇔ M |= ϕ(a)[α[m/a]] for all parameters a

not occurring in ϕ and m ∈M
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Note that the truth of M |= ϕ[α] depends only on what α does on parameters occurring
in ϕ: so if β is another assignment and α � F (ϕ) = β � F (ϕ), then

M |= ϕ[α] if and only if M |= ϕ[β].

Definition 2.5. We will write M |= ϕ and say that ϕ holds in M, if M |= ϕ[α] for any
assignment α. Moreover, we will say write |= ϕ and say that ϕ is a classical tautology if ϕ holds
in all models. We will write Γ |= ∆ if for any model M and any assignment α such that all
formulas in Γ are true in M under the assignment α, at least one formula in ∆ is also true in
M under the assignment α; the special case Γ |= {ϕ} is usually just written Γ |= ϕ.

3. Consistency properties for classical predicate logic

As expected, we extend the notion of signed formulas to predicate logic. Their validity in
a model M under an assigment α is extended in the obvious way:

M |= tϕ[α] ⇔ M |= ϕ[α]

M |= fϕ[α] ⇔ M 6|= ϕ[α]

Literals are now defined as formulas of the form tϕ and fϕ, where ϕ is an atomic formula (that
is, ⊥ or a formula of the form R(t1, . . . , tn)). Also, we now have two new classes of formulas:

Definition 3.1. The γ-formulas are those of the form t ∀xϕ(x) and f ∃xϕ(x). If γ is a
formula of one of these two forms and t is a term, then γ(t) is the signed formula given by the
following table:

γ γ(t)
t ∀xϕ tϕ[t/x]
f ∃xϕ f ϕ[t/x]

The δ-formulas are those of the form t ∃xϕ(x) and f ∀xϕ(x). If δ is a formula of one of these
two forms and t is a term, then δ(t) is the signed formula given by the following table:

δ δ(t)
t ∃xϕ tϕ[t/x]
f ∀xϕ f ϕ[t/x]

Definition 3.2. Let C be a collection of sets of signed formulas. C will be called consistency
property (for classical predicate logic), if for any Γ ∈ C, we have:

(1) Γ does not contain both a literal and its dual.
(2) t⊥ 6∈ Γ.
(3) if σ ∈ Γ and σ is an α-formula, then also Γ, σ1, σ2 ∈ C.
(4) if σ ∈ Γ and σ is a β-formula, then Γ, σ1 ∈ C or Γ, σ1 ∈ C.
(5) if σ ∈ Γ and σ is a γ-formula, then also Γ, σ(t) ∈ C for any term t.
(6) if σ ∈ Γ and σ is a δ-formula, then also Γ, σ(a) ∈ C for any parameter not occurring

in Γ.

Again we can make the following observations:
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(1) if C is a consistency property and Γ ∈ C, then Γ cannot contain both a signed formula
and its dual.

(2) any consistency property can be extended to one of finite character, where a consis-
tency property C is of finite character if for any collection Γ of signed formulas we
have: Γ ∈ C if and only if Γ0 ∈ C for every finite subset Γ0 ⊆ Γ.

Theorem 3.3. (Fundamental theorem on consistency properties for classical predicate
logic) If C is a consistency property for classical predicate logic, Γ ∈ C and there are infinitely
many parameters not occurring in Γ, then there are a classical model M and an assignment α
for M such that all formulas in Γ are valid in M under the assignment α.

We follow the usual pattern, making the necessary changes.

Definition 3.4. We will call a non-empty set of parameters U ⊆ Par such that there are
infinitely many parameters that do not belong to U a universe. A Hintikka set (for classical
predicate logic) relative to a universe U is a collection of signed formulas Γ such that the
following hold:

(1) all the parameters in Γ come from U .
(2) Γ does contain both a literal and its dual.
(3) t⊥ 6∈ Γ.
(4) if σ ∈ Γ and σ is an α-formula, then also σ1, σ2 ∈ Γ.
(5) if σ ∈ Γ and σ is a β-formula, then σ1 ∈ Γ or σ2 ∈ Γ.
(6) if σ ∈ Γ and σ is a γ-formula, then also σ(t) ∈ Γ for any term t in which only

parameters from U occur.
(7) if σ ∈ Γ and σ is a δ-formula, then also σ(a) ∈ Γ for a parameter a ∈ U .

Lemma 3.5. If C is a consistency property of finite character, Γ ∈ C and all parameters
from Γ belong to a universe U , then there is a universe U∞ and a Hintikka set Γ∞ relative to
U∞ with U ⊆ U∞, Γ ⊆ Γ∞ and Γ∞ ∈ C.

Proof. We first choose a suitable U∞: since the complement of U in Par is infinite, it
can be partitioned in two infinite sets U1 and U2. Set U∞: = U ∪U1 and let c0, c1, c2, . . . be an
enumeration of U1.

The idea of the proof is again to create an increasing sequence of sets of signed formulas
Γn with the following properties:

(1) Γ0 = Γ.
(2) Each Γn belongs to C.
(3) Each Γn contains only finitely many parameters from U1.
(4) If Γ∞ =

⋃
Γn, then Γ∞ is a Hintikka set relative to U∞.

Since property 2 and the finite character of C imply that Γ∞ ∈ C, this would prove the result.

Obviously, we start by putting Γ0 = Γ. Since both

• the collection of signed formulas σ with parameters from U∞, which are not literals,
and
• the collection of terms with parameters from U∞

are countable, we can arrange for enumerations σ0, σ1, . . . of such formulas and t0, t1, t2, . . . of
such terms, in such a way that in the combined sequence (σn, tn)n we see each combination of
a non-literal and term with parameters from U∞ infinitely often.
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We define Γn+1 once Γn has been defined, as follows:

(1) if σn 6∈ Γn, then Γn+1 = Γn.
(2) if σn ∈ Γn and σn is of α-type, then Γn+1 = Γn, (σn)1, (σn)2.
(3) if σn ∈ Γn and σn is of β-type and Γn, (σn)1 ∈ C, then Γn+1 = Γn, (σn)1.
(4) if σn ∈ Γn and σn is of β-type and Γn, (σn)1 6∈ C, then Γn+1 = Γn, (σn)2.
(5) if σn ∈ Γn and σn is of γ-type, then Γn+1 = Γn, σn(tn).
(6) if σn ∈ Γn and σn is of δ-type, then Γn+1 = Γn, σn(a) where a is the ci with smallest

index which does not occur in Γn.

One readily checks that this sequence has the required properties. �

Proof. (Of Theorem 3.3.) Without loss of generality we may assume that C is a consis-
tency property of finite character. The parameters from Γ belong to some universe U , so by
the previous lemma there is a universe U∞ extending U and a Hintikka set Γ∞ relative to U∞
extending Γ with Γ∞ ∈ C.

Now construct a modelM as follows: the elements of the model are the terms with param-
eters from U∞, and (t1, . . . , tn) will belongs to the interpretation of the n-ary relation symbol
R precisely when tP (t1, . . . , tn) belongs to Γ∞, while the interpretation of the n-ary function
symbol f is the function sending the n-tuple of terms (t1, . . . , tn) to f(t1, . . . , tn). The assign-
ment α we need is obtained by sending elements in U∞ to themselves, while doing something
completely arbitrary outside U∞.

Now one readily proves by induction on the structure of the terms that they are interpreted
by themselves, while a proof by induction of the structure of the signed formula σ can be used
to show that M |= σ[α] whenever σ ∈ Γ∞. So all sentences in Γ are true in M under the
assignment α. �





CHAPTER 11

Semantics of intuitionistic predicate logic

1. Kripke models for intuitionistic predicate logic

Definition 1.1. A Kripke model for intuitionistic predicate logic is a quadruple (W,R, f, τ)
such that:

• W is a non-empty set (“the set of worlds”).
• R is a reflexive and transitive relation.
• f is a function assigning to every world w ∈ W a classical model f(w); instead of
f(w), we will frequently write Mw when it is clear from the context which Kripke
model we mean.

• τ assigns to every pair (w,w′) ∈ R a homomorphism of models τww′ :Mw → Mw′ ,
such that τww = idMw for every w ∈ W and τw′,w′′ ◦ τw,w′ = τw,w′′ , whenever wRw′

and w′Rw′′.

Note that if (W,R, f, τ) is a Kripke model, w ∈ W and α is an assignment for Mw, then
α determines an assignment for every w′ with wRw′, simply by postcomposition with τww′ ; we
will denote this assignment by αw′ (so αw′ : = τww′ ◦ α).

Definition 1.2. If (W,R, f, τ) is a Kripke model, w ∈ W a world, α an assignment for
Mw and ϕ is a first-order formula, then we define w 
 ϕ[α] by induction on ϕ as follows:

w 
 ϕ[α] :⇔ Mw |= ϕ[α], whenever ϕ is atomic

w 
 (ϕ ∧ ψ)[α] :⇔ w 
 ϕ[α] and w 
 ψ[α]

w 
 (ϕ ∨ ψ)[α] :⇔ w 
 ϕ[α] or w 
 ψ[α]

w 
 (ϕ→ ψ)[α] :⇔ (∀w′ ∈W ) if wRw′ and w′ 
 ϕ[αw′ ], then w′ 
 ψ[αw′ ]

w 
 (∃xϕ)[α] :⇔ there is a parameter a not occurring in ϕ and m ∈Mw

such that w 
 ϕ(a)[α[a/m]]

w 
 (∀xϕ)[α] :⇔ (∀w′ ∈W ) if wRw′, a does not occur in ϕ

and m ∈Mw′ , then w′ 
 ϕ(a)[αw′ [m/a]]

Lemma 1.3. (Monotonicity) If (W,R, f, τ) is a Kripke model, w,w′ ∈ W are two worlds
such that wRw′ and α is an assignment for Mw, then w 
 ϕ[α] implies w′ 
 ϕ[αw′ ].

Definition 1.4. Let (W,R, f, τ) be a Kripke model and w ∈ W . If w 
 ϕ[α] for all
assignment α, then we will write w 
 ϕ. We will write |=IL ϕ if w 
 ϕ holds in at all worlds
w in all Kripke models. Finally, we will write Γ |=IL ϕ if for any world w in any Kripke model
(W,R, f, τ) and any assignment, if all formulas in Γ are forced at w under that assignment, the
formula ϕ is forced under that assignment as well.
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2. Consistency properties à la Beth for intuitionistic predicate logic

We extend the forcing notion to signed formulas as we did for intuitionistic propositional
logic: we will write

w 
 tϕ[α] if w 
 ϕ[α]

w 
 fϕ[α] if w 6
 ϕ[α]

(where the latter is still not equivalent to w 
 ¬ϕ[α]!).

But now, besides the special α-formulas, there is a another special case to consider: namely,
the case of δ-formulas of the form f ∀xϕ, for the reasons we have seen before. These will be
called special, while others will be called normal. Given this observation, I trust the following
definition is what one would expect.

Definition 2.1. Let C be a collection of sets of signed formulae. It will be called a
consistency property à la Beth (for intuitionistic predicate logic), if for every Γ ∈ C, the following
hold:

(1) Γ does not contain both a literal and its dual.
(2) t⊥ 6∈ Γ.
(3) if σ ∈ Γ and σ is a normal α-formula, then also Γ, σ1, σ2 ∈ C.
(4) if σ ∈ Γ and σ is a special α-formula, then also Γt, σ1, σ2 ∈ C.
(5) if σ ∈ Γ and σ is a β-formula, then Γ, σ1 ∈ C or Γ, σ1 ∈ C.
(6) if σ ∈ Γ and σ is a γ-formula, then also Γ, σ(t) ∈ C for any term t.
(7) if σ ∈ Γ and σ is a normal δ-formula, then also Γ, σ(a) ∈ C for any parameter not

occurring in Γ.
(8) if σ ∈ Γ and σ is a special δ-formula, then also Γt, σ(a) ∈ C for any parameter not

occurring in Γ.

Theorem 2.2. (Fundamental theorem on consistency properties for intuitionistic predicate
logic) Assume C is a consistency property for intuitionistic predicate logic à la Beth. Then there
is a Kripke model (W,R, f, τ) such that for any Γ∗ ∈ C in which infinitely many parameters do
not occur there is a world w ∈ W and an assignment α for Mw such that all formulas in Γ∗

are forced at the node w under the assignment α.

The proof should contain no surprises.

Definition 2.3. If U is a universe, then a Hintikka set (for intuitionistic predicate logic)
relative to U consists of a set of signed formulae Γ such that:

(1) all the parameters in Γ come from U .
(2) Γ does not contain both a literal and its dual.
(3) t⊥ 6∈ Γ.
(4) if σ ∈ Γ and σ is a normal α-formula, then also σ1, σ2 ∈ Γ.
(5) if σ ∈ Γ and σ is a β-formula, then σ1 ∈ Γ or σ2 ∈ Γ.
(6) if σ ∈ Γ and σ is a γ-formula, then also σ(t) ∈ Γ for any term t built from parameters

in U .
(7) if σ ∈ Γ and σ is a normal δ-formula, then also σ(a) ∈ Γ for a parameter a ∈ U .

Lemma 2.4. If C is a consistency property for intuitionistic predicate logic of finite character
and Γ ∈ C, then there is a universe U∞ and Hintikka set Γ∞ relative to U∞ with Γ ⊆ Γ∞ and
Γ∞ ∈ C.
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Proof. Straightforward adaption of the proof of Lemma 3.5. �

Proof. (Of Theorem 2.2.) Without loss of generality we may assume that C is a consis-
tency property for intuitionistic predicate logic of finite character.

The Kripke model is now constructed as follows:

• the set of worlds W is the set of pairs (U,Γ) where U is a universe and Γ is a Hintikka
set relative to U with Γ ∈ C.

• for two such worlds (U0,Γ0) and (U1,Γ1) we will put (U0,Γ0)R(U1,Γ1) if U0 ⊆ U1

and Γt
0 ⊆ Γt

1.
• the modelM(U,Γ) is built in the usual way from (U,Γ): the underlying universe is the

set of terms with parameters from U , the interpretation of an n-ary function symbol
f is the function sending an n-tuple of terms (t1, . . . , tn) to the term f(t1, . . . , tn), and
the interpretation of an n-ary relation symbol R is the collection of those n-tuples of
terms (t1, . . . , tn) such that tR(t1, . . . , tn) belongs to Γ.

• (U0,Γ0) and (U1,Γ1) are two worlds, then the transition function is simply the in-
clusion of the set of terms with parameters from U0 in the larger set of terms with
parameters from U1.

The proof is finished by proving, by induction of the structure of the signed formula σ, that

if (U,Γ) is a world, σ ∈ Γ and α is assignment for M(U,Γ) which is the
identity on U , then (U,Γ) 
 σ[α].

This is straightforward, except for the cases of the special α- and δ-formulas, where we need
to appeal to Lemma 2.4. We also appeal to that lemma to create a world (U,Γ) with Γ∗ ⊆ Γ,
so in that world all the formulas in Γ∗ will be forced, relative to any assignment which is the
identity on U (and does something arbitrary elsewhere). �





CHAPTER 12

Natural Deduction

Both intuitionistic and classical natural deduction are obtained by adding to the systems
for propositional logic the following rules for the quantifiers:

5a. If D is a proof tree with conclusion ϕ(a) and a does not occur in any of the uncanceled
assumptions of D, then also

D
ϕ(a)

∀xϕ
is a proof tree with conclusion ∀xϕ. (This rule is called ∀-introduction.)

5b. If D is a proof tree with conclusion ∀xϕ, then also

D
∀xϕ
ϕ(t)

is a proof tree for any term t. (This rule is called ∀-elimination.)
6a. If D is a proof tree with conclusion ϕ(t) for some t, then also

D
ϕ(t)

∃xϕ
is a proof tree with conclusion ∃xϕ. (This rule is called ∃-introduction.)

6b. If D1 is a proof tree with conclusion ∃xϕ, D2 is a proof tree with conclusion ψ and a
is a parameter which does not occur in ψ or in any of the uncanceled assumptions of
D2, except possibly in assumptions of the form ϕ(a), then also

D1

∃xϕ

[ϕ(a)]

D2

ψ

ψ

is a proof tree, where one may cancel any occurrence of the assumption ϕ(a) in D2.
(This rule is called ∃-elimination.)

The soundness and completeness of natural deduction can again be proved using the theory of
consistency properties.
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CHAPTER 13

Hilbert calculus

Recall that the axioms of classical propositional logic are:

K ϕ→ (ψ → ϕ)
S (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

ϕ→ ϕ ∨ ψ
ψ → ϕ ∨ ψ
(ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
ϕ ∧ ψ → ϕ
ϕ ∧ ψ → ψ
ϕ→ (ψ → (ϕ ∧ ψ))

DNE ¬¬ϕ→ ϕ

In addition, there was one rule: the Modus Ponens rule (from ϕ and ϕ→ ψ, infer ψ).

To get a Hilbert-type system for classical predicate logic one adds two additional axioms:

∀xϕ→ ϕ(t),
ϕ(t)→ ∃xϕ,

for any term t. In addition, there will be two more rules: from ψ → ϕ(a) one may infer
ψ → ∀xϕ, provided the parameter a does not occur in ϕ or ψ; and from ϕ(a) → ψ one may
infer ∃xϕ→ ψ provided the parameter a does not occur in ϕ or ψ. This means that the relation
Γ ` ϕ is now inductively defined as follows:

• if ϕ ∈ Γ, then Γ ` ϕ;
• if ϕ is a substitution instance of one of the axioms of above, then Γ ` ϕ;
• if Γ ` ϕ and Γ ` ϕ→ ψ, then Γ ` ψ (modus ponens).
• if Γ ` ψ → ϕ(a) and the parameter a does not occur in ϕ,ψ or Γ, then Γ ` ψ → ∀xϕ.
• if Γ ` ϕ(a)→ ψ and the parameter a does not occur in ϕ,ψ or Γ, then Γ ` ∃xϕ→ ψ.

The story for intuitionistic predicate logic is the same: here, as in propositional logic, DNE is
replaced by the ex falso axiom ⊥ → ϕ, but the axioms and rules for the quantifiers are identical.

In the same way of for propositional logic, one can now prove the Deduction Theorem and
the equivalence with natural deduction, both for classical and intuitionistic predicate logic.
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