3rd Homework sheet Proof Theory

- Deadline: 16 November.
- Submit your solutions by handing them to the TA at the *beginning of the lecture*.
- The homework sheet consists of two pages and there are exercises on the other side.
- Good luck!

The aim of this exercise is to show that being an intuitionistic tautology is a decidable property of formulas in propositional logic: that is, there is an algorithm which given a formula in propositional logic as input determines whether it is an intuitionistic tautology or not.

To this purpose we work with signed formulas and Hintikka sets \dot{a} la Beth for intuitionistic propositional logic (which from now on we will simply call Hintikka sets). In addition, we define for any signed formula the set $SSub(\sigma)$ of signed subformulas of σ by induction as follows:

- (1) $SSub(\sigma) = \{\sigma\}$ if σ is $\mathbf{t}p, \mathbf{f}p, \mathbf{t}\perp$ or $\mathbf{f}\perp$.
- (2) $\operatorname{SSub}(\sigma) = \{\sigma\} \cup \operatorname{SSub}(\sigma_1) \cup \operatorname{SSub}(\sigma_2)$ if σ is an α or β -formula.

Finally, a set of signed formulas Γ will be called *intuitionistically consistent* if there is a world w in a Kripke model (W, R, f) such that all formulas in Γ hold in w.

- (a) (10 points) Warm-up: Give an example of a Hintikka set Γ which is not intuitionistically consistent.
- (b) (30 points) A collection of Hintikka sets \mathcal{H} will be called a *Hintikka collection*. An element $\Gamma \in \mathcal{H}$ will be called *good in* \mathcal{H} if the following implication holds:

If $\mathbf{f}(\varphi \to \psi) \in \Gamma$, then there is a $\Delta \in \mathcal{H}$ with $\Gamma^{\mathbf{t}}, \mathbf{t}\varphi, \mathbf{f}\psi \subseteq \Delta$.

The Hintikka collection \mathcal{H} will be called good if all its elements are good in \mathcal{H} .

Show that any Hintikka collection \mathcal{H} contains a largest subcollection which is good: more precisely, show that for any Hintikka collection \mathcal{H} there is a good Hintikka collection $\mathcal{K} \subseteq \mathcal{H}$ such that for any good Hintikka collection $\mathcal{L} \subseteq \mathcal{H}$ we have $\mathcal{L} \subseteq \mathcal{K}$.

Hint: Show that any union of good Hintikka collections is again a good Hintikka collection.

(c) (40 points) Let σ be a signed formula and suppose that \mathcal{H} is the collection of all Hintikka sets Γ which are subsets of $SSub(\sigma)$. In addition, let \mathcal{K} be largest subset of \mathcal{H} that is a good Hintikka collection (as in (b)).

Show that $\{\sigma\}$ is consistent if and only if σ belongs to some set $\Gamma \in \mathcal{K}$.

Hint: For the left to right direction show that for any Kripke model (W, R, f) the collection

$$\mathcal{L} = \{ \Gamma \in \mathcal{H} : (\exists w \in W) \, w \Vdash \Gamma \}$$

is a good Hintikka collection. For the right to left direction, first show that

$$\mathcal{C} = \{ \Gamma : (\exists \Delta \in \mathcal{K}) \, \Gamma \subseteq \Delta \}$$

defines an intuitionistic consistency property \dot{a} la Beth and then use the Fundamental Theorem for Consistency Properties \dot{a} la Beth.

(d) (20 points) Use part (c) to outline an algorithm which decides whether a propositional formula φ is an intuitionistic tautology or not.