6th Homework sheet Proof Theory

- Deadline: 7 December.
- Submit your solutions by handing them to the TA at 9:00 sharp.
- Good luck!

In both exercises you have to justify your answer by providing a proof showing that it is correct.

Exercise 1 (50 points) Construct a closed term **minus** of type $0 \rightarrow (0 \rightarrow 0)$ such that HA^{ω} proves

Hint: Use the recursor twice: one time to define a sequence of objects $f(x^0)$ of type $0 \to 0$ such that $f(x)(y) = \min x y$ and another time in the definition of f(Sx) in terms of f(x).

Exercise 2 (50 points) Let $\varphi(x)$ and $\psi(x)$ be two formulas in the language of HA^{ω} . Suppose that their types are σ and τ , respectively, and that both these formulas only have the variable x^{ρ} as a free variable. Construct a closed term t in the language of HA^{ω} such that HA^{ω} proves that

$$t \operatorname{mr} \left[\forall x^{\rho} \left(\varphi(x) \to \psi(x) \right) \to \left(\exists x^{\rho} \varphi(x) \to \exists x^{\rho} \psi(x) \right) \right].$$