7th Exercise sheet Proof Theory 13 Dec 2016

Exercise 1 Let φ be a formula of type σ in the language of HA^{ω} . Show that HA^{ω} proves that

$$\mathbf{R}^{\sigma} \operatorname{\mathbf{mr}} \left[\, \varphi(0) \to \left(\, \forall x^0 \left(\varphi(x) \to \varphi(Sx) \, \right) \to \forall x^0 \varphi(x) \, \right) \, \right].$$

Exercise 2 Let $\varphi(x)$ be a formula of type σ and ψ be a formula of type τ in the language of HA^{ω} (the variable x is of type ρ and does occur freely in $\varphi(x)$, but not in ψ). Show that

$$t \operatorname{\mathbf{mr}}\left[\left(\exists x^{\rho} \,\varphi(x) \to \psi\right) \to \forall x^{\rho} \left(\varphi(x) \to \psi\right)\right]$$

where $t = \lambda s^{(\rho \times \sigma) \to \tau} . \lambda x^{\rho} . \lambda y^{\sigma} . s(\mathbf{p} x y)$.

Exercise 3 In this exercise we work in HA^{ω} .

(a) Let φ be a formula of type τ whose free variables are x^{ρ} and y^{σ} . Show that HA^{ω} proves that

 $t \operatorname{\mathbf{mr}} \left[\exists x^{\rho} \, \forall y^{\sigma} \, \varphi(x, y) \to \forall y^{\sigma} \, \exists x^{\rho} \, \varphi(x, y) \right]$

if $t = \lambda s^{\rho \times (\sigma \to \tau)} . \lambda a^{\sigma} . \mathbf{p}(\mathbf{p}_0 s)(\mathbf{p}_1 s a).$

(b) Let φ,ψ and χ be sentences. Construct a term t such that HA^ω proves that

$$t \operatorname{\mathbf{mr}} \big[(\varphi \to (\psi \to \chi)) \to ((\varphi \land \psi) \to \chi) \big].$$

Do not just give right term but also show that it is correct!

Exercise 4 (a) Show that for any simple formula φ with free variables among $x_1^{\sigma_1}, \ldots, x_n^{\sigma_n}$ there is a closed term **d** of type $\sigma \to (\sigma_2 \to \ldots \to (\sigma_n \to 0))$ in the language of HA^{ω} such that

 $\mathsf{HA}^{\omega} \vdash \forall x_1^{\sigma_1}, \dots, x_n^{\sigma_n} (\varphi \leftrightarrow \mathbf{d} x_1 \dots x_n =_0 0).$

Hint: Use induction on the structure of φ .

(b) Deduce that for any simple formula φ with free variables among $x_1^{\sigma_1}, \ldots, x_n^{\sigma_n}$ we have

$$\mathsf{HA}^{\omega} \vdash \forall x_1^{\sigma_1}, \dots, x_n^{\sigma_n} \left(\varphi \lor \neg \varphi \right).$$