
CHAPTER 14

Systems for arithmetic

1. Gödel’s T

In an earlier chapter we introduced typed combinatory logic over a set of base types A. In
this chapter on arithmetic we will consider this system again, but we only work with one base
type, which we will think of as the set of natural numbers N and which is traditionally denoted
by 0. We will also have three new constants and two new reduction rules and the result will be
a rewriting system which is called Gödel’s T .

Definition 1.1. The finite types are defined by induction as follows: 0 is a finite type,
and if σ and τ are finite types, then so are σ → τ and σ × τ .

Besides the usual combinators k, s, p, p0 and pi, Gödel’s T includes the following constants:
a constant 0 of type 0, which stands for the natural number zero, a constant S of type 0 → 0
which stands for the successor function and for each type σ a “recursor” Rσ of type σ → ((0→
(σ → σ))→ (0→ σ)), whose meaning will be explained shortly. So the constants (combinators)
of Gödel’s T are:

(1) for each pair of types σ, τ a combinator kσ,τ of sort σ → (τ → σ).
(2) for each triple of types ρ, σ, τ a combinator sρ,σ,τ of type (ρ → (σ → τ)) → ((ρ →

σ)→ (ρ→ τ)).
(3) for each pair of types ρ, σ combinators pρ,σ,pρ,σ0 ,pρ,σ1 of types ρ → (σ → ρ × σ),

ρ× σ → ρ and ρ× σ → σ, respectively.
(4) a constant 0 of type 0 and a constant S of type 0→ 0.
(5) for each type σ a combinator Rσ (“the recursor”) of type σ → ((0 → (σ → σ)) →

(0→ σ)).

The terms are built as before:

Definition 1.2. The terms of a certain type are defined inductively as follows:

• each variable or constant of type σ will be a term of type σ.
• if f is a term of type σ → τ and x is a term of type σ, then f(x) is a term of type τ .

The convention is that an expression like fxyz has to be read as (((fx)y)z).

Besides the old reduction rules there will be two new ones, as follows:

Definition 1.3. An expression on the left of the table below is called a redex. If t is a
redex and t′ is the corresponding expression on the right of the table, then we will say that t

1



2 14. SYSTEMS FOR ARITHMETIC

converts to t′ and we will write t conv t′.

t t′

kt1t2 t1
st1t2t3 t1t3(t2t3)

pi(pt0t1) ti
Rt1t20 t1

Rt1t2(Sn) t2n(Rt1t2n)

The definition of the reduction relation, a reduction sequence, a normal form et cetera are as
before.

The final two reduction rules tell us how we should think of the recursor. The recursor of
type σ yields for every pair of values t1 of type σ and t2 of type 0 → (σ → σ) a sequence of
objects of type σ, defined by recursion. That is, Rt1t2 is a function of type 0→ σ, so expects
a natural number m as input. If m = 0, then Rt1t2m is t1, which is the starting point of
the recursion. If m = Sn, then we may assume that Rt1t2n has already been defined and the
recursion should tell us how the new value Rt1t2(Sn) can be obtained from the value Rt1t2n
and the natural number n. In fact, that is where t2 comes in, in telling us how the next value
is to be computed from the previous: Rt1t2(Sn) is given by feeding t2 with n and the previous
value Rt1t2n.

As for typed combinatory logic, we have that the rewriting rules for Gödel’s T make it
both strongly normalising and confluent.

Theorem 1.4. (Strong normalisation for Gödel’s T , Tait, 1967) The rewriting system given
by Gödel’s T is strongly normalising and confluent. That is, for any term t in Gödel’s T there
is a number n such that every reduction sequence starting from t has length at most n and ends
with the same term in normal form.

Proof. The proof is an adaptation of the strong normalisation proof for typed combinatory
logic. For the student who is interested: besides the neutral expressions we had before, we now
also have to include 0 and St as neutral expressions. With these modications we can adapt
the proof of Lemma 1.10 from Chapter 8. Also, one has to prove that Rt1t2t3 is computable
whenever the ti are, which one does by induction on ν(t1) + ν(t2) + ν(t3) +m, where m is the
number of symbols in the normal form of t3. �

And we can again implement λ-abstraction:

Proposition 1.5. For any variable x and term t in Gödel’s T there is another term denoted
by λx.t such that

(λx.t)t′ � t[t′/x].

Proof. We use the same algorithm as before. �

One can repeat λ-abstraction as in λx.λy.t; but instead of λx.λy.t we will usually write
λxy.t.

The result is a system in which one can do quite a bit of arithmetic. For example, there is
a constant plus of type 0→ (0→ 0) such that:

plusm 0 � m

plusmSn � S(plusmn)



2. ARITHMETIC IN ALL FINITE TYPES 3

Indeed, one may define plus as

plus: = λmn.Rm(λxy.Sy)n

(please check!).

For example, we have:

plus (SS0) (SS0) � S[plus (SS0) (S0)] � SS[plus (SS0) 0] � SSSS0.

So 2 + 2 = 4, which you probably already knew.

In a similar way one can define terms for multiplication and exponentiation, for instance.
Since the system is strongly normalising and normal forms are unique, and because the only
closed terms in normal form of type 0 are numerals Sm0, one can really do arithmetic inside
Gödel’s T .

2. Arithmetic in all finite types

In this section we combine Gödel’s T with first-order logic to give us a system in which
one can also prove some arithmetical theorems.

The system HAω is formulated in multi-sorted intuitionistic logic, with the sorts being the
finite types and the terms being those of Gödel’s T .

Definition 2.1. The formulas of HAω are defined inductively as follows:

• ⊥ is a formula and if s and t are terms of Gödel’s T of the same type σ, then s =σ t
is a formula.

• if ϕ and ψ are formulas, then so are ϕ ∧ ψ,ϕ ∨ ψ,ϕ→ ψ.
• if x is a variable of type σ and ϕ is a formula, then ∃xσ ϕ and ∀xσ ϕ are formulas.

The axioms and rules of HAω are:

(i) All the axioms and rules of intuitionistic logic (say in Hilbert-style).
(ii) Rules for equality at all types:

x =σ x, x =σ y → y =σ x, x =σ y ∧ y =σ z → x =σ z,

f =σ→τ f
′ ∧ x =σ x

′ → fx =τ f
′x′.

(iii) The successor axioms:

¬S(x) =0 0, S(x) =0 S(y)→ x =0 y

(iv) For any formula ϕ in the language of HAω, the induction axiom:

ϕ(0)→
(
∀x0 (ϕ(x)→ ϕ(Sx) )→ ∀x0 ϕ(x)

)
.

(v) The axioms for the combinators:

kxy = x

sxyz = xz(yz)

p0(pxy) = x

p1(pxy) = y



4 14. SYSTEMS FOR ARITHMETIC

as well as for the recursor:

Rxy0 = x

Rxy(Sn) = yn(Rxyn)

In HAω we cannot prove the following extensionality axioms:

∀fσ→τ , gσ→τ
(

(∀xσfx =τ gx)→ f =σ→τ g
)

∀xσ×τ , yσ×τ
(
p0x =σ p0y ∧ p1x =τ p1y → x =σ×τ y

)
The result of adding these axioms to HAω will be denoted by E-HAω.

To both HAω and E-HAω we can add the Law of Excluded Middle ϕ∨¬ϕ or Double Negation
Elimination ¬¬ϕ→ ϕ: we will denote the resulting systems by PAω and E-PAω, respectively.

Some remarks about these systems:

(1) All these systems satisfy the deduction theorem, so one can freely use natural deduc-
tion to prove things in these systems.

(2) For any formula ϕ(x) in the language of HAω we have

HAω ` x =σ y ∧ ϕ(x)→ ϕ(y).

Indeed, this is quite easy to prove by induction on the structure of ϕ. And from this
it follows that the same is provable in all other systems, because HAω is a subsystem
of all of them.

(3) If t � t′ in Gödel’s T , then HAω ` t = t′.
(4) It is sometimes convenient to regard disjunction as a defined connective in HAω. The

reason for this is that ϕ ∨ ψ is provably equivalent to

∃n0
[

(n = 0→ ϕ) ∧ (¬n = 0→ ψ)
]

in HAω. Moreover, if we regard ϕ∨ψ as an abbreviation for this expression, the logical
axioms for disjunction can be proved on the basis of the other axioms of HAω.

In HAω one can now prove things like: addition is associative and commutative. Please
try!


