2nd Homework sheet Proof Theory

- Deadline: 17 November, 9:00 sharp.
- Submit your solutions by handing them to the lecturer or the teaching assistant at the *beginning of the lecture*.
- The homework exercise continues on the next page.
- Good luck!

Exercise 1 In this exercise we will be working in propositional logic, so we will only consider propositional formulas.

A formula φ is in *negation normal form* if all implications which occur in φ have a propositional variable or \bot on the left and \bot on the right. In classical logic every formula is equivalent to a formula in negation normal form. One way of seeing this is as follows: define for any propositional formula φ two new formulas $\mathbf{T}\varphi$ and $\mathbf{F}\varphi$ by simultaneous recursion, as follows:

$\mathbf{T}\varphi$	=	φ	if φ is a propositional variable or \perp
$\mathbf{T}(\varphi \wedge \psi)$	=	$\mathbf{T} arphi \wedge \mathbf{T} \psi$	
$\mathbf{T}(\varphi \lor \psi)$	=	$\mathbf{T}\varphi \lor \mathbf{T}\psi$	
$\mathbf{T}(\varphi \to \psi)$	=	$\mathbf{F}\varphi \lor \mathbf{T}\psi$	
$\mathbf{F} arphi$	=	$\neg \varphi$	if φ is a propositional variable or \perp
$egin{array}{l} {f F}arphi\ {f F}(arphi\wedge\psi) \end{array}$	=	$\neg \varphi \\ \mathbf{F} \varphi \lor \mathbf{F} \psi$	If φ is a propositional variable or \perp
$ \mathbf{F}\varphi \\ \mathbf{F}(\varphi \land \psi) \\ \mathbf{F}(\varphi \lor \psi) $	= = =	$ \begin{array}{l} \neg \varphi \\ \mathbf{F} \varphi \lor \mathbf{F} \psi \\ \mathbf{F} \varphi \land \mathbf{F} \psi \end{array} $	If φ is a propositional variable or \perp

It is easy to see that for any formula φ both $\mathbf{T}\varphi$ and $\mathbf{F}\varphi$ are in negation normal form and that $\mathbf{T}\varphi$ is classically equivalent to φ , while $\mathbf{F}\varphi$ is classically equivalent to $\neg \varphi$ (you do not need to prove these facts).

(a) (20 points) Show that for every formula φ there is a derivation of $\mathbf{T}\varphi$, $\mathbf{F}\varphi \vdash \bot$ in intuitionistic natural deduction.

- (b) (30 points) Prove the following implication: if the sequent $\varphi_1, \ldots, \varphi_n \Rightarrow \psi_1, \ldots, \psi_m$ is provable in the classical sequent calculus without the cut rule, then there is a derivation of $\mathbf{T}\varphi_1, \ldots, \mathbf{T}\varphi_n, \mathbf{F}\psi_1, \ldots, \mathbf{F}\psi_m \vdash \bot$ in intuitionistic natural deduction.
- (c) (20 points) Define $\varphi^* = \neg \mathbf{F} \varphi$. Deduce from (b) and the completeness of the classical sequent calculus without the cut rule that φ is a classical tautology precisely when φ^* is an intuitionistic tautology.
- (d) (30 points) Is the mapping $\varphi \mapsto \varphi^*$ defined in (c) a negative translation? Justify your answer!