11th Exercise sheet Proof Theory 16 Mar 2018

Exercise 1 Let φ be a formula of type σ in the language of HA^{ω}. Show that HA^{ω} proves that

$$
\mathbf{R}^{\sigma} \operatorname{mr}\left[\varphi(0) \rightarrow\left(\forall x^{0}(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x^{0} \varphi(x)\right)\right] .
$$

Exercise 2 Let $\varphi(x)$ be a formula of type σ and ψ be a formula of type τ in the language of HA ${ }^{\omega}$ (the variable x is of type ρ and does occur freely in $\varphi(x)$, but not in ψ). Show that

$$
t \mathbf{m r}\left[\left(\exists x^{\rho} \varphi(x) \rightarrow \psi\right) \rightarrow \forall x^{\rho}(\varphi(x) \rightarrow \psi)\right]
$$

where $t=\lambda s^{(\rho \times \sigma) \rightarrow \tau} \cdot \lambda x^{\rho} \cdot \lambda y^{\sigma} \cdot s(\mathbf{p} x y)$.

Exercise 3 In this exercise we work in HA^{ω}.
(a) Let φ be a formula of type τ whose free variables are x^{ρ} and y^{σ}. Show that HA^{ω} proves that

$$
t \mathbf{m r}\left[\exists x^{\rho} \forall y^{\sigma} \varphi(x, y) \rightarrow \forall y^{\sigma} \exists x^{\rho} \varphi(x, y)\right]
$$

if $t=\lambda s^{\rho \times(\sigma \rightarrow \tau)} \cdot \lambda a^{\sigma} \cdot \mathbf{p}\left(\mathbf{p}_{0} s\right)\left(\mathbf{p}_{1} s a\right)$.
(b) Let φ, ψ and χ be sentences. Construct a term t such that HA^{ω} proves that

$$
t \mathbf{m r}[(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \wedge \psi) \rightarrow \chi)]
$$

Do not just give right term but also show that it is correct!

Exercise 4 (For people familiar with recursion theory.) Recall that we can code pairs of natural numbers as natural numbers in such a way that both the pairing and the projection operations are computable, and let us write $\langle m, n\rangle$ for a natural number coding the pair consisting of natural numbers m and n. In addition, we assume that we have fixed some suitable enumeration of the partial computable functions from the natural numbers to the natural numbers. We will write $m \cdot n \downarrow$ to mean: the m th computable function terminates on input n, in which case we will write $m \cdot n$ for the result.

By induction on the finite type σ we will define a set of natural numbers HEO_{σ} and an equivalence relation \sim_{σ} on that set.

$$
\begin{aligned}
\mathrm{HEO}_{0} & =\mathbb{N} \\
m \sim_{0} n & \Leftrightarrow m=n \\
\mathrm{HEO}_{\sigma \times \tau} & =\left\{\langle m, n\rangle: m \in \mathrm{HEO}_{\sigma}, n \in \mathrm{HEO}_{\tau}\right\} \\
\langle m, n\rangle \sim_{\sigma \times \tau}\left\langle m^{\prime}, n^{\prime}\right\rangle & \Leftrightarrow m \sim_{\sigma} m^{\prime} \text { and } n \sim_{\tau} n^{\prime} \\
\mathrm{HEO}_{\sigma \rightarrow \tau}= & \left\{n \in \mathbb{N}: \forall m \in \operatorname{HEO}_{\sigma}\left(n \cdot m \downarrow \wedge n \cdot m \in \mathrm{HEO}_{\tau}\right)\right. \text { and } \\
& \left.\forall m, m^{\prime} \in \mathrm{HEO}_{\sigma}\left(m \sim_{\sigma} m^{\prime} \rightarrow n \cdot m \sim_{\tau} n \cdot m^{\prime}\right)\right\} \\
n \sim_{\sigma \rightarrow \tau} n^{\prime} & \Leftrightarrow\left(\forall m \in \mathrm{HEO}_{\sigma}\right) n \cdot m \sim_{\tau} n \cdot m^{\prime}
\end{aligned}
$$

(a) Convince yourself that \sim_{σ} does indeed define an equivalence relation on HEO_{σ}.
(b) Show that HEO can be regarded as a model of E-PA ${ }^{\omega}$ if we interpret elements of type σ as elements of HEO_{σ} and equality of objects of type σ as \sim_{σ}.
(c) Show that in the HEO-model of $\mathrm{E}-\mathrm{PA}^{\omega}$ the following choice principle fails:

$$
\mathrm{AC}_{0,0}: \quad \forall x^{0} \exists y^{0} \varphi(x, y) \rightarrow \exists f^{0 \rightarrow 0} \forall x^{0} \varphi(x, f(x)) .
$$

