4th Exercise sheet Proof Theory 21 Feb 2018

Exercise 1 Use backwards proof search to either find classical countermodels or cut free derivations in the classical sequent calculus for the following sequents:

- (a) $p \land q, p \to s \Rightarrow s$
- (b) $p \lor q, p \to s \Rightarrow s$
- (c) $q \to p, \neg p, r \lor q \Rightarrow r$
- (d) $\neg (p \land q) \Rightarrow \neg p \lor \neg q$
- (e) $p \lor q, q \lor r, r \lor s, \neg r \Rightarrow (q \land s) \rightarrow p$

Exercise 2 (a) Construct for any formula φ a cut free derivation of

 $\Gamma, \varphi \Rightarrow \varphi, \Delta$

in the classical sequent calculus.

(b) Show that for any formula φ there is a cut free derivation of $\Rightarrow \varphi \lor \neg \varphi$.

Exercise 3 This exercise will devoted to show interpolation properties using the cut free sequent calculus for classical propositional logic.

Suppose π is a cut free derivation with endsequent $\Gamma, \Gamma' \Rightarrow \Delta, \Delta'$. Construct by induction on the derivation π a formula φ (an *interpolant*) such that:

- (1) $\Gamma \Rightarrow \Delta, \varphi$ is derivable
- (2) $\Gamma', \varphi \Rightarrow \Delta'$ is derivable
- (3) Every propositional variable occurring in φ occurs both in $\Gamma \cup \Delta$ and $\Gamma' \cup \Delta'$.

Deduce that if $\Gamma \Rightarrow \Delta$ is derivable then there is a formula φ such that both $\Gamma \Rightarrow \varphi$ and $\varphi \Rightarrow \Delta$ are derivable, while every propositional variable occurring in φ occurs both in Γ and Δ .