WISC is independent from ZF

Benno van den Berg

May 2012

WISC (which stands for Weakly Initial Set of Covers) is the following statement:

For every set X there is a set of surjections $\{p_i: Y_i \to X\}$ onto X such that for every surjection $q: Z \to X$ there is an $i \in I$ and a function $f: Y_i \to Z$ such that $p_i = q \circ f$.

WISC is implied by the axiom of choice and the existence of enough projectives. For more information on **WISC**, see [1] (where it is called **AMC**) and the nLab.

The aim of this note is to prove that **WISC** is independent from \mathbf{ZF} . The argument is inspired by the work of Andreas Blass [2].

Theorem 0.1 ZF is consistent with the statement that every limit ordinal has cofinality ω .

Proof. By a celebrated result of Gitik [3] \mathbf{ZF} is consistent with the statement that all uncountable cardinals are singular, or, in other words, that ω is the only regular cardinal. Because the cofinality of a limit ordinal is a regular cardinal, \mathbf{ZF} is consistent with the statement that ω is the cofinality of every limit ordinal.

Theorem 0.2 WISC is not provable in ZF.

Proof. Suppose there is a family $(p_i: B_i \to \mathbb{N} \mid i \in I)$ of surjections onto \mathbb{N} such that every surjection onto \mathbb{N} is refined by one in this family. We will show that this is incompatible with the statement that every limit ordinal has cofinality ω .

Put $A = I + \{0, 1\}, B_0 = \emptyset, B_1 = \{0\}$ and let

$$f: \sum_{a \in A} B_a \to A$$

be the obvious projection. We will write W = W(f) for the W-type associated to f.

By transfinite induction on W, we can now define a map $m: W \to Ord$ as follows:

$$\begin{split} m(\sup_i(t)) &= \sup\{m(tb) : b \in B_i\}, \\ m(\sup_0(t)) &= 0, \\ m(\sup_1(t)) &= t(0) + 1. \end{split}$$

Observe that:

- 1. 0 lies in the image on m.
- 2. The image of m is closed under taking successor ordinals.
- 3. The image of m is closed under countable suprema: for if $\beta = \sup(\alpha_n)$ and $\alpha_n \in m(W)$ for every $n \in \mathbb{N}$, then

$$(\forall n \in \mathbb{N}) (\exists w \in W) m(w) = \alpha_n.$$

Weak initiality of $(f_i: B_i \to \mathbb{N} \mid i \in I)$ now implies that there is an $i \in I$ and a function $t: B_i \to W$ such that

$$(\forall b \in B_i) m(tb) = \alpha_{p_i(b)}.$$

Hence $\beta = m(\sup_i(t))$.

So if every limit ordinal had cofinality ω , the map m would be surjective. Contradiction.

Remark 0.3 By refining this argument one can show that **WISC** implies (in **ZF**) that there are class many regular cardinals and hence (by Proposition 2 on page 151 of [2]) that every variety has free algebras.

References

- B. van den Berg and I. Moerdijk. The axiom of multiple choice and models for constructive set theory. arXiv:1204.4045, 2012.
- [2] A.R. Blass. Words, free algebras, and coequalizers. Fund. Math., 117(2):117– 160, 1983.
- [3] M. Gitik. All uncountable cardinals can be singular. Israel J. Math., 35(1-2):61-88, 1980.