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Abstract

Recently, the second author, Briseid and Safarik introduced nonstandard Dialectica, a func-
tional interpretation that is capable of eliminating instances of familiar principles of nonstan-
dard arithmetic - including overspill, underspill, and generalisations to higher types - from
proofs. We show that, under few metatheoretical assumptions, the properties of this interpre-
tation are mirrored by first order logic in a constructive sheaf model of nonstandard arithmetic
due to Moerdijk, later developed by Palmgren. In doing so, we also draw some new connections
between nonstandard principles, and principles that are rejected by strict constructivism.

Furthermore, we introduce a variant of the Diller-Nahm interpretion with two different kinds
of quantifiers (with and without computational meaning), similar to Hernest’s light Dialectica
interpretation, and show that one can obtain nonstandard Dialectica from this by weakening
the computational content of the existential quantifiers – a process we call herbrandisation. We
also define a constructive sheaf model mirroring this new functional interpretation and show
that the process of herbrandisation has a clear meaning in terms of these sheaf models.
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1 Introduction

The focus of this paper stands at a confluence of two quite different paths in mathematical logic.
On one end, there is nonstandard arithmetic, and analysis: a subject that has been an upshot

of classical model theory, and even after it was recognised that it was amenable to a syntactic
treatment, as in Nelson’s internal set theory [19], it mostly remained within the boundaries of
classical set theory. On the other end, there is the markedly proof-theoretic topic of functional
interpretations, stemming from Gödel’s Dialectica interpretation [8]; and, in particular, its recent
revival through the programme of proof mining [13].

Where these ends meet, is in a general inclination towards the constructivisation of mathematics.
The first explicit model of nonstandard analysis, due to Schmieden and Laugwitz [28], was actually
fully constructive, but had a quite weak transfer property. On the other hand, Robinson’s model of
nonstandard arithmetic [27], and subsequent ones which were elementary extensions of the standard
model, were built from nonconstructive objects, such as nonprincipal ultrafilters of sets. Even in
the syntactic approach, it was soon realised that many useful principles led to instances of the
excluded middle - the nemesis of intuitionistic mathematics. But did nonstandard analysis really
have nothing to offer to constructive analysts?

Not everyone was convinced, including, notably, Per Martin-Löf, who pushed the question in the
early 1990s: first, Erik Palmgren succeeded in building a model with a restricted, yet useful transfer
principle [22]; then, in 1995, Ieke Moerdijk described the first constructive model of nonstandard
arithmetic with a full transfer principle - a topos of sheaves over a category of filters [18]. Later,
by working in this topos, Palmgren provided simplified, nonstandard proofs of several theorems of
constructive analysis, and so demonstrated the usefulness of this model [23, 24, 25, 26].

But if nonstandard proofs do provide some constructive information, we might as well try to
extract it in an automated fashion. In 2012, the second author, Briseid and Safarik succeeded in
defining a functional interpretation, nonstandard Dialectica [3], which could eliminate nonstandard
principles from proofs of intuitionistic arithmetic in all finite types, enriched, à la Nelson, with a
predicate stσ(x), “x is standard”, for all types σ; also yielding a proof of conservativity of these
principles over the base system. Section 2 is a review.

Now, some of the principles validated by nonstandard Dialectica were known to hold in Mo-
erdijk’s topos - including a form of Nelson’s idealisation axiom, an underspill principle, and the
undecidability of the standardness predicate. Our first aim was to investigate how deep this con-
nection would go.

And a deep connection it is: with the exception of one principle, which requires an assumption
about the metatheory, all the characteristic principles of nonstandard Dialectica are true in the
topos model, for free. Section 3 is devoted to showing this. During this investigation, we also
chanced upon two new principles, sequence overspill and sequence underspill, which appear to be
more natural equivalents of principles that have been taken into consideration, earlier, in the context
of proof-theoretic nonstandard arithmetic. We map their relation to other familiar principles from
nonstandard and constructive analysis in Section 2.

Several characteristic principles of nonstandard Dialectica have a peculiarity: they are her-
brandised. This is explained in more detail in Section 4; in short, where “traditional” functional
interpretations would produce a single witness of an existential statement, these principles produce
a finite sequence of potential witnesses, of which at least one is an actual witness. This prop-
erty destroys the computational meaning of intuitionistic disjunction, yet seems unavoidable in the
interpretation of nonstandard arithmetic.

The categorical analysis of nonstandard Dialectica supplied a very convenient way of “de-
herbrandising”, through a simple change in the Grothendieck topology, down from finite covers
to singleton covers. Full transfer is lost - in the new topos, disjunction is stronger than in the
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metatheory - as well as the link to nonstandard arithmetic; but the de-herbrandised principles in-
duce a new functional interpretation, which we call uniform Diller-Nahm, and is the main focus of
Section 4.

Uniform Diller-Nahm can be seen as an extension of the Diller-Nahm variant of the Dialectica
interpretation [7], and has some striking similarities to light Dialectica [9], a variant of Dialectica
with two different kinds of quantifiers - computational, and non computational - introduced in 2005
by Mircea-Dan Hernest, for the purpose of more efficient program extraction from formal proofs.
Yet, irrespective of its technical value, the characteristic proof system of uniform Diller-Nahm might
have a dignity of its own.

In 1985, Vladimir Lifschitz proposed a simple extension of Heyting arithmetic, where a distinc-
tion could be made between calculable, and non calculable natural numbers [15]; a synthesis of
classical and intuitionistic arithmetic. Under the interpretation of the predicate st(x) as “x is cal-
culable”, the proof system of uniform Diller-Nahm seems to be well-suited for Lifschitz’s intended
calculus.

Finally, in Section 5, we survey some open questions.

2 The nonstandard Dialectica interpretation

We start by briefly recalling the definition of the system E-HAω∗
st , as introduced in [3]; we refer to

the original paper for a detailed presentation.

2.1 The system E-HAω∗
st

We take E-HAω∗ to be an extension of the system called E-HAω
0 in [29], with additional types and

constants for handling finite sequences. More precisely, the collection of types T∗ is generated by
the inductive clauses

. 0 is in T∗;

. if σ, τ are in T∗, then σ → τ and σ∗ are in T∗;

and, for all types σ, τ in T∗, we have constants 〈〉σ : σ (empty sequence), C : σ → σ∗ → σ∗

(prepending operator), and Lσ,τ : σ → (σ → τ → σ) → (τ∗ → σ) (list recursor), with defining
axioms

SA : ∀s : σ∗ (s = 〈〉σ ∨ ∃x : σ ∃s′ : σ∗ (s = Cxs′)) ,{
Lσ,τxy〈〉τ =σ x ,

Lσ,τxy(Czs) =σ y(Lσ,τxys)〈z〉 ,
x : σ, y : σ → τ → σ, z : τ, s : τ∗ ,

where 〈z〉 is the “singleton” Cz〈〉τ .

Notation. We use s, t, u, v (and s′, t′, . . .) as variables of sequence type.

This system has an extensionality axiom

∀f, g : σ → τ (f =σ→τ g ↔ ∀x : σ fx =τ gx)

for all types σ, τ .
Using the projectors and combinators from the language of E-HAω

0 , it is possible, already in
the latter system, to introduce a coding of finite sequences of elements of any type, as in [12, p.
59]; therefore, E-HAω∗ is a definitional, hence conservative, extension of E-HAω

0 . However, finite
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sequences seem to be quite ubiquitous in arguments of nonstandard arithmetic, mostly due to the
expanded notion of “finiteness” in a nonstandard model; so it seems preferable to have them built
into our syntax.

Since every type is provably inhabited, we can conservatively add for every type σ a constant
∅σ. Using the list recursor, one can define all the basic operations on finite sequences one needs in
practice.

(i) A length function | · | : σ∗ → 0, satisfying

|〈〉σ| = 0 , |Cas| = S|s| ,

for s : σ∗, a : σ.

(ii) A projection function (s, i) 7→ si of type σ∗ → 0→ σ, satisfying

(〈〉σ)i = ∅σ for all i,

(Cas)0 = a ,

(Cas)Si = si .

(iii) A concatenation operation · : σ∗ → σ∗ → σ∗, such that

〈〉σ · t = t , Cas · t = Ca(s · t) .

As expected, concatenation is provably associative, so we will iterate it without bothering
with brackets.

The following, easy properties are all established in [3].

Lemma 2.1. (a) E-HAω∗ ` ∀s : σ∗ (|s| = 0↔ s = 〈〉σ) ,

(b) E-HAω∗ ` ∀n : 0∀s : σ∗ (|s| = Sn↔ ∃x : σ ∃t : σ∗ (s = Cxt ∧ |t| = n)) .

Proof. Let s : σ∗. By the sequence axiom SA, either s = 〈〉σ or s = Cxt for some x : σ, t : σ∗. If
|s| = 0, the latter case leads to a contradiction, for |s| = S|t| > 0.

If |s| = Sn, then the former case leads to a contradiction, and we have proven the directions left
to right. The converses are immediate.

Proposition 2.2. E-HAω∗ proves the induction schema for sequences

IA∗ :
(
ϕ(〈〉σ) ∧ ∀x : σ ∀s : σ∗ (ϕ(s)→ ϕ(Cxs))

)
→ ∀s : σ∗ ϕ(s) .

Proof. Suppose ϕ(〈〉σ) and ∀x : σ ∀s : σ∗ (ϕ(s)→ ϕ(Cxs)). By the previous lemma,

∀s : σ∗ (|s| = 0→ ϕ(s)) .

Fix n : 0, and assume ∀s : σ∗ (|s| = n → ϕ(s)). Let s be of length Sn. Again by the previous
lemma, s = Cxt for some x : σ, and t : σ∗ of length n, and ϕ(t) holds by hypothesis. Therefore,
ϕ(Cxt) ≡ ϕ(s) holds as well; and we have proved

∀s : σ∗ (|s| = n→ ϕ(s))→ ∀s : σ∗ (|s| = Sn→ ϕ(s)) .

By ordinary induction, it follows that ∀n : 0, s : σ∗ (|s| = n→ ϕ(s)).
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Definition 2.3. Let s, t : σ∗. We say that s and t are extensionally equal, and write s =e t, if

|s| = |t| ∧ ∀i < |s| (si = ti) .

Corollary 2.4. E-HAω∗ ` ∀s, t : σ∗ (s =e t→ s = t) .

Proof. By induction for sequences. Suppose s =e t. If s = 〈〉σ, then |s| = |t| = 0, so, by Lemma
2.1, t = 〈〉σ.

Otherwise, s = Cxs′ for some x, s′. Then |s| = |t| = Sn for n = |s′|; again, by Lemma 2.1,
t = Cyt′ for some y, t′. But x = s0 = t0 = y, and s′ =e t

′; by the inductive hypothesis, s′ = t′.
Therefore, s = Cxs′ = Cyt′ = t.

Since finite sequences will be used as a replacement for finite sets, we will borrow some set-
theoretic notation.

Definition 2.5. Let a : σ, s, s′ : σ∗. We define the abbreviations

(i) a ∈σ s := ∃i < |s| (a =σ si) (a is an element of s);

(ii) s′ ⊆σ s := ∀x : σ (x ∈σ s′ → x ∈σ s) (s′ is contained in s).

We will drop subscripts in most occasions. We also extend the relation ⊆σ to sequence-valued
functionals, pointwise: for s′, s : τ → σ∗,

(iii) s′ ⊆ s := ∀x : τ (s′x ⊆σ sx) .

The relation ⊆ determines a preorder, provably in E-HAω∗.

In the definition of the nonstandard Dialectica translation, one needs a form of application for
finite sequences - and an associated form of λ-abstraction - that is monotone in the first component,
with respect to the preorder we just defined.

Definition 2.6 (Finite sequence application and abstraction). Let s : (σ → τ∗)∗, a : σ, t : τ∗.
Then

s[a] := (s0a) · . . . · (s|s|−1a) : τ∗ ,

Λx : σ.t := C(λx : σ.t)〈〉 : (σ → τ∗)∗ .

The new application and abstraction are interdefinable with the usual ones. In fact, we have
the following, easy compatibility result.

Proposition 2.7. E-HAω∗ proves that for all s : τ∗, a : σ,

(Λx : σ.s)[a] = (λx : σ.s)a = s[a/x] .

Lemma 2.8. E-HAω∗ proves that for all s, s′ : (σ → τ∗)∗, a : σ,

s ⊆ s′ → s[a] ⊆ s′[a] .

Proof. See [3, Lemma 2.22].

Since we do not have product types, we will often work with tuples of types and of terms, for
which we follow the conventions of [12]; the following is a brief summary.
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Notation. We write σ := σ1, . . . , σn, x : σ := x0 : σ0, . . . , xn : σn for tuples of types and
terms. [ ] stands for the empty tuple. We write

fx := (. . . (fx0)x1) . . .)xn ,

with the appropriate types; while, if f := f0, . . . , fm, fx stands for f0x, . . . , fmx. We will
have, correspondingly,

λx.f := λx.f0, . . . λx.fm ,

and the same for finite sequence application.

Relations distribute as expected: for instance, if y := y0, . . . , yn, with the same length and
types as x,

x =σ y :=

n∧
i=0

xi =σi
yi ;

and if s := s0 : σ∗0 , . . . , sn : σ∗n is a tuple of sequences,

x ∈σ s :=

n∧
i=0

xi ∈σi si .

Most of the results we have listed so far are easily extended to tuples of terms; in particular,
those concerning finite sequence application and abstraction.

We now lay the syntactic groundwork for doing nonstandard arithmetic in our system.

Definition 2.9. The system E-HAω∗
st is an extension of E-HAω∗, whose language includes a (unary)

predicate stσ(x), x : σ, for all types σ of T∗; and the external quantifiers ∀stx : σ, ∃stx : σ.

Notation. Following Nelson, so-called internal formulae - those in the language of E-HAω∗

- are always denoted with small Greek letters, and generic, external formulae with capital
Greek letters.

The following axioms are added to those of E-HAω∗:

1. the defining axioms of the external quantifiers:

∀stx : σΦ(x)↔ ∀x : σ (stσ(x)→ Φ(x)) ,

∃stx : σΦ(x)↔ ∃x : σ (stσ(x) ∧ Φ(x)) ;

2. axioms for the standardness predicate:

stσ(x) ∧ x =σ y → stσ(y) ,

stσ(a) for all closed a : σ ,

stσ→τ (f) ∧ stσ(x)→ stτ (fx) ;

3. the external induction schema:

IAst :
(
Φ(0) ∧ ∀stx : 0 (Φ(x)→ Φ(Sx))

)
→ ∀stx : 0 Φ(x) .

Since it is part of E-HAω∗, the system E-HAω∗
st also contains, besides the external induction schema,

an “internal” induction schema IA, which is assumed to hold for internal formulae only.
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So far, there is nothing inherently nonstandard about the system we have defined. In fact, one
could interpret stσ(x) as x =σ x, and all the new axioms would be provable in E-HAω∗. This simple
fact also implies that E-HAω∗

st is a conservative extension of E-HAω∗.
However, there are some simple results, of the kind we would expect from a “standardness

property”, that can already be proved.

Proposition 2.10. For every formula Φ(x), E-HAω∗
st proves

Φ(x) ∧ x = y → Φ(y) .

Proof. Easy induction on the logical structure of Φ, utilising the fact that the standardness predicate
is extensional.

Proposition 2.11. E-HAω∗
st ` ∀n,m : 0 (st0(n) ∧m ≤ n→ st0(m)) .

Proof. Apply external induction to the formula Φ(n) := ∀m : 0 (m ≤ n→ st0(m)) .

Basically anything one can get from standard sequences is standard.

Lemma 2.12. (a) E-HAω∗
st ` ∀s : σ∗ (st(s)→ st(|s|)) ,

(b) E-HAω∗
st ` ∀s : σ∗ (st(s)→ ∀i < |s| st(si)) ,

(c) E-HAω∗
st ` ∀s : σ∗ ∀x : σ (st(s) ∧ x ∈σ s→ st(x)) ,

(d) E-HAω∗
st ` ∀s, t : σ∗ (st(s) ∧ st(t)→ st(s · t)) ,

(e) E-HAω∗
st ` ∀f : 0→ σ∗ ∀n : 0

(
st(f) ∧ st(n)→ st(f0 · . . . · fn)

)
.

Proof. Everything follows from the standardness axioms, coupled with the fact that the list recursor
is standard.

A simple consequence of the lemma is that the operations of sequence application and abstrac-
tion, as defined in the previous section, preserve standardness.

Corollary 2.13. (a) E-HAω∗
st ` ∀s : (σ → τ∗)∗ ∀x : σ

(
st(s) ∧ st(x)→ st(s[x])

)
,

(b) E-HAω∗
st ` ∀s : σ → τ∗ (st(s)→ st(Λx.s)) .

Finally, we prove that finite sequences of standard elements are standard; the converse is already
a consequence of Lemma 2.12.(a)-(b).

Lemma 2.14. E-HAω∗
st proves that

∀s : σ∗
(
st(|s|) ∧ ∀i < |s| st(si)→ st(s)

)
.

Proof. Suppose s : σ∗ is finite, and that, for all i < |s|, si is standard. By an iteration of Lemma
2.12.(d), s′ := s0 · . . . · s|s|−1 is also standard. Clearly, s and s′ are extensionally equal; by Corollary
2.4, s = s′. Thus, s is standard.

This, in turn, is used to prove an external induction schema for sequences.

Proposition 2.15. E-HAω∗
st proves the external induction schema for sequences

IA∗st :
(
Φ(〈〉σ) ∧ ∀stx : σ ∀sts : σ∗ (Φ(s)→ Φ(Cxs))

)
→ ∀sts : σ∗ Φ(s) .

Proof. From the previous lemma, one obtains that if s = Cxt and s is standard, then x and t
are also standard. Then one argues precisely as in Proposition 2.2, applying external instead of
ordinary induction.

The linguistic blocks are in place for the definition of the nonstandard Dialectica interpretation.
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2.2 The Dst translation

Definition 2.16. To every formula Φ(a) of the language of E-HAω∗
st , with free variables a, we

associate inductively its nonstandard Dialectica translation

Φ(a)Dst = ∃sts∀sty ϕDst(s, y, a) ,

where ϕDst
is internal, and all the variables in s are of sequence type.

. ϕ(a)Dst := ϕDst
(a) := ϕ(a), for ϕ internal atomic;

. stσ(x)Dst := ∃sts : σ∗ (x ∈ s) .

Let Φ(a)Dst = ∃sts∀sty ϕDst
(s, y, a), Ψ(b)Dst = ∃stt∀stv ψDst

(t, v, b):

. (Φ(a) ∧Ψ(b))Dst := ∃sts, t∀sty, v
(
ϕDst(s, y, a) ∧ ψDst(t, v, b)

)
;

. (Φ(a) ∨Ψ(b))Dst := ∃sts, t∀sty, v
(
ϕDst

(s, y, a) ∨ ψDst
(t, v, b)

)
;

. (Φ(a)→ Ψ(b))Dst := ∃stT , Y ∀sts, v
(
∀y ∈ Y [s, v]ϕDst

(s, y, a)→ ψDst
(T [s], v, b)

)
;

. (∃zΦ(z, a))Dst := ∃sts∀stt∃z ∀y ∈ t ϕDst
(x, y, z, a) ;

. (∀zΦ(z, a))Dst := ∃sts∀sty ∀z ϕDst
(s, y, z, a) ;

. (∃stzΦ(z, a))Dst := ∃stu, s∀stt∃stz ∈ u∀y ∈ t ϕDst
(s, y, z, a) ;

. (∀stzΦ(z, a))Dst := ∃stS ∀sty, z ϕDst(S[z], y, z, a) .

The idea is that, in the Dst interpretation, realisers should be finite sequences of potential
realisers, of which at least one is an actual realiser. Hence, if s is a valid realiser, then any s′ with
s ⊆ s′ should work as well. That this is the case is guaranteed by the following proposition.

Definition 2.17. A formula Φ(s) is upwards closed in s : σ∗ if

Φ(s) ∧ s ⊆ s′ → Φ(s′) .

Proposition 2.18. Let Φ(a) be a formula of E-HAω∗
st , Φ(a)Dst = ∃sts∀sty ϕ(s, y, a). Then E-HAω∗

proves that ϕ is upwards closed in s:

E-HAω∗ ` ϕ(s, y, a) ∧ s ⊆ s′ → ϕ(s′, y, a) .

Proof. By induction on the logical structure of Φ(a), using Lemma 2.8 in the clauses for → and
∀stz.

In [3], the nonstandard Dialectica interpretation was given a characterisation in terms of five
principles. We provide here an alternative characterisation, which keeps the following three princi-
ples from the former.

1. The herbrandised axiom of choice:

HACst : ∀stx : σ ∃sty : τ Φ(x, y)→ ∃st(f : σ → τ∗)∗ ∀stx : σ ∃y ∈ f [x] Φ(x, y) .

2. The herbrandised independence of premise principle:

HIPst
∀ : (∀stx : σ ϕ(x)→ ∃sty : τ Ψ(y))→ ∃stt : τ∗ (∀stx : σ ϕ(x)→ ∃y ∈ tΨ(y)) .
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3. The principle called non-classical realisation in [3] - which, as we will see in Section 4, could
also be called herbrandised nonstandard uniformity :

NCR : ∀y : τ ∃stx : σΦ(x, y)→ ∃sts : σ∗ ∀y : τ ∃x ∈ sΦ(x, y) .

In addition to these, the former characterisation had idealisation

I : ∀sts : σ∗ ∃y : τ ∀x ∈ sϕ(x, y)→ ∃y : τ ∀stx : σ ϕ(x, y) ,

whose dual
R : ∀y : τ ∃stx : σ ϕ(x, y)→ ∃sts : σ∗ ∀y : τ ∃x ∈ sϕ(x, y)

is clearly a consequence of NCR, and the herbrandised generalised Markov’s principle

HGMPst : (∀stx : σ ϕ(x)→ ψ)→ ∃sts : σ∗ (∀x ∈ sϕ(x)→ ψ) .

We will replace them as follows.

Definition 2.19. Let s : σ∗. We say that s is a hyperfinite enumeration of the type σ if

∀stx : σ (x ∈ s) .

We define, for all types σ, a predicate hyper(s), such that

(hyper(s) := ∀stx : σ (x ∈ s)) ,

as well as quantifiers ranging over hyperfinite enumerations, with defining axioms

∀hyps : σ∗Φ(s) := ∀s : σ∗ (hyperσ(s)→ Φ(s)) ,

∃hyps : σ∗Φ(s) := ∃s : σ∗ (hyperσ(s) ∧ Φ(s)) .

The most basic nonstandard principles are, arguably, overspill and underspill in the type of
natural numbers:

OS0 : ∀stn : 0ϕ(n)→ ∃n : 0 (¬ st(n) ∧ ϕ(n)) ,

US0 : ∀n : 0 (¬ st(n)→ ϕ(n))→ ∃stn : 0ϕ(n) .

These principles are almost invariably used with formulae of the form ∀k < nϕ(k), stating that a
certain property holds up to a number n. From the assumption ∀stn∀k < nϕ(k), which says that
ϕ holds up to any standard natural number, OS0 allows one to derive that ϕ holds up to some
nonstandard (infinite) number n.

From n, one can obtain a hyperfinite enumeration s := 〈0, . . . , n〉 of the natural numbers, so that
∀k < nϕ(k)↔ ∀k ∈ sϕ(k); and, in a way, it is this fact - that n induces a hyperfinite enumeration
- that is relevant to the argument, rather than n being nonstandard. This suggests the following
generalisation of overspill and underspill to all finite types.

We introduce the principle of sequence overspill

OS∗ : ∀sts : σ∗ ϕ(s)→ ∃hyps : σ∗ ϕ(s) ,

and its dual, sequence underspill

US∗ : ∀hyps : σ∗ ϕ(s)→ ∃sts : σ∗ ϕ(s) .

Proposition 2.20. E-HAω∗
st ` I↔ OS∗ .
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Proof. Assume I, and suppose ∀sts : σ∗ ϕ(s). Let t : (σ∗)∗ be a standard sequence of sequences;
then s := t0 · . . . ·t|t|−1 is again standard, so ϕ(s) holds. Furthermore, by construction, for all i < |t|,
ti ⊆ s; in other words,

∀stt : (σ∗)∗ ∃s : σ∗ ∀t′ ∈ t (t′ ⊆ s ∧ ϕ(s)) .

By idealisation, we obtain
∃s : σ∗ ∀stt : σ∗ (t ⊆ s ∧ ϕ(s)) .

It remains to prove that ∀stt : σ∗ (t ⊆ s)↔ hyper(s), an easy consequence of Lemma 2.12.
Conversely, assume OS∗, and suppose ∀sts : σ∗ ∃y : τ ∀x ∈ sϕ(x, y). By sequence overspill, it

follows that
∃y : τ ∃hyps : σ∗ ∀x ∈ sϕ(x, y) ,

which implies
∃y : τ ∀stx : σ∗ ϕ(x, y) .

This concludes the proof.

Several consequences of I are listed in [24] and in [3], which, by the previous proposition, are
also consequences of OS∗. For us, it is particularly relevant that OS∗ implies an external version
of the lesser limited principle of omniscience, a nonconstructive principle well-known in the area of
reverse mathematics, see e.g. [10]; namely,

LLPOst : ∀stx, y : σ (ϕ(x) ∨ ψ(y))→ (∀stx : σ ϕ(x) ∨ ∀stx : σ ψ(x)) .

Proposition 2.21. E-HAω∗
st + OS∗ ` LLPOst .

Proof. Suppose ∀stx, y : σ (ϕ(x) ∨ ψ(y)). We prove by external sequence induction that

∀sts : σ∗ (∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x)) . (1)

For s = 〈〉σ, ∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x) is vacuously true. Suppose it is true for some arbitrary,
standard s, and pick any standard a : σ. We want to show ∀x ∈ Casϕ(x) ∨ ∀x ∈ Casψ(x).

Suppose ∀x ∈ sϕ(x) (the case where ∀x ∈ sψ(x) is true is similar). Since

∀stx, y : σ (ϕ(x) ∨ ψ(y)) ,

we have
∀b ∈ Cas (ϕ(a) ∨ ψ(b)) ;

since Cas is a finite sequence, we can run through all b ∈ Cas and see whether ϕ(a) holds. If so,
then ∀x ∈ Casϕ(x) holds and we are done; otherwise, we will get that ψ(b) holds for all b ∈ Cas
and we again achieve the desired disjunction. Now, applying sequence overspill to (1) gives

∃hyps : σ∗ (∀x ∈ sϕ(x) ∨ ∀x ∈ sψ(x)) ,

which implies LLPOst.

Notice that OS0 alone would have sufficed to prove the restriction of LLPOst to type 0.
Since I is equivalent to OS∗, it would make sense if R were equivalent to US∗; yet things are not

so simple. In fact, only one implication seems to hold.

Proposition 2.22. E-HAω∗
st + US∗ ` R .

10



Proof. Suppose ∀y : τ ∃stx : σ ϕ(x, y). Then

∀hyps : σ∗ ∀y : τ ∃x ∈ sϕ(x, y) ,

which, by sequence underspill, implies ∃sts : σ∗ ∀y : τ ∃x ∈ sϕ(x, y).

What is missing, in order to obtain an equivalence, is precisely the last characteristic principle.

Proposition 2.23. E-HAω∗
st + US∗ ` HGMPst .

Proof. Suppose ∀stx : σ ϕ(x)→ ψ. Then

∃hyps : σ∗ ∀x ∈ sϕ(x)→ ψ ,

which is intuitionistically equivalent to

∀hyps : σ∗ (∀x ∈ sϕ(x)→ ψ) .

An application of sequence underspill leads to the conclusion.

We now complete the characterisation of US∗.

Proposition 2.24. E-HAω∗
st + HGMPst + R ` US∗ .

Proof. Suppose ∀hyps : σ∗ ϕ(s); that is,

∀s : σ∗ (∀stx : σ (x ∈ s)→ ϕ(s)) .

By the herbrandised generalised Markov’s principle, this is equivalent to

∀s : σ∗ ∃stt : σ∗ (t ⊆ s→ ϕ(s)) ;

which, by realisation and intuitionistic logic, implies

∃stt : (σ∗)∗ ∀s : σ∗ (∀t′ ∈ t (t′ ⊆ s)→ ϕ(s)) .

Take a standard t : (σ∗)∗ as in (2.2), and pick s := t0 · . . . · t|t|−1. By Lemma 2.12, s is standard,
and, for all t′ ∈ t, t′ ⊆ s; therefore, it holds that ϕ(s). We thus prove

∃sts : σ∗ ϕ(s) ,

and the sequence overspill principle.

Replacing ψ with a contradiction, e.g. 0 =0 1, and choosing a negated ϕ(x), we see that HGMPst

- hence, US∗ as well - implies an external version of Markov’s principle, another noted principle
that is rejected by strict constructivism:

MPst :
(
∀stx : σ (ϕ(x) ∨ ¬ϕ(x)) ∧ ¬¬∃stx : σ ϕ(x)

)
→ ∃stx : σ ϕ(x) .

This is another instance of a principle whose nature appears markedly nonstandard, forcing a
nonconstructive mode of reasoning.

Theorem 2.25 (Soundness of the nonstandard Dialectica interpretation). Suppose

E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀ + ∆int ` Φ(a) ,

where ∆int is a set of internal sentences. Let Φ(a)Dst = ∃sts∀sty ϕDst
(s, y, a). Then from the proof

we can extract a tuple of closed terms t such that

E-HAω∗ + ∆int ` ∀y ϕDst(t, y, a) .

11



Proof. This is [3, Theorem 5.5], coupled with the fact that OS∗ + US∗ ↔ I + R + HGMPst over
E-HAω∗

st . We provide explicit realisers for the new principles.
The interpretation of OS∗ is

∃stS ∀sts′
(
∀s ∈ S[s′]ϕ(s)→ ∃s (s′ ⊆ s ∧ ϕ(s))

)
,

and we can take S := Λs′.〈s′〉.
The interpretation of US∗ is

∃stT ∀sts′′
(
∀s∃s′ ∈ s′′ (s′ ⊆ s→ ϕ(s))→ ∃t ∈ T [s′′]ϕ(t)

)
;

since ∀s∃s′ ∈ s′′ (s′ ⊆ s→ ϕ(s)) implies ϕ(s′′0 · . . . · s′′|s′′|−1), we can take

T := Λs′′.(s′′0 · . . . · s′′|s′′|−1) .

Corollary 2.26. The system

H := E-HAω∗
st + OS∗ + US∗ + NCR + HACst + HIPst

∀

is a conservative extension of E-HAω∗, hence of E-HAω.

Proof. Follows from the soundness theorem, noting that internal formulae are Dst-interpreted as
themselves.

Theorem 2.27 (Characterisation of nonstandard Dialectica). Let Φ be a formula in the language
of E-HAω∗

st .

(a) H ` Φ↔ ΦDst .

(b) If for all formulae Ψ of the language of E-HAω∗
st , with ΨDst = ∃sts∀sty ψ(s, y),

H + Φ ` Ψ

implies that there exist closed terms t such that

E-HAω∗ ` ∀y ψ(t, y)

holds, then H ` Φ .

Proof. See [3, Theorem 5.8].

Again, we refer to [3] for proofs of other consequences of the soundness and characterisation
theorems, including the closure of H under the transfer rules

TR∀ :
∀stx : σ ϕ(x)

∀x : σ ϕ(x)
,

TR∃ :
∃x : σ ϕ(x)

∃stx : σ ϕ(x)
.

In summary, the Dst interpretation is characterised by two reasonable nonstandard principles,
and three principles which share the attribute herbrandised - something we will later explain in
detail. In the next section, we will show that, under the right interpretation of a first order
language, these principles are true in Moerdijk’s topos of filters.
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3 The filter topos N
For this section, we assume some basic knowledge about Grothendieck topoi, what it means to
interpret a first order language in a Heyting category, and forcing semantics; [21, Chapter 4] and
[16, Chapter 6] can be used as a reference.

3.1 The filter construction

In [5], Blass introduced a category of filters of sets and “continuous” maps between them; rediscov-
ered by Moerdijk, it was used as the underlying category of a site, whose sheaves provided a model
of nonstandard arithmetic.

This category arises from Set as a special case of a general construction - the filter construction -
whose properties and functoriality were studied by Butz in [6]. When applied on arbitrary categories
with finite limits, it can be considered as a completion of the subobject posets under arbitrary meets.
We will briefly discuss the general construction, following Butz, before specialising to the case of
Set.

We start by recalling the definition of filter on a ∧-semilattice, i.e. on a poset with all finite
meets.

Definition 3.1. Let S be a ∧-semilattice. A filter on S is an inhabited, upwards closed subset of
S that is closed under binary meets.

We say that a filter is proper if it does not coincide with S; otherwise, it is non proper.

Following Palmgren, we would rather work with filter bases, indexed by a set I.

Definition 3.2. A filter base FI on S is an inhabited set {Fi}i∈I of elements of S, such that, for
all i, j ∈ I, there exists k ∈ I such that Fk ≤ Fi ∧ Fj .

A filter base generates a filter, as follows: A belongs to the filter if and only if there exists i ∈ I
such that Fi ≤ A.

Notice that a filter base generates a non proper filter if and only if it contains the bottom
element.

In every category C with finite limits, the subobject posets are in fact ∧-semilattices; it is there-
fore possible to speak of filters of subobjects. That is sufficient to perform the filter construction.

Definition 3.3. Let C be a finitely complete category. The filter category FC over C is described
by the following data.

• Objects are pairs (C,FI), where C is an object of C, and FI is an I-indexed filter base on
Sub(C).

We will usually write F for (C,FI), when the underlying object and indexing set are not relevant,
and just call it a filter. We say that the Fi, i ∈ I, are the base objects of the filter.

• Morphisms are “germs of continuous morphisms”. A continuous morphism α : (C,FI) →
(D,GJ) is a partial morphism

Fi

C D

α

in C, defined on some base object Fi, such that for all j ∈ J , there exists i′ ∈ I such that
Fi′ ≤ α∗Gj in Sub(C).
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We declare two such morphisms α : Fi → D, α′ : Fj → D equivalent if there exists k ∈ I
such that Fk ≤ Fi ∧ Fj , and α

∣∣
Fk

= α′
∣∣
Fk

; that is, the following pullback square commutes:

Fk Fi

Fj D .

α

α′

We have an embedding of C into FC, where an object C of C is identified with the “simple” filter
(C, {C}). We will usually still denote the latter with C.

We will not be overly pedantic about distinguishing between morphisms and their germs, and
will write both in the same style.

Lemma 3.4. The category FC is finitely complete.

Proof. It is sufficient that FC has a terminal object, binary products and equalisers. We give their
construction, and omit the proof of the universal properties.

The terminal object is the filter (1, {1}). The product of (C,FI) and of (D,GJ) is the filter
(C ×D, (F × G)I×J), where (F × G)(i,j) := Fi × Gj , for all i ∈ I, j ∈ J .

The equaliser of two morphisms α, β : (C,FI) → (D,GJ), represented by α : Fi → D and
β : Fj → D, is the inclusion (C ′, (F ∧ C ′)I) � (C,FI), where C ′ is the equaliser of α and β in C,
and (F ∧ C ′)i := Fi ∧ C ′ for all i ∈ I.

Lemma 3.5. A morphism α : F → G of FC, defined on a base object Fi, is a monomorphism if
and only if there exists a base object Fj ≤ Fi such that α

∣∣
Fj

is a monomorphism in C.

Proof. See [6, Lemma 2.2].

Proposition 3.6. For all filters F in FC, Sub(F) is a meet-complete semilattice, and, for all
α : F → G, the change of base functor α∗ preserves all meets.

Proof. By the previous lemma, if α : (C,FI) � (D,GJ) is a monomorphism, there is some base
object Fi such that α

∣∣
Fi

: Fi � D is a monomorphism in C. Then (C,FI) is isomorphic to the

filter (D, (G ∧ Fi)J). It follows that subobjects of (D,GJ) are in one-to-one correspondence to
objects (D,G′J′), such that the base G′J′ generates a filter larger than GJ .

Given an arbitrary family of subobjects
{(
D,G(i)

J(i)

)}
i∈I , let H be the filter generated by finite

meets of the form
G(i1)
j(i1) ∧ . . . ∧ G

(in)

j(in) ,

for (i1, . . . , in) an arbitrary finite sequence in I, and j(ik) ∈ J (ik), k = 1, . . . , n. Then∧
i∈I

(
D,G(i)

J(i)

)
' (D,H) .

That this is preserved by change of base can be easily verified by the explicit construction of
pullbacks in FC.

An important feature of the filter construction is that it preserves some of the additional prop-
erties that C may have.

Proposition 3.7. Let C be a finitely complete category.
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(a) If C is regular, then FC is also regular.

(b) If C is coherent, then FC is also coherent.

Proof. See [6, Proposition 3.1] and [6, Proposition 3.2], respectively.

Moreover, if C has all finite coproducts, then FC has them too. In this case, the initial object of
FC is the simple filter (0, {0}); this is isomorphic to any non proper filter (C,FI), where Fi = 0 for
some i ∈ I. Given two filters (C,FI) and (D,GJ), their coproduct in FC is the filter (C +D, (F +
G)I×J), where (F + G)(i,j) := Fi + Gj , for all i ∈ I, j ∈ J .

It is not, however, the case that FC is necessarily a Heyting category, when C is. But this is
not a problem, since we really only need FSet to be a coherent category.

As it happens, coherent categories admit a “natural” Grothendieck topology, sometimes called
the precanonical topology: for all objects C of C, a K-cover of C is a finite family {fi : Ci → C}ni=1,
such that the union of the images of the fi is the whole of C.

As shown in [11, Example C2.1.12.(d)], K is subcanonical ; that is, representable presheaves, of
the form yC, for C an object of C, are K-sheaves.

Explicitly, for a filter category FC, that {βk : Gk → F}nk=1 is a K-cover means that, for all
choices of base objects Gk,jk of Gk, k = 1, . . . , n, there exists a base object Fi of F such that

Fi ≤ β1G1,j1 ∨ . . . ∨ Gn,jn .

Definition 3.8. We will denote the topos Sh(FSet,K) by N , for nonstandard universe.

As for all Grothendieck topoi, the global sections functor

Γ : N → Set ,

sending a sheaf F to the set Hom(1, F ), has a left adjoint ∆ : Set → N - the constant objects
functor. This can be explicitly characterised as follows: for all sets S, at all filters F of FSet,

(∆S)F = {α : F → S | α takes a finite number of values} .

Here, S is identified with the simple filter (S, {S}). It follows that the Yoneda embedding preserves
all coproducts of a finite number of copies of 1, but not the natural numbers object.

Let L be a many sorted first order language, and suppose we have fixed an interpretation of L
in Set. We call formulae of L internal, and denote them with small Greek letters. We also want
the types of L to be closed under the clause

. if S is a type, then S∗ is a type,

where S∗ is meant to denote the type of finite sequences of elements of type S. We will borrow all
the notation from the first section in handling finite sequences.

We will identify types, function and relation symbols of L with their interpretation in Set, and
use the standard double square bracket notation for the derived interpretations that we are now
going to define. We will take advantage of this semantic overload, and say, for instance, that the
type S is inhabited, or that it is infinite, if its interpretation in Set is; and also that a formula ϕ is
true, if its interpretation is true in Set.

Let Lst be the extension of L with a unary predicate symbol stS ⊆ S for each type S. We
denote formulae of Lst with capital Greek letters. We will use abbreviations

∀stx : S Φ(x) := ∀x : S (stS(x)→ Φ(x)) ,

∃stx : S Φ(x) := ∃x : S (stS(x) ∧ Φ(x)) ,
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as well as the defined predicate

hyperS(s) := ∀stx : S (x ∈ s) ,

for s : S∗, with the relative quantifiers

∀hyps : S∗Φ(s) := ∀s : S∗ (hyperS(s)→ Φ(s)) ,

∃hyps : S∗Φ(s) := ∃s : S∗ (hyperS(s) ∧ Φ(s)) .

We will often drop the subscript, and just write st(x), or hyper(s).
We define an interpretation of Lst in N , as follows:

(i) for each type S, JSK := yS;

(ii) for each constant c : S, JcK := yc : 1→ yS;

(iii) for each function symbol f : S1, . . . , Sn → S, JfK := yf : y(S1 × . . .× Sn)→ yS;

(iv) for each relation symbol R ⊆ S1, . . . , Sn of L, JRK := yR� y(S1 × . . .× Sn);

(v) for each type S, JstSK := ∆S.

In particular, JstNK is the natural numbers object in N , and the larger sheaf JNK is a nonstandard
model of arithmetic.

The following, fundamental theorem connects the forcing semantics of internal formulae in N
with truth in the metatheory. It is found as [24, Theorem 1], and is an extension of [18, Lemma
2.1].

Theorem 3.9. Let ϕ(x) be an internal formula, with free variable x of type S, and (C,FI) a filter.
For all α ∈ JSKF ,

F 
 ϕ(α)

if and only if there exists i ∈ I such that, for all u ∈ Fi, it holds that ϕ(α(u)).

Corollary 3.10 (Transfer theorem). Let ϕ be an internal sentence. Then ϕ is true if and only if

 ϕ.

Theorem 3.9 says everything there is to know about internal formulae; we move on to the
semantics of the standardness predicate.

Lemma 3.11. Let F be a filter, S a type of L, and α ∈ JSKF . Then: F 
 stS(α) if and only if
there exist a K-cover {βk : Gk → F}nk=1, and elements x1, . . . , xn ∈ S, such that the diagrams

Gk F

1 S

βk

! α

xk

commute in FSet, i.e. αβk = xk!, for k = 1, . . . , n.

Proof. Follows immediately from the interpretation chosen for the standardness predicate, and the
description of ∆S.

Lemma 3.12. Let Φ(x, y) be an external formula, with free variables x : S and y : T , F a filter,
and α ∈ JSKF . Then:
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(a) F 
 ∀sty : T Φ(α, y) if and only if, for all y ∈ T , F 
 Φ(α, y!);

(b) F 
 ∃sty : T Φ(α, y) if and only if there exist a K-cover {βk : Gk → F}nk=1, and elements
y1, . . . , yn ∈ T , such that

Gk 
 Φ(αβk, yk!) , k = 1, . . . , n ,

or, equivalently, there exists t ∈ T ∗ such that F 
 ∃y ∈ t! Φ(α, y);

Proof. See [23, Lemma 3.3].

With these lemmata, we are able to prove that the simple axioms that we imposed on the
standardness predicate in the system E-HAω∗

st hold in N . That the predicate respects equality is
immediate; that closed terms are standard amounts, in this context, to the fact that, for all types
S and elements α ∈ JSK1,


 stS(α) ,

as any morphism α : 1→ S is obviously constant.

Proposition 3.13. For all types S, T , the following statement is true in N :

∀stf : S → T ∀stx : S stT (f(x)) .

Proof. By Lemma 3.12, 
 ∀stf : S → T ∀stx : S stT (f(x)) if and only if, for all f ∈ (S → T ), and
x ∈ S,


 stT (f !(x!)) .

But Jf !(x!)K = Jf(x)!K, and the latter is clearly standard.

Proposition 3.14. The external induction schema IAst holds in N .

Proof. Let Φ(x, n) be an external formula, with x : S and n : N, F a filter, and α ∈ JSKF . Suppose

F 
 Φ(α, 0!) ∧ ∀stn : N (Φ(α, n)→ Φ(α,Sn)) .

Then, by Lemma 3.12, we have that F 
 Φ(α, 0!) and that, for all n ∈ N, F 
 Φ(α, n!) implies
F 
 Φ(α,Sn!). By induction in the metatheory, we obtain that, for all n ∈ N,

F 
 Φ(α, n!) ,

so, again by the semantics of the external quantifiers, F 
 ∀stn : NΦ(α, n).

Lemma 3.12 has also the following easy consequence.

Corollary 3.15. Let ϕ be an internal formula. Then 
 ∀stx : S ∃sty : T ϕ(x, y) if and only if it is
true that ∀x ∈ S ∃y ∈ T ϕ(x, y). Equivalently, the rule

TR∀∃ :
∀x : σ ∃y : τ ϕ(x, y)

∀stx : σ ∃sty : τ ϕ(x, y)
.

holds in N .

We have, by now, a good picture of the semantics of first order logic in the filter topos N . In
the next section, we will deal with the characteristic principles of nonstandard Dialectica.
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3.2 Characteristic principles

For the results in this section, we cannot take much credit, since a characterisation of first order
logic in the topoi Sh(FC,K), with C coherent, has already been provided by Butz [6, Proposition
4.5], albeit with a different aim and formalism. The choice of principles, however, is different, due to
our focus on nonstandard arithmetic; moreover, it will allow us to see herbrandisation “in action”,
once we decide to “de-herbrandise” in the following section.

We start from the truly nonstandard principles, sequence overspill and underspill.

Proposition 3.16. The principle OS∗ holds in N .

Proof. Let ϕ(y, s) be an internal formula, with variables y : T , and s : S∗, (C,FI) an arbitrary
filter, α ∈ JT KF , and assume

F 
 ∀sts : S∗ ϕ(α, s) .

By Lemma 3.12, for all s ∈ S∗, F 
 ϕ(α, s!); by transfer (Theorem 3.9), for all s ∈ S∗, there exists
i ∈ I such that, for all u ∈ Fi,

ϕ(α(u), s) .

Define a filter (C × S∗,GI×S∗), as follows: for all i ∈ I, t ∈ S∗,

G(i,t) := {(u, s) |u ∈ Fi ∧ t ⊆ s ∧ ϕ(α(u), s)} .

The filter condition is easily checked: given G(i,t), G(j,t′), pick k ∈ I such that Fk ⊆ Fi ∩ Fj , and
t′′ := t · t′; then, G(k,t′′) ⊆ G(i,t) ∩ G(j,t′).

The projections π1 : G → F , and π2 : G → S∗ are clearly continuous. We now check

G 
 hyper(π2) .

By definition, this means G 
 ∀stx : S (x ∈ π2); equivalently, for all x ∈ S, G 
 x! ∈ π2. By
transfer, it suffices to prove that, for all x ∈ S, there exists (i, t) ∈ I × S∗, such that for all u ∈ Fi,
and s ⊇ t, it holds that x ∈ s; so we can take t := 〈x〉, and i ∈ I arbitrary.

Furthermore, G 
 ϕ(απ1, π2) holds by construction. Hence, in order to derive that

F 
 ∃s : S∗ (hyper(s) ∧ ϕ(α, s)) ,

it remains to show that π1 is covering. Let G(i,t) be an arbitrary base set of G. By the assumption, we
can find j ∈ I such that, for all u ∈ Fj , ϕ(α(u), t); then, if we choose k ∈ I such that Fk ⊆ Fi ∩Fj ,
we have that

Fk ⊆ π1 G(i,t) .

This concludes the proof.

Lemma 3.17. Let Φ(x) be an external formula, x : S, such that


 ∃x : S Φ(x) . (2)

Then
∀y : T

(
∀x : S (Φ(x)→ ϕ(y, x))→ ∃stx : S ϕ(y, x)

)
holds in N for all internal formulae ϕ.
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Proof. Let F be any filter, ϕ(y, x) an internal formula, y : T , and α ∈ JT KF . Suppose F 
 ∀x :
S (Φ(x)→ ϕ(α, x)); equivalently,

F × S 
 Φ(π2)→ ϕ(απ1, π2) . (3)

Assume (2). Then, there exist a cover {Gk → 1}nk=1, and elements σk ∈ JSKGk, k = 1, . . . , n,
such that

Gk 
 Φ(σk) , k = 1, . . . , n .

By our interpretation of the type S, the σk correspond to morphisms σk : Gk → S in FSet; by
monotonicity of the forcing relation, we obtain

F × Gk 
 Φ(σkπ2) ,

which, by the commutativity of the diagrams

F × Gk Gk

F × S S ,

π2

id×σk σk

π2

for k = 1, . . . , n, is the same as F × Gk 
 Φ(π2(id× σk)).
Therefore, from (3), it follows, by monotonicity, that

F × Gk 
 ϕ(απ1, σkπ2) ;

by transfer, for all k = 1, . . . , n, there exist base sets Fik of F , Gk,jk of Gk, such that for all u ∈ Fik ,
and v ∈ Gk,jk , it holds that ϕ(α(u), σk(v)).

Now, since the Gk cover 1, there exists some x ∈ σ1G1,j1 ∪ . . . ∪ σnGn,jn . For such an x, taking
Fi ⊆ Fi1 ∩ . . . ∩ Fin , and using transfer,

F 
 ϕ(α, x!) ;

hence F 
 ∃stx : S ϕ(α, x), which was to be proved.

Proposition 3.18. The principle US∗ holds in N .

Proof. Follows from the previous lemma, by taking Φ(s) := hyper(s), and using for condition (2)
the fact that, by sequence overspill, hyperfinite enumerations of any type exist in N .

Given sequence overspill and underspill, one can adapt the proofs of the first section to show
that other principles, including idealisation and the herbrandised generalised Markov’s principle,
hold in N . However, one should pay attention to the fact that, while finite types were all inhabited,
and actually had infinitely many elements, in this context a type S can be finite, or even empty.
So, for instance, the implication OS∗ → OS only holds for types with infinitely many elements: by
definition of standardness, a finite set has only standard elements.

Next, we deal with two characteristic principles of nonstandard Dialectica, whose validity in the
filter topoi is independent of the metatheory.

Proposition 3.19. The principle NCR holds in N .
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Proof. Let F be any filter, Φ(z, x, y) an external formula, x : S, y : T, z : U , and α ∈ JUKF . Assume
F 
 ∀y : T ∃stx : S Φ(α, x, y) , or, equivalently,

F × T 
 ∃stx : S Φ(απ1, x, π2) .

By the semantics of the ∃st quantifier in N , this means that there exists s ∈ S∗ such that

F × T 
 ∃x ∈ s! Φ(απ1, x, π2) ;

equivalently, since s! = s!π1, F 
 ∀y : T ∃x ∈ s! Φ(α, x, y). Therefore,

F 
 ∃sts : S∗ ∀y : T ∃x ∈ s! Φ(α, x, y) .

The next proof is a variant of one by Butz [6]. It utilises the following, general result about
Grothendieck topoi. Here, a is the sheafification functor.

Lemma 3.20. Let (C, J) be a site. A set {fi : Ci → C}i∈I of morphisms of C is J-covering if
and only if the set {ayfi : ayCi → ayC}i∈I is jointly epimorphic in Sh(C, J).

Proof. See [16, Corollary III.7.7].

Proposition 3.21. The principle HIPst
∀ holds in N .

Proof. Let F be any filter, ϕ(z, x) an internal formula, Ψ(z, y) an external formula, with x : S,
y : T , z : U , and α ∈ JUKF . Suppose

F 
 ∀stx : S ϕ(α, x)→ ∃sty : T Ψ(α, y) .

By the semantics of first order logic in a Heyting category, this is equivalent to

α∗J∀stxϕ(z, x)K ≤ α∗J∃sty : T Ψ(z, y)K

in Sub(yF). By the semantics of the ∀st predicate, we can write

α∗J∀stxϕ(z, x)K = α∗
∧
x∈S

Jϕ(z, x!)K ;

and, by the suitable transfer theorem, for all x ∈ S,

Jϕ(z, x!)K = y{z ∈ U |ϕ(z, x)} .

Since the Yoneda embedding preserves and reflects all limits, we obtain

α∗J∀stxϕ(z, x)K = y
(
α∗
∧
x∈S
{z ∈ U |ϕ(z, x)}

)
=: yH .

For the consequence, we have, by the semantics of ∃st in N , that

α∗J∃sty : T Ψ(z, y)K = α∗
∨
t∈T∗

J∃y ∈ t! Ψ(z, y)K =

=
∨
t∈T∗

α∗J∃y ∈ t! Ψ(z, y)K =:
∨
t∈T∗

Ft ,

where we also used that unions are stable under pullback. Thus, there is a monomorphism m :
yH�

∨
t∈T∗ Ft.
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Let ıt : Ft �
∨
t∈T∗ Fy be the inclusions of the Ft in their union, for all t ∈ T ∗, and consider

the pullback diagrams

m∗Ft Ft

yH
∨
t∈T∗ Ft .

ıt

m

Now, we use the fact that each m∗Ft can be covered with a family of representable sheaves, to
obtain a family {ft : yGt → yH}t∈T∗ of morphisms, such that each mft factors through a single
Ft.

Moreover, since the {ıt : Ft �
∨
t∈T∗ Ft}y∈T jointly cover

∨
t∈T∗ Ft, and in a Heyting pretopos

all epimorphisms are stable under pullback [16, Proposition IV.7.3], the family {ft : yGt → yH}t∈T∗
is jointly epimorphic over yH.

By the previous lemma, we can extract from it a family of the form {yβk : yGk → yH}nk=1,
where {βk : Gk → H}nk=1 is a K-cover in FSet. Let t := t1 · . . . · tn, such that yβk factors through
Ftk , k = 1, . . . , n. Then,

yH = α∗J∀stxϕ(z, x)K ≤ α∗
n∨
k=1

J∃y ∈ tk! Ψ(z, y)K = α∗J∃y ∈ t! Ψ(z, y)K .

Translating back to forcing semantics, this is precisely the statement that

F 
 ∀stx : S ϕ(α, x)→ ∃y ∈ t! Ψ(α, y) ,

from which it follows that

F 
 ∃stt : T ∗
(
∀stx : S ϕ(α, x)→ ∃sty ∈ tΨ(α, y)

)
.

So far, we used no principles whose constructive status is controversial, neither in the construc-
tion of the model, nor in our proofs. However, for our last pair of characteristic principles to hold,
we must require that the axiom of choice holds in the metatheory.

Proposition 3.22. Suppose that the axiom of choice holds in the metatheory. Then the principle
HACst holds in N .

Proof. Let F be any filter, Φ(z, x, y) an external formula, x : S, y : T, z : U , and α ∈ JUKF . Assume

F 
 ∀stx : S ∃sty : T Φ(α, x, y) ;

by Lemma 3.12, this means in N that, for all x ∈ S, there exists t ∈ T ∗ such that

F 
 ∃y ∈ t! Φ(α, x!, y) .

With the axiom of choice, we can find a function f ∈ S → T ∗ such that, for all x ∈ S,

F 
 ∃y ∈ f(x)! Φ(α, x!, y) .

Since Jf(x)!K = Jf !(x!)K, it follows that F 
 ∃stf : S → T ∗ ∀stx : S ∃y ∈ f(x) Φ(α, x, y).

In fact, a herbrandised version of the axiom of choice would suffice; but that would be a strange
axiom to have in one’s metatheory. The condition is necessary to a certain extent, for HACst implies
a herbrandised axiom of choice - call it HAC - in Set: suppose

∀x ∈ S ∃y ∈ T ϕ(x, y) .
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By Corollary 3.15, it follows that 
 ∀stx : S ∃sty : T ϕ(x, y). If HACst holds in N , we can deduce


 ∃stf : S → T ∗ ∀stx : S ∃y ∈ f(x)ϕ(x, y) ;

and, applying the transfer theorem again, we obtain

∃f ∈ S → T ∗ ∀x ∈ S ∃y ∈ f(x)ϕ(x, y)

in Set.
In the same way, the transfer rules can be used to rule out unconstrained validity of other

principles in N , as in the following example.

Example 3.23. Let T (s) be a binary tree, i.e. an internal formula on binary sequences such that

1. T (〈〉) holds, and

2. ∀n,m ∈ N ∀s ∈ 2N (T (s̄m) ∧ n ≤ m)→ T (s̄n), where s̄n := 〈s0, . . . , sn−1〉.

The fan theorem is the statement that for any such T , if, for all sequences s ∈ 2N, there exists
n ∈ N such that ¬T (s̄n), then there exists some n ∈ N such that ¬T (s̄n) holds for all s ∈ 2N.

We consider the following, external version of the fan theorem:

FANst : ∀sts : 2N ∃stn : N¬T (s̄n)→ ∃stn : N∀sts : 2N ¬T (s̄n) .

We claim that, if FANst holds in N , then the fan theorem holds in the metatheory. For suppose
that, for all s ∈ 2N, there exists n ∈ N such that ¬T (s̄n). By transfer,


 ∀sts : 2N ∃stn : N¬T (s̄n) ;

and, if FANst holds, we deduce


 ∃stn : N∀sts : 2N ¬T (s̄n) .

This means that there exists a finite sequence t of natural numbers, such that


 ∃n ∈ t!∀sts : 2N ¬T (s̄n) .

By condition 2 on binary trees, we have that, if ¬T (s̄n) and m ≥ n, then also ¬T (s̄m); therefore,
picking ñ := max{t0, . . . , t|t|−1}, we are sure that


 ∀sts : 2N ¬T (s̄ñ!) .

By transfer, for all s ∈ 2N, ¬T (s̄ñ), and we have proved the fan theorem.

4 The uniform Diller-Nahm interpretation

In this section, we take a step back, forgetting about nonstandard arithmetic for a while; a recon-
sideration of ideas from Lifschitz, Berger, and Hernest leads us to a new functional interpretation -
uniform Diller-Nahm - of which nonstandard Dialectica can be seen, a posteriori, as a herbrandised
version.
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4.1 Calculability and herbrandisation

In [15], Lifschitz made the suggestion to see constructive mathematics as an extension of classical
mathematics. Lifschitz’s proposal is to enrich the language of Heyting arithmetic with a predicate
K(n), “n is calculable”; and then extend Kleene’s recursive realisability relation, write it x rK ϕ,
with the clause

. x rK K(n) if and only if x = n,

all the while interpreting quantifiers uniformly :

. x rK ∀nϕ(n) if and only if ∀n (x rK ϕ(n)),

. x rK ∃nϕ(n) if and only if ∃n (x rK ϕ(n)).

In this definition, quantifiers are, by themselves, completely void of any computational meaning;
it is by invoking quantifiers restricted to calculable numbers, ∀n (K(n)→ . . .), and ∃n (K(n) ∧ . . .),
that one restores it.

A couple of decades later, Lifschitz’s demand was rediscovered, from a completely different
perspective, in the area of proof mining. Rather than the foundational issue of injecting a certain
“modular constructiveness” into classical reasoning, it was the practical problem of more efficient
program extraction from proofs that was addressed.

Even in fully intuitionistic proofs, a fine-grained analysis reveals instances of formulae with
quantifiers that are computationally redundant ; i.e. the constructive content that is encoded in the
quantifiers is never used in the program extracted with the aid of a functional interpretation. This
always happens, in particular, when - in a natural deduction setting - an implication introduction
discharges more then one instance of the same formula, so that the contraction rule needs to be
used.

One would want a way to flag such quantifiers, telling the extraction program to just “pass
through” them. This is the function performed by Berger’s uniform quantifiers [4] and by Hernest’s
quantifiers without computational meaning [9]. But, realisability being a rudimentary functional
interpretation - this is clear, in particular, for Kreisel’s modified brand, see [20] - this is also what
Lifschitz’s calculability predicate achieved!

One possibly unexpected consequence of Lifschitz’s ideas is that there will be two types disjunc-
tion as well. One is a computationally empty disjunction ∨, with

Φ ∨Ψ↔ ∃z : 0 (z = 0→ Φ ∧ ¬ z = 0→ Ψ),

while there is also a computationally relevant disjunction ∨K, with

Φ ∨K Ψ↔ ∃z : 0 (K(z) ∧ z = 0→ Φ ∧ ¬ z = 0→ Ψ).

These are not equivalent: in fact, only the second computationally relevant disjunction will act as a
disjunction with respect to all the formulas in the language; the computationally empty disjunction
only acts as a disjunction with respect to “internal‘’ formulas (i.e., those not containing the K-
predicate).

Herbrandisation can be seen as a way of repairing this schism. The idea is to weaken the
computational meaning of the K-predicate and define instead

. x rK K(n) if and only if x codes a sequence and n is one of the components of the sequence
coded by x.
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This is reminiscent of Herbrand disjunctions in classical logic - whence the name. There are some
technical difficulties to overcome and this idea works especially well in the context of modified
realizability, leading to Herbrand realizability as introduced in [3].

This process of herbrandisation is reflected in many of the characteristic principles of Herbrand
realizability. While the axiom of choice for finite types

AC : ∀x : σ ∃y : τ Φ(x, y)→ ∃f : σ → τ ∀x : σΦ(x, fx)

is a characteristic principle of modified realizability, the herbrandised axiom of choice

HACst : ∀stx : σ ∃sty : τ Φ(x, y)→ ∃stf : (σ → τ∗)∗ ∀stx : σ ∃y ∈ f [x] Φ(x, y)

(writing st again instead of K) is a characteristic principle of Herbrand realizability. It seems natural
to regard many of the characteristic principles of nonstandard Dialectica as herbrandisations of
other, unherbrandised, principles, suggesting that also nonstandard Dialectica can be obtained by
a process of herbrandisation from a functional interpretation which incorporates many of Lifschitz’s
ideas. The aim of this section is to show that this is indeed the case.

Remark 4.1. Note that it is an immediate consequence of herbrandisation that disjunction loses
any constructive meaning. In fact, a good way to think about herbrandisation is as a way of
weakening the computational meaning of the K-predicate in such a way that ∨K collapses to the
ordinary, computationally empty, disjunction.

Something like this is presumably unavoidable when one wants to interpret nonstandard sys-
tems: indeed, there seems to be a clash between the computational meaning of disjunction and
nonstandard arithmetic. One way in which this manifests itself is that systems for nonstandard
arithmetic often do not have the disjunction property: for example, E-HAω∗

st + OS0 does not have
the disjunction property, as proved in [1]. Another manifestation is the incompatibility of Church’s
Thesis for disjunctions

∀x : 0
(
ϕ(x) ∨ ψ(x)

)
→ ∃f : 0→ 0

(
f is computable ∧

∀x : 0 ( f(x) = 0→ ϕ(x) ∧ f(x) 6= 0→ ψ(x) )
)

with the existence of nonstandard models for arithmetic (see [17]), showing, for instance, that there
are no nonstandard models of arithmetic in the effective topos. This should be compared with the
Herbrand topos from [2], where nonstandard models of arithmetic do exist.

Before defining our new functional interpretation, we should first “de-herbrandise” our system.
By the previous discussion, we can already guess that “internal formula” has to be replaced by the
next best thing - “internal and ∨-free formula”.

Notation. If P is an axiom schema where certain schematic variables range over internal
formulae of E-HAω∗

st , we write P∨ for the same axiom schema, where “internal” is replaced by
“internal and ∨-free”.

Our tentative characteristic system is then E-HAω∗
st∨, that is the system E-HAω∗

st with IA∨ in place
of IA, plus the characteristic principles OS∗∨, US∗∨, ACst,

IPst
∀∨ : (∀stx : σ ϕ(x)→ ∃sty : τ Ψ(y))→ ∃sty : τ (∀stx : σ ϕ(x)→ Ψ(y)) ,

NU : ∀y : τ ∃stx : σΦ(x, y)→ ∃stx : σ ∀y : τ Φ(x, y) .

Since the restriction to ∨-free formulae also applies to the internal induction schema IA, we do
not get a proper system of arithmetic. This would actually be inconsistent with the nonstandard
uniformity principle NU.
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Proposition 4.2. In E-HAω∗
st∨, the principle NU implies

¬∀n : 0 (n = 0 ∨ ¬n = 0) .

Proof. Suppose ∀n : 0 (n = 0 ∨ ¬n = 0). This is equivalent to

∀n : 0∃stz : 0 (z = 0→ n = 0 ∧ ¬ z = 0→ ¬n = 0) ,

which, by nonstandard uniformity, implies

∃stz : 0∀n : 0 (z = 0→ n = 0 ∧ ¬ z = 0→ ¬n = 0) ,

the statement that all natural numbers are zero, or all are non-zero; a contradiction.

With the interpretation of st(n) as “n is calculable”, this is not unexpected; for how could we
know whether a non-calculable number is zero or non zero? Notice that ∀stn : 0 (n = 0 ∨ ¬n = 0)
is still provable, thanks to the external induction schema.

The reason why we called NU a uniformity principle is the similarity of

∀s : 0∗ ∃stn : 0 Φ(s, n)→ ∃stn : 0∀s : 0∗Φ(s, n)

to Troelstra’s uniformity principle [30, Proposition 8.21]

UP : ∀S ⊆ N∃n ∈ NΦ(S, n)→ ∃n ∈ N ∀S ⊆ NΦ(S, n) ,

a second-order principle that is validated by higher-order versions of recursive realisability, and
which also has nonclassical consequences.

We can now define our de-herbrandised functional interpretation, prove that it is sound, and
characterised by the desired proof system.

4.2 The U translation

Definition 4.3. To every formula Φ(a) of the language of E-HAω∗
st∨), with free variables a, we

associate inductively its uniform Diller-Nahm translation Φ(a)U = ∃stx∀sty ϕU (x, y, a), where ϕU
is internal and ∨-free.

. ϕ(a)U := ϕU (a) := ϕ(a), for ϕ internal atomic;

. stσ(x)U := ∃sty : σ (y = x) .

Let Φ(a)U = ∃stx∀sty ϕU (x, y, a), Ψ(b)U = ∃stu∀stv ψU (u, v, b):

. (Φ(a) ∧Ψ(b))U := ∃stx, u∀sty, v
(
ϕU (x, y, a) ∧ ψU (u, v, b)

)
;

. (Φ(a) ∨Ψ(b))U := ∃stz : 0, x, u∀sty, v
(
z = 0→ ϕU (x, y, a) ∧ ¬ z = 0→ ψU (u, v, b)

)
;

. (Φ(a)→ Ψ(b))U := ∃stU, Y ∀stx, v
(
∀y ∈ Y xv ϕU (x, y, a)→ ψU (Ux, v, b)

)
;

. (∃zΦ(z, a))U := ∃stx∀sty ∃z ∀y′ ∈ y ϕU (x, y′, z, a) ;

. (∀zΦ(z, a))U := ∃stx∀sty ∀z ϕU (x, y, z, a) ;

. (∃stzΦ(z, a))U := ∃stz, x∀sty ϕU (x, y, z, a) ;

. (∀stzΦ(z, a))U := ∃stX ∀sty, z ϕU (Xz, y, z, a) .
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The first thing to notice is that, if this interpretation is restricted to formulae that contain only
external quantifiers - or, if you prefer, everything is declared standard - it is the same as the usual
Diller-Nahm translation. In fact, except for a minor change in the interpretation of the uniform
existential quantifier, it is to the Diller-Nahm variant precisely what Hernest’s light Dialectica
interpretation is to Dialectica.

Secondly, the interpretation is idempotent : formulae of the form

∃stx∀sty ϕ(x, y, a)

with ϕ internal and ∨-free are interpreted as themselves, as shown by an easy induction on their
structure. This is a feature that the Dst-translation lacked, due to the clause for the ∃st quantifier.

We will now prove soundness of the interpretation. We will not handle everything explicitly,
though: except those concerning the quantifiers, all the logical axioms and rules admit the same
realisers as those for the Diller-Nahm interpretation.

We write E-HAω∗
∨ for the system E-HAω∗ with IA∨ in place of IA.

Theorem 4.4 (Soundness of uniform Diller-Nahm). Suppose

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ + ∆∨ ` Φ(a) ,

where ∆∨ is a set of internal, ∨-free sentences. Let Φ(a)U = ∃stx∀sty ϕU (x, y, a). Then from the
proof we can extract a tuple of closed terms t such that

E-HAω∗
∨ + ∆∨ ` ∀y ϕU (t, y, a) .

Proof. We proceed by induction on the length of the derivation.

1. The logical axioms and rules of intuitionistic first order predicate logic. We consider the
quantifier axioms and rules, and give another couple of examples, referring again to [29, 3.5.4]
for the rest.

(i) Example - weakening : A→ A ∨B.

Suppose AU = ∃stx ∀sty ϕ(x, y, a), BU = ∃stu∀stv ψ(u, v, b). Then

(A→ A ∨B)U = ∃stZ,X ′, U, S ∀stx, y′, v
(
∀y ∈ Sxy′v ϕ(x, y, a)→

(Zx = 0→ ϕ(X ′x, y′, a) ∧ ¬Zx = 0→ ψ(Ux, v, b))
)
,

and we can take
Z := λx.0 , X ′ := λx.x ,

U arbitrary, S := λx, y′, v.〈y′〉 .

(ii) ∀z A→ A[b/z].

Suppose AU = ∃stx ∀sty ϕ(x, y, z, a). Then

(∀z A→ A[b/z])U = ∃stX ′, S ∀stx, y′(
∀y ∈ Sxy′ ∀z ϕ(x, y, z, a)→ ϕ(X ′x, y′, b, a)

)
,

so we can take
X ′ := λx.x , S := λx, y′.〈y′〉 .
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(iii) A[b/z]→ ∃z A.

Suppose AU = ∃stx ∀sty ϕ(x, y, z, a). Then

(A[b/z]→ ∃z A)U = ∃stX ′, S ∀stx, t(
∀y ∈ Sxtϕ(x, y, b, a)→ ∃z ∀y′ ∈ t ϕ(X ′x, y′, z, a)

)
,

and we can take
X ′ := λx.x , S := λx, t.t .

(iv) Example - modus ponens.

Suppose that AU = ∃stx∀sty ϕ(x, y, a), BU = ∃stu∀stv ψ(u, v, b), and that we have terms

t1 realising the interpretation of AU and T 2, T 3 realising the interpretation of (A→ B)U .

This means we have
E-HAω∗

∨ + ∆∨ ` ∀y ϕ(t1, y, a) ,

and
E-HAω∗

∨ + ∆∨ ` ∀x, v
(
∀y ∈ T 3xv ϕ(x, y, a)→ ψ(T 2x, v, b)

)
.

Taking t4 := T 2t1, we obtain

E-HAω∗
∨ + ∆∨ ` ∀v ψ(t4, v, b) ,

as desired.

(v)
B → A

B → ∀z A
.

Suppose that AU = ∃stx∀sty ϕ(x, y, z, a), BU = ∃stu∀stv ψ(u, v, b), where z is not free

in ψ, and that we have terms T 1, T 2 realising (B → A)U . Then,

E-HAω∗
∨ + ∆∨ ` ∀u, y

(
∀v ∈ T 2uy ψ(u, v, b)→ ϕ(T 1u, y, z, a)

)
.

Then T 3 := T 1 and T 4 := T 2 realise the interpretation of B → ∀z A.

(vi)
A→ B

∃z A→ B
.

Suppose that AU = ∃stx∀sty ϕ(x, y, z, a), BU = ∃stu∀stv ψ(u, v, b), where z is not free

in ψ, and that we have terms T 1, T 2 realising (A→ B)U . Then,

E-HAω∗
∨ + ∆∨ ` ∀x, v

(
∀y ∈ T 2xv ϕ(x, y, z, a)→ ψ(T 1x, v, b)

)
.

We have

(∃z A→ B)U = ∃stU, S ∀stx, v(
∀s ∈ Sxv ∃z ∀y ∈ sϕ(x, y, z, a)→ ψ(Ux, v, b)

)
;

so we can take T 3 := T 1, and T 4 := λx, v.〈T 2xv〉 , to obtain

E-HAω∗
∨ + ∆∨ ` ∀x, v

(
∀s ∈ T 4xv ∃z ∀y ∈ sϕ(x, y, z, a)→ ψ(T 3x, v, b)

)
.

2. The nonlogical axioms of extensional Heyting arithmetic in all finite types (with the restricted
induction schema IA∨). These are all internal and ∨-free, hence are realised by the empty
tuple.
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3. The defining axioms of the external quantifiers. Let Φ(x)U := ∃stu∀stv ϕ(u, v, x) here.

(i) ∀stxΦ(x)↔ ∀x (st(x)→ Φ(x)) .

The interpretation of ∀stxΦ(x)→ ∀x (st(x)→ Φ(x)) is

∃stU ′, S, T ∀stU, y, v′
(
∀x ∈ SUyv′ ∀v ∈ TUyv′ ϕ(Ux, v, x)→

∀x (x = y → ϕ(U ′Uy, v′, x))
)

;

so we can take
U ′ := λU, y.Uy , S := λU, y, v′.〈y〉 ,
T := λU, y, v′.〈v′〉 .

On the other hand, the interpretation of ∀x (st(x)→ Φ(x))→ ∀stxΦ(x) is

∃stU ′, S, T ∀stx′, U, v′
(
∀y ∈ Sx′Uv′ ∀v ∈ Tx′Uv′ ∀x

(x = y → ϕ(Uy, v, x))→ ϕ(U ′Ux′, v′, x′)
)
,

and we can take
U ′ := λU, x′.Ux′ , S := λx′, U, v′.〈x′〉 ,
T := λx′, U, v′.〈v′〉 .

(ii) ∃stxΦ(x)↔ ∃x (st(x) ∧ Φ(x)) .

The interpretation of ∃stxΦ(x)→ ∃x (st(x) ∧ Φ(x)) is

∃stY, U ′, T ∀stx, u, s
(
∀v ∈ Txus ϕ(u, v, x)→

∃x′ ∀v′ ∈ s (Y xu = x′ ∧ ϕ(U ′xu, v′, x′))
)

;

so we can take
Y := λx, u.x , U ′ := λx, u.u ,

T := λx, u, s.s .

The interpretation of its converse ∃x (st(x) ∧ Φ(x))→ ∃stxΦ(x) is

∃stX,U, S ∀sty, u′, v
(
∀s ∈ Syu′v ∃x′ ∀v′ ∈ s

(y = x′ ∧ ϕ(u′, v′, x′))→ ϕ(Uyu′, v,Xyu′)
)
,

and we can take
X := λy, u′.y , U := λy, u′.u′ ,

S := λy, u′, v.〈〈v〉〉 .

4. The axioms for the standardness predicate.

(i) st(x) ∧ x = y → st(y) .

The interpretation of this axiom is

∃stY ′ ∀stx′ (x = x′ ∧ x = y → y = Y ′x′) ,

so we can take Y ′ := λx′.x′ .

(ii) st(a) for all closed terms a.

We have (st(a))U = ∃stx (a = x), so we can take x := a.
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(iii) st(f) ∧ st(x)→ st(fx).

The interpretation of this axiom is

∃stY ∀stf ′, x′ (f = f ′ ∧ x = x′ → fx = Y f ′x′) ,

so we can take Y := λf ′, x′.f ′x′ .

5. The external induction schema.

As in [3], we consider the equivalent external induction rule

IRst :
Φ(0) ∀stn : 0 (Φ(n)→ Φ(n+ 1))

∀stn : 0 Φ(n)
,

from which the external induction schema is obtained by taking Φ(m) := Ψ(0) ∧ ∀stn :
0 (Ψ(n)→ Ψ(n+ 1))→ Ψ(m) .

So, suppose that (Φ(n))U = ∃stx∀sty ϕ(x, y, n, a), and that we have realisers t1, and T 2, T 3

for the premises; i.e.
E-HAω∗

∨ + ∆∨ ` ∀y ϕ(t1, y, 0, a) ,

and
E-HAω∗

∨ + ∆∨ ` ∀n, x, y′ (∀y ∈ T 3nxy
′ ϕ(x, y, n, a)→ ϕ(T 2nx, y

′, n+ 1, a)) .

By taking T 4 := λn.Rt1T 2n, we obtain, by induction for ∨-free formulae in E-HAω∗
∨ , that

E-HAω∗
∨ + ∆∨ ` ∀n, y ϕ(T 4n, y, n, a) ,

which was to be proved.

6. The principles OS∗∨,US
∗
∨,NU,AC

st, IPst
∀∨.

(i) OS∗∨ : ∀stsϕ(s)→ ∃s (∀stx (x ∈ s) ∧ ϕ(s)) , with ϕ internal and ∨-free.

This is interpreted as

∃stS ∀sts′
(
∀s ∈ Ss′ ϕ(s)→ ∃s (s′ ⊆ s ∧ ϕ(s))

)
,

and we can take S := λs′.〈s′〉 .

(ii) US∗∨ : ∀s (∀stx (x ∈ s)→ ϕ(s))→ ∃stsϕ(s) , with ϕ internal and ∨-free.

The interpretation of this axiom schema is

∃stS ∀sts′
(
∀s (s′ ⊆ s→ ϕ(s))→ ϕ(Ss′)

)
;

so we can take S := λs′.s′ .

For the principles NU,ACst, IPst
∀∨, we can just observe that the premise and the conclusion

have identical interpretations, so it is trivial to find realisers for the implication. We do the
first as an example.

(iii) NU : ∀y ∃stxΦ(x, y)→ ∃stx∀yΦ(x, y) .

Let Φ(x, y)U := ∃stu∀stv ϕ(u, v, x, y). Both the premise and the conclusion are inter-
preted as

∃stx, u∀stv ∀y ϕ(u, v, x, y) ;
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so the implication is interpreted as

∃stX ′, U ′, S ∀stx, u, v′
(
∀v ∈ Sxuv′ ∀y ϕ(u, v, x, y)→ ∀y ϕ(U ′xu, v′, X ′xu, y)

)
,

and we can take
X ′ := λx, u.x , U ′ := λx, u.u ,

S := λx, u, v′.〈v′〉 .

This concludes the proof.

As usual, soundness of an interpretation leads to a conservation result.

Corollary 4.5. The system

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨

is conservative with respect to ∨-free formulae of E-HAω∗
∨ .

Proof. Follows immediately from the previous theorem.

Now, let
H := E-HAω∗

st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst
∀∨ .

Theorem 4.6 (Characterisation of uniform Diller-Nahm). Let Φ be a formula in the language of
E-HAω∗

st∨.

(a) H ` Φ↔ ΦU .

(b) If for all formulae Ψ of the language of E-HAω∗
st∨), with ΨU = ∃stx∀sty ψ(x, y),

H + Φ ` Ψ

implies that there exist closed terms t such that

E-HAω∗
∨ ` ∀y ψ(t, y)

holds, then H ` Φ .

Proof. We prove (a) by induction on the logical structure of Φ. For Φ ≡ ϕ internal atomic, obviously
H ` ϕ↔ ϕU .

Let Φ ≡ st(x). If x is standard, it follows that ∃sty (x = y), by taking y := x. Conversely, if
∃sty (x = y), by the first axiom for the standardness predicate it follows that x is standard. Hence,

H ` st(x)↔ ∃sty (x = y) .

For the induction hypothesis, using an appropriate embedding of tuples of types into higher
types, and a compatible coding of tuples of terms [29, 1.6.17], we can assume, given formulae Φ
and Ψ, that there exist internal, ∨-free formulae ϕ, ψ such that

H ` Φ(x)↔ ∃stx∀sty ϕ(x, y) ,

H ` Ψ(x)↔ ∃stu∀stv ψ(u, v) .

(i) For ∧, by intuitionistic logic,

∃stx∀sty ϕ(x, y) ∧ ∃stu∀stv ψ(u, v)

is equivalent to
∃stx, u∀sty, v (ϕ(x, y) ∧ ψ(u, v)) .
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(ii) For ∨,
∃stx∀sty ϕ(x, y) ∨ ∃stu∀stv ψ(u, v)

is equivalent in H to

∃stz : 0 (z = 0→ ∃stx ∀sty ϕ(x, y) ∧ ¬ z = 0→ ∃stu∀stv ψ(u, v)) .

By IPst
∀∨, this is equivalent to

∃stz : 0
(
∃stx ∀sty (z = 0→ ϕ(x, y)) ∧ ∃stu∀stv (¬ z = 0→ ψ(u, v))

)
,

and we are back to the case of conjunction.

(iii) For →, we proceed as with Diller-Nahm implication. By intuitionistic logic and the principle
IPst
∀∨,

∃stx∀sty ϕ(x, y)→ ∃stu∀stv ψ(u, v)

is equivalent to
∀stx ∃stu∀stv (∀sty ϕ(x, y)→ ψ(u, v)) .

Now, adapting Proposition 2.23, we see that E-HAω∗
st∨ + US∗∨ ` HGMPst

∨ , so this is equivalent
to

∀stx ∃stu∀stv ∃sts (∀y ∈ sϕ(x, y)→ ψ(u, v)) .

Two applications of ACst then lead to

∃stU, S ∀stx, v (∀y ∈ Sxv ϕ(x, y)→ ψ(Ux, v)) .

(iv) For ∃z, adapting Proposition 2.20, we see that E-HAω∗
st∨ + OS∗∨ ` I∨; therefore

∃z ∃stx∀sty ϕ(x, y, z)

is equivalent to
∃stx∀sts∃z ∀y ∈ sϕ(x, y, z) .

(v) For ∀z, we use that by NU
∀z ∃stx∀sty ϕ(x, y, z)

is equivalent to
∃stx∀sty ∀z ϕ(x, y, z) .

(vi) For ∃stz, nothing really needs to be done.

(vii) For ∀stz, we just use ACst once in order to obtain that

∀stz ∃stx∀sty ϕ(x, y, z)

is equivalent to
∃stX ∀sty, z ϕ(Xz, y, z) .

This proves item (a). For (b), suppose Φ satisfies the condition, and that ΦU = ∃stx∀sty ϕ(x, y).
Then, from

H + Φ ` Φ

it follows that there exist closed terms t such that

E-HAω∗
∨ ` ∀y ϕ(t, y) .
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From this, we obtain E-HAω∗
st∨ ` ∀sty ϕ(t, y) , whence

E-HAω∗
st∨ ` ∃stx∀sty ϕ(x, y) ;

so H ` ∃stx ∀sty ϕ(x, y) as well. But then, by the equivalence of (a),

H ` Φ

which was to be proved.

We now show how the uniform Diller-Nahm interpretation may be used to extract programs
from proofs, and eliminate instances of its characteristic principles.

Theorem 4.7 (Program extraction by the U interpretation). Let ∀stx ∃sty ϕ(x, y) be a sentence of
E-HAω∗

st∨, with ϕ internal and ∨-free, and let ∆∨ be a set of internal, ∨-free sentences. If

E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ + ∆∨ ` ∀stx ∃sty ϕ(x, y) ,

then from the proof we can extract a closed term T such that

E-HAω∗
∨ + ∆∨ ` ∀xϕ(x, Tx) .

Proof. The U translation of ∀stx∃sty ϕ(x, y) is

∃stf ∀stxϕ(x, fx) ,

so the thesis immediately follows from the soundness theorem.

Finally, we derive a few properties of the system H, which follow from the properties of the
uniform Diller-Nahm interpretation.

Proposition 4.8. The system E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ is closed under the
restricted transfer rules

TR∀∨ :
∀stx : σ ϕ(x)

∀x : σ ϕ(x)
,

TR∃∨ :
∃x : σ ϕ(x)

∃stx : σ ϕ(x)
,

where ϕ ranges over internal ∨-free formulae.

Proof. This is an adaptation of [3, Proposition 5.12]. Suppose

H ` ∀stxϕ(x) .

By the soundness theorem, it follows that

E-HAω∗
∨ ` ∀xϕ(x) ,

which, since H is an extension of E-HAω∗
∨ , implies H ` ∀stxϕ(x) .

Now, suppose
H ` ∃xϕ(x) ;

by conservativity, this implies E-HAω∗
∨ ` ∃xϕ(x). Being a subsystem of E-HAω∗, E-HAω∗

∨ inherits
the existence property; so we can find a closed term t such that

E-HAω∗
∨ ` ϕ(t) .

Since t is provably standard in H, this implies H ` ∃stxϕ(x) .
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Proposition 4.9. The system H := E-HAω∗
st∨ + OS∗∨ + US∗∨ + NU + ACst + IPst

∀∨ has the following
form of the existence property: if

H ` ∃stxΦ(x) ,

then there exists a closed term t such that H ` Φ(t).

Proof. Let Φ(x)U = ∃stu∀stv ϕ(x, u, v). By the characterisation theorem, H proves that Φ is
equivalent to its U translation; so, if H ` ∃stxΦ(x),

H ` ∃stx, u∀stv ϕ(x, u, v) .

By soundness of uniform Diller-Nahm, we can extract closed terms t, T such that

E-HAω∗
∨ ` ∀v ϕ(t, T , v) ;

which, by conservativity, and weakening the quantifier, implies

H ` ∀stv ϕ(t, T , v) .

Since the terms in T are provably standard in H, we obtain

H ` ∃stu∀stv ϕ(t, u, v) ,

which, again by the characterisation theorem, implies H ` Φ(t).

Corollary 4.10. The system E-HAω∗
st∨+OS∗∨+US∗∨+NU+ACst+IPst

∀∨ has the disjunction property.

Proof. Follows from the validity of Φ ∨ Ψ ↔ ∃stz : 0 (z = 0 → Φ ∧ ¬ z = 0 → Ψ) in H, and the
previous proposition.

4.3 De-herbrandisation and the topos U
Let us examine how de-herbrandisation is reflected in the topos-theoretic analysis. By looking at
Lemma 3.12.(b), we see that herbrandisation has a direct categorical analogue in the choice of finite
families as K-covers. The obvious choice for uniform Diller-Nahm, then, is to consider the smaller
topology K1, where covers of an object C are single covering morphisms {f : D � C}. A fortiori,
K1 is also subcanonical for coherent categories.

Definition 4.11. The Grothendieck topos Sh(FSet,K1) will be called U .

The constant objects functor ∆1 of U is defined, for all sets S, at all filters F of FSet, by

(∆1S)F = {α : F → S | α is constant} .

We have ∆12 ' 1 + 1 =: 2 in U , for ∆1 preserves coproducts; unlike in N , there is a proper
monomorphism m : 2 � y2. Moreover, since the sheafification functor a of N is itself left adjoint
to the inclusion of N in U , we have that a∆12 ' y2. We say that m is a K-dense morphism.

Indeed, this fact alone characterises the topology of N with respect to U . We recall a general
result about elementary topoi.

Proposition 4.12. Let m : A� X be a monomorphism in a topos E. Then there exists a smallest
local operator j on E such that m is j-dense.

Proof. See [11, Example A4.5.14.(b)].
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We can now provide a characterisation of N as a subtopos of U .

Proposition 4.13. Let j be the smallest local operator on U such that m : 2 � y2 is j-dense.
Then shj(U) ' N .

Proof. First observe that it the relevant definitions imply that the K-covering families are precisely
those finite families {Gk → F}nk=1 such that G1 + G2 + . . . + Gk → F is K1-covering. From this
description, it follows that K is the smallest topology extending K1 for which also families consisting
of two sum inclusions {F1 → F1 + F2,F2 → F1 + F2} are covering.

So to prove the proposition, it suffices to show that for any local operator for which m : 2 � y2 is
j-dense, we must have that families consisting of two sums inclusions {F1 → F1+F2,F2 → F1+F2}
are j-covering. To show this, consider the pullback square:

yF1 + yF2 2

y(F1 + F2) y2,

m

where the map on the bottom of the square is obtained by applying the Yoneda embedding to the
coproduct of the maps F1 → 1 and F2 → 1. So if m is j-dense, then so must be the map on the
left of the square. But then it follows from Lemma 3.20 that {F1 → F1 + F2,F2 → F1 + F2} is
j-covering.

Let Lst be a first order language enriched with a standardness predicate, as in Section 3; we
interpret Lst in U just as we did in N , except that we take

(v’) for each type S, JstSK := ∆1S,

so that JstNK is again the natural numbers object.
As we foretold, “internal” becomes “internal and ∨-free” in this larger topos. Let 
1 be the

forcing relation in U .

Theorem 4.14. Let ϕ(x) be an internal, ∨-free formula, with free variable x of type S, and (C,FI)
a filter. For all α ∈ JSKF ,

F 
1 ϕ(α)

if and only if there exists i ∈ I such that, for all u ∈ Fi, it holds that ϕ(α(u)).

Corollary 4.15 (Transfer theorem). Let ϕ be an internal and ∨-free sentence. Then ϕ is true if
and only if 
1 ϕ.

The standardness predicate, and consequently the existential quantifier, are de-herbrandised, as
we wished.

Lemma 4.16. Let F be a filter, S a type of L, and α ∈ JSKF . Then:

(a) F 
1 stS(α) if and only if there exist a covering map β : G � F , and an element x ∈ S, such
that αβ = x! in FSet;

(b) F 
1 ∀sty : T Φ(α, y) if and only if, for all y ∈ T , F 
1 Φ(α, y!);

(c) F 
1 ∃sty : T Φ(α, y) if and only if there exists y ∈ T such that F 
1 Φ(α, y!).

Proof. Easy variation on the proof of Lemma 3.12.
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Proposition 4.17. The following principles all hold in U : OS∗∨,US
∗
∨, IP

st
∀∨,NU, and, if the axiom

of choice holds in the metatheory, ACst.

Proof. Same as for the corresponding principles in N , with only minor adjustments required (pick
single covering maps instead of finite families).

Before moving on to the conclusions, we want to remark that, irrespective of any interest in
nonstandard arithmetic, and with the caveat about ACst and the axiom of choice, U also provides
a model for the logic of the “standard” Diller-Nahm translation, under the interpretation J0K∧ :=
∆1N, J0 → 0K∧ := ∆1(N → N), etc. In this case, we obtain a weaker transfer theorem for ∨-free
formulae whose quantifiers are all bounded, i.e. they range over some finite sequence.

5 Conclusions and directions for future work

If we are to sum up what we believe are conceptually interesting points of this paper, it may come
down to the following.

1. Sequence overspill and underspill. These are two principles, one dual to each other, that not
only seem to be useful, and constructively acceptable generalisations of overspill and underspill
to higher types; but they are also linked to well-known nonconstructive principles, the lesser
limited principle of omniscience, and Markov’s principle, suggesting that classical modes of
reasoning can be recovered in a constructive nonstandard calculus.

2. The significance of U . The filter topos U doubles as a model of the logic of the Diller-Nahm
interpretation, and as a cue to its extension with uniform quantifiers - the uniform Diller-Nahm
interpretation. This was previously unknown, and might lead to an improved understanding
of the underlying, geometric structure of Diller-Nahm logic.

3. A better view on herbrandisation. The comparison of N with U provided a categorical coun-
terpart to herbrandisation, and allowed for a refined analysis of its effects. This includes the
re-contextualisation of NCR as a herbrandised uniformity principle; on the contrary, the role
of finite sequences in HGMPst appeared to be a byproduct of their role in US∗, rather than
the result of herbrandisation.

A final consideration: the introduction of the nonstandard Dialectica interpretation in [3] had
nonstandard analysis as its main motivation; the benchmark to meet was eliminating overspill and
underspill from proofs, retrieving what computational content they may have. But our analysis
of uniform Diller-Nahm suggests an alternative route: one where we start with the Dialectica
interpretation, and progressively apply small “patches”, fixing whichever shortcomings might arise.

So Dialectica requires decidability of atomic formulae: we may be unhappy with that, and turn
to Diller-Nahm. Then we could add uniform quantifiers à la Hernest, with optimisation of program
extraction in mind; which would lead us to uniform Diller-Nahm. Then, we notice that the system
we obtain - E-HAω∗

st∨ and characteristic principles - is just one connective away from being a system
of intuitionistic arithmetic. Also, fixing that may require that we weaken the existence property;
this way, we may come up with herbrandisation, and obtain, in principle, the Dst interpretation,
without ever actually thinking of nonstandard arithmetic.

In fact, we can take the “equation”

standardness ' herbrandised calculability

as a definition of sorts; one that replaces the intuition of nonstandard natural numbers as having a
separate existence, lying, somewhere beyond reach, on a line together with the finite ones, with an
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“operational” interpretation: a nonstandard number is badly incalculable - so badly, that it cannot
even be narrowed down to a finite selection of candidates.

We conclude with a review of new questions that our results raise.
Then, we defined a new functional interpretation, but ignore, so far, how useful it is for appli-

cations. Its similarity to light Dialectica is encouraging; on the other hand, the use of functional
interpretations has been most successful in program extraction from classical proofs, and we have
not investigated yet how well uniform Diller-Nahm composes with negative translations, such as
Kuroda’s [14].

In light of the results of Chapter 3, Palmgren’s work on the topos N indicates that the charac-
teristic principles of nonstandard Dialectica lead to a useful calculus for nonstandard analysis. We
conjectured that the characteristic principles of uniform Diller-Nahm may be a good axiomatisation
of Lifschitz’s calculability arithmetic [15]; is this correct, and could this also be a useful calculus by
itself?

On a more speculative note, Oliva provided in [20] a unified view of the Dialectica, Diller-Nahm,
and modified realisability interpretations, through linear logic. Is there an equivalent of herbran-
disation in linear logic - connected, perhaps, to the bang (!) modaliser - such that nonstandard
Dialectica and Herbrand realisability, too, would be amenable to such a treatment?

We hope that these, and related questions can be answered in future work.
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