Imperative process algebra and models of parallel computation.

Abstract

Studies of issues related to computability and computational complexity involve the use of a model of computation. Central in such a model are computational processes. Processes of this kind can be described using an imperative process algebra based on ACP (Algebra of Communicating Processes). In this paper, it is investigated whether the imperative process algebra concerned can play a role in the field of models of computation. It is demonstrated that the process algebra is suitable to describe in a mathematically precise way models of computation corresponding to existing models based on sequential, asynchronous parallel, and synchronous parallel random access machines as well as time and work complexity measures for those models.