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1 Introduction

The PAR (Positive Acknowledgement with Retransmission) protocol [13] is a
communication protocol which is based on time-outs of positive acknowledge-
ments. Timing is essential for the correct behaviour of the PAR protocol: the
protocol behaves only correctly if the time-out time of the sender, i.e. the time
after which it retransmits a datum for which it is still awaiting an acknowl-
edgement, is longer than the time that a complete protocol cycle takes. There
have been various attempts to describe this protocol using process algebra with-
out timing. In most attempts, e.g. the attempt presented in [14], it is excluded
that the sender times out too early by inhibiting it so long as it does not lead
to deadlock. However, this boils down to assuming an oracle that informs the
sender whenever a datum or an acknowledgement has got lost. We consider such
attempts, which resort to artificial tricks, unsatisfactory. In other attempts, the
premature time-out of the sender is not excluded at all. Those attempt are un-
questionable unsatisfactory as well.

In this paper, we begin by using the version of process algebra with discrete
relative timing and abstraction from [4] to describe the PAR protocol and to
show that the protocol behaves correctly if the time-out time of the sender is
longer than the time that a complete protocol cycle takes. In order to achieve this
result, it is necessary to take the timing of actions into account in all calculations



that must be done before abstraction from the actions that should be regarded as
internal can be applied. From the point where abstraction from those actions can
be applied, the timing of actions is no longer relevant. Actually, many internal
actions can only be removed after abstraction from the timing of actions.

It would facilitate performance analysis if most internal actions could be
removed without preceding abstraction from the timing of actions. The axioms
used for the removal of internal actions are based on the version of branching
bisimulation equivalence for processes with discrete relative timing introduced
in [2], known as rooted branching tail bisimulation equivalence. What is needed
in the case of performance analysis, is an equivalence that is coarser than that
version of branching bisimulation equivalence. Therefore, we propose a coarser
equivalence, with a plausible motivation, which still coincides with the original
version of branching bisimulation equivalence from [9] in the case without timing.
We show that in the case of the PAR protocol all internal actions that hinder
performance analysis can be removed without preceding abstraction from the
timing of actions if we use the axioms based on the new equivalence.

The structure of this paper is as follows. First of all, a brief summary of
the version of process algebra with discrete relative timing primarily used in
this paper is given (Section 2). Next, we use this version to describe the PAR
protocol (Section 3) and to analyze it (Sections 4 and 5). After that, we introduce
a variant of the version of branching bisimulation equivalence for processes with
discrete relative timing from [2] and the axioms corresponding with the new
equivalence (Sections 6 and 7). Then, we continue the analysis using the new
axioms (Section 8). Finally, some concluding remarks are made (Section 9).

2 Process Algebraic Preliminaries

The version of process algebra with discrete relative timing used in Sections 3,
4 and 5 is ACP¥?* [3] extended with abstraction and guarded recursion. This
section gives a brief summary. For reference, the axioms are given in Appendix A.
For a comprehensive overview of ACPt, and its extension with abstraction and
guarded recursion, the reader is referred to [4].

ACPdrt

In the case of ACPt, timing is relative to the time at which the preceding action
is performed and time is measured on a discrete time scale. Measuring time on
a discrete time scale means that time is divided into time slices and timing of
actions is done with respect to the time slices in which they are performed.
Roughly speaking, ACP¥* is ACP [7,6] extended with three operators to deal
with timing: relative delay, relative time-out, and relative initialization. The first
operator is a basic one and the latter two operators are useful auxiliary ones.
ACP®* has the following constants and operators:

— the undelayable action a, written a, is the process that performs action a in
the current time slice and then terminates successfully;



— the undelayable deadlock, written g, is the process that is neither capable of
performing any action in the current time slice nor capable of idling till the
next time slice;

— the deadlocked process, written 5, is the process that can be viewed as (a
trace of) a process that has deadlocked before the current time slice;

— the relative delay of p for n time slices, written o7 (p), is the process that
idles till the nth-next time slice and then behaves like p;

— the alternative composition of p; and ps, written p; + po, is the process that
behaves either like p; or like ps, but not both;

— the sequential composition of p; and po, written p; - ps, is the process that
first behaves like p;, but when p; terminates successfully it continues by
behaving like po;

— the parallel composition of p; and po, written p; || pe, is the process that
proceeds with p; and po in parallel;

— the left merge of p; and po, written pq || p2, is the same as p; || p2 except that
p1 || p2 starts with performing an action of py;

— the communication merge of p; and ps, written p; | pa, is the same as p || p2
except that pp | p2 starts with performing an action of p; and an action of
p2 synchronously;

— the encapsulation of p with respect to a set of actions H, written dp (p),
keeps p from performing actions in H;

— the relative time-out of p after n time slices, written v}, (p), keeps p from
idling till the nth-next time slice;

— the relative initialization of p after n time slices, written T
performing actions before the nth-next time slice.

n
rel

(p), keeps p from

We use the notations Y. ¢, and ||l.€I t;, where T = {i1,...,in}, for the al-

ieT
ternative composition t;, + ...+ ¢;, and the parallel composition #;, || ... || t;,,
respectively. We further use the convention that ), _,t; and HZ ez ti stand for ¢

if 7 =10.

In most applications, communication is synchronous communication between
two processes. This kind of communication is called handshaking communication.
An important result is the following expansion theorem, which is useful in the
elimination of parallel compositions in terms of ACPY* in the case where all
communication is handshaking communication.

Theorem (Expansion Theorem). In ACPY ' with the avioms of standard
concurrency and the handshaking axiom, the following equation is derivable for
allm > 2:

1<i<n 1<j<n, 1<i<n, 1<k<n,
J#i i<j<n ki, k#j

The axioms of standard concurrency and the handshaking axiom can be found
in Appendix A.



We introduce some standardized terminology and notation for handshaking
communication. Processes send, receive and communicate data at ports. If a port
is used for communication between two processes, it is called internal. Otherwise,
it is called external. We write:

— s;(d) for the action of sending datum d at port i;
— r;(d) for the action of receiving datum d at port i;
— ¢;(d) for the action of communicating datum d at port i.

The action ¢;(d) is the action that is left when s;(d) and r;(d) are performed
synchronously.

Abstraction

In order to deal with abstraction from certain actions, we have an additional
constant and an additional operator:

— the undelayable silent step, written T, is the process that performs an internal
action, i.e. an action that is considered to be unobservable, in the current
time slice;

— the abstraction of p with respect to a set of actions I, written 77(p), renames
each action of p that is contained in I into an internal action.

Guarded Recursion

In order to cover processes that may never terminate, it is essential to have an
additional way of combining processes: guarded recursion.

A set of equations of the form X = ¢, where X is a variable and ¢ is a
term that contains only variables that are among the variables on the left-hand
sides of the equations in the set, is called a recursive specification. A recursive
specification F satisfies the guardedness criterion if all occurrences of variables
in the right-hand sides of the equations in E are preceded by an action other
than 7 or a delay of at least one time slice. A recursive specification that satisfies
the guardedness criterion, called a guarded recursive specification, has a unique
solution.

For each guarded recursive specification F and each variable X that occurs
on the left-hand side of an equation in E, we introduce a constant (X |E) which
is interpreted as the unique solution for X of E. We usually write X for (X|E)
if F is clear from the context. In those cases, it should also be clear from the
context that we use X as a constant.

The axioms for recursion are known as RDP (Recursive Definition Principle)
and RSP (Recursive Specification Principle). For a fixed recursive specification
E, RDP expresses that the constants (X|E) make up a solution of E and RSP
expresses that this solution is the only one.

Let t be a term and E be a guarded recursive specification. Then we use the
notation (¢|E) for ¢ with, for each variable X that occurs on the left-hand side
of an equation in E, all occurrences of X in t replaced by (X|E).



A system is often described by a term of the form Oy ((X1|E1) (|- . .|| {(Xn|En)),
i.e. as the encapsulated parallel composition of a number of processes that are
described by guarded recursive specifications. The first step in analyzing such a
system is usually the extraction of a guarded recursive specification of the system
from the term describing it. This involves mere algebraic calculations, in which
the expansion theorem plays an important part, and finally application of RSP.
In case the functional correctness is analyzed, we can proceed by extracting a
guarded recursive specification from a term of the form 7;((X|E)) or the form
T1(me((X|E))), where E is the result of the first step and my is the time free
projection operator described below. This involves again application of RSP.

Other extensions

The time free projection of p, written my(p), is the process p made time free.
For any time free process, the following holds: it is always capable of idling till a
future time slice and it is never bound to idle till a future time slice. Thus, with
the time free projection operator, we abstract from the timing of actions.

Let P be an expression, possibly containing variable ¢, such that P[n/i] (P
with n substituted for i) represents a process for all n € N; and let K C N. Then
the summation ), P is the process that behaves like one of the processes
P[n/i] for n € K. Hence, summation is a form of alternative composition over a
set of alternatives that may be countably infinite.

3 Description of the PAR Protocol

We consider a simple version of the communication protocol known as the PAR
protocol. The sender waits for a positive acknowledgement before a new datum
is transmitted. If an acknowledgement is not received within a complete proto-
col cycle, the old datum is retransmitted. In order to avoid duplicates due to
retransmission, data are labeled with an alternating bit from B = {0,1}. The
configuration of the PAR protocol is shown in Fig. 1 by means of a connection
diagram.

Fig. 1. Connection diagram for PAR protocol

We have a sender process S, a receiver process R, and two channels K and L.
The process S waits until a datum d is offered at an external port (port 1). When
a datum is offered at this port, S consumes it, packs it with an alternating bit b



in a frame (d, b), and then delivers the frame at an internal port used for sending
(port 3). Next, S waits until an acknowledgement ack is offered at an internal
port used for receiving (port 5). When the acknowledgement does not arrive
within a certain time period, S delivers the same frame again and goes back
to waiting for an acknowledgement. When the acknowledgement arrives within
that time period, S goes back to waiting for a datum. The process R waits until
a frame (d,b) is offered at an internal port used for receiving (port 4). When a
frame is offered at this port, R consumes it, unpacks it, and then delivers the
datum d at an external port (port 2) if the alternating bit b is the right one
and in any case an acknowledgement ack at an internal port used for sending
(port 6). After that, R goes back to waiting for a frame, but the right bit changes
to (1—0) if the alternating bit was the right one. The processes K and L pass on
frames from an internal port of S to an internal port of R and acknowledgements
from an internal port of R to an internal port of S, respectively. Because the
channels are supposed to be unreliable, they may produce an error instead of
passing on frames or acknowledgements. The times tg,tg,tx,tr are the times
that it takes the different processes to pack and deliver, to unpack and deliver
or simply to deliver what they consume. The time ¢ is the time-out time of the
sender, i.e., the time after which it retransmits a datum in the case where it is
still waiting for an acknowledgement. The time ¢, is the time that it takes the
receiver to produce and deliver an acknowledgement.

We assume that the times tg,tr, tx,tr, s, t); are non-zero. We also assume
a finite set of data D. Let FF = D x B be the set of frames. For d € D and
b € B, we write d,b for the frame (d,b). We use the standardized notation for
handshaking communication introduced in Section 2. The recursive specification
of the sender consists of the following equations:

S = SO )
Sb Zrl : reI SFd b) + Urel(sb)
deD

(for every b € B),

SFap =s3(d,b)- | > ok(rs(ack)) - Si_y + o, S (SF )
k<t

(for every d € D and b € B).

rel

The recursive specification of the receiver consists of the following equations:

R = RO )
Ry = Zm(d’ b) - 0, (s2(d) - 0 rel (SG(CLC]C)) ‘R
deD
+ Y ra(di 1~ b) 01 (sa(ack)) - Ry + ol (Rs)
deD

(for every b € B).



Each of the channels is recursively defined by a single equation:

KE=Y"rs(f) | ot (salH) + D oly(error) | - K + oly(K)

fer k<tx

L =rg(ack) - | otk (ss(ack)) + Z ok (error) | - L+ oL, (L) .
k<tr

The whole system is described by the following term:
(S| K|L|R),
where
H= {Sl(f)arl(f) | (&S {3a4}af € F} U {S,’(GCIC),Ti((J,Ck) | te {5a6}} .

This protocol is only correct if the time-out time t is longer than a complete
protocol cycle, i.e., if t'y > tx + tgp + t5 + tr. If the time-out time is shorter
than a complete protocol cycle, the time-out is called premature. In that case,
while an acknowledgement is still on the way, the sender will retransmit the
current frame. When the acknowledgement finally arrives, the sender will treat
this acknowledgement as an acknowledgement of the retransmitted frame. How-
ever, an acknowledgement of the retransmitted frame may be on the way. If
the next frame transmitted gets lost and the latter acknowledgement arrives, no
retransmission of that frame will follow and the protocol will fail.

4 Analysis of the PAR Protocol: Expansion

We now start to analyze the PAR protocol described in Section 3. We will use a
technique similar to the basic one used in the case without timing.

We first gave guarded recursive specifications of the sender process S, the
receiver process R and the channel processes K and L, and then described the
whole PAR protocol by the term Jg (S || K || L || R). Because all communication is
handshaking communication, the expansion theorem for ACP™ (see Section 2)
is applicable. By using this expansion theorem and RSP, we are able to give a
guarded recursive specification of the whole PAR protocol.

First, we rewrite the recursive specifications of S, R, K and L, using their
equations and the axioms of ACP¥*, to ones in a form that is better suited to
expansion. We refrain from mentioning for each equation schema that there is
an instance for every d € D and/or b € B.

S = SO )
Sy = ZM ’ S;l,b + Urlel(Sb) )
deD

Sé,b = UtS(SS(da b)) - Sc/il,b )

rel

Sy = aki(rs(ack)) - Siy + 01§ (s3(db)) - Sl .

k<t



R =Ry,

Ry = ra(db)- Ry, + Y ra(d, 1 —b) Ry +oL(Ry)
deD d€D444444447
Rl = o't (ss(d) - RI_,

rel

R! =o' (sg(ack)) Ry .
K = Z T3(d b) de+0rel(K) )
(d b)eDx B
Kjy = 0/ (sa(d,b) - K + Y ok (error) - K,

k<tx

L =rg(ack) - L' + oy (L) ,

L' =o'%(s5(ack)) - L + Zcrfe'(errorfL.

rel
k<tr

Secondly, we expand the term 9y (S, || K || L || Ry) by repeated application
of the expansion theorem. Except in the first step, we expand a subterm of the
right-hand side of a previous equation. The subterms concerned are indicated
by putting them in square brackets. We remove in each step immediately those
alternatives that are known to be equal to o), (8) (for some n > 0) because
of incapability to communicate, encapsulation or timing conflict, provided the
removal is justified by the fact that o7 (t) + o7y(d) = o5(¢) is derivable for all
closed terms t # ¢ and for all m,n > 0 such that m > n. In the expansion, we
will use the following abbreviation for every d € D, b€ B and t > 0:

St for > ok (rs(ack)) - S1-p + oty (s3(d, b)) - S, -
k<t

Again, we refrain from mentioning after each equation schema that there is an
instance for every d € D and/or b € B.

O (Sy || K || Ll Ry)

= > r(d) - [0u (S 1 K|V L || Bo)] + oy ([0 (Sy | K || L || Ro)])
deD
[0 (Sl | K || L || Ro)] = 078 (e3(d b)) - [0m (Siy, | Ky | L1 Ry)]

[5H(5&’b | Kap I Ll Rb)]
rel i (ca(d,b)) - [8H( db,tl 7tK K| L Rii,b)]

+ Y ofy(error) - [0u(Sy, 4 | K I L] Re)]
k<tK

[0r (S | KT LI Ry p)] = f§(52(d)) O (ST bt 1 K| L RY )]
(for every t > tg),




[3H(Sé'b KL RY )]
=0 (co(ack)) - [0m (Sgp v, | K || L[| Brp)]
(for every t > th),

[0r (ST | KT L[| Bap)]
= o (cs(ack)) - [0 (S1—p | K || L ]| Ri-)]

+ D otulerror) - [0r(Sp, i I K I L || Ris)]
k<tr
(for every t > tr,),

(06 (S 6 | KNl L || Ro)) = o7a(ca(d, b)) - [0m (S, | Kap || L || o))
(for every t > 0),

[5H(5&'bt | K[| L[| Rip)]
= 0ra(ca(d,0)) - [0m (g, | Koy (I L] Rap)]
(for every t > 0),

[5H(5&'b [ Kap I LIl Razp)]
oref (ca(d, b)) - [aH(Sél/b to—te 1L RY )]
+ Z ok (error) 8H(S(’1’bt, W I K[ L] Ri-)] -

k<tg

If the terms on the left-hand sides of these equations include all unexpanded
terms on the right-hand sides, we have that the terms on the left-hand sides
make up a solution of the guarded recursive specification obtained by replacing
all occurrences of these terms in the equations by occurrences of corresponding
variables. It is easy to see that this is the case iff t'y > tx +tr +t) +¢1. Hence,
we derive from RSP that O (S || K || L || Rp) is the solution for its corresponding
variable of this guarded recursive specification. The guarded recursive specifi-
cation concerned can easily be rewritten, using its equations and the axioms of

ACPIt | to the following sender-oriented guarded recursive specification:

Xy = Zﬁ(d) 07 (Yap) + 00 (Xp) |
deD

Yap = c3(d,b) - ( ot (C4(d b)) o rel (527@) ~Jf§ (ce(ack)) - Zap

+ ) ok (error) 'O’f;_suk(yd,b)> ;

k<tx
Zap = o'k (cs(ack)) - X1y + Z ok (error) ~ats*<tK+tR+tR+k)(Ud,b) ,

s rel
k<tr




+ > o (error) 'Uf(;suk(Ud,b)> ;
kStK ’ /
Vi = o'l (es(ack)) - Xiop + Y ok (error) - olg ™ T m ) (0y,)

rel rel
kStL

From this recursive specification we can conclude informally that, if we abstract
from all actions other than the send and receive actions at the external ports
1 and 2 and in addition from the timing of actions, the whole PAR protocol
behaves as a buffer with capacity one.

5 Analysis of the PAR Protocol: Abstraction

We want to abstract from all actions other than the send and receive actions at
the external ports 1 and 2, i.e. from the actions in the set

I ={c(d,b)|ie{3,4},de D,be {0,1}} U{cs(ack),cs(ack), error} .

We can proceed in different ways. First of all, we can focus on functional correct-
ness. This means that we abstract from all timing of actions using the time free
projection operator described in Section 2 before we abstract from the actions
in the set I. In that case, we can apply the abstraction operator in the theory
without timing. Starting from the specification of dg (Sy || K || L || Rp) at the end
of Section 4, we can easily calculate that me(9m (Sy || K || L|| Rp)) is the solution
of the guarded recursive specification that consists of the following equations:

Xy, = Zrl(d) 'Yd/,b )
deD
Yy, = ca(d,b) - (ca(d,b) - s2(d) - cs(ack) - Z, + error - Yy ,)

! — / !
Zyy = cs(ack) - X1y, + error - Ug

U¢/i,b = c3(d,b) - (ca(d,b) - co(ack) - Vé,b -+ error - Uc/l,b) ,
Vi = cs(ack) - X1, + error - Ug, .

Starting from this specification, we can calculate, using axiom B2 from the theory
without timing, together with CFAR (Cluster Fair Abstraction Rule) to remove
cycles of silent steps, that 77 (ms(Og (S || K || L || Rp))) is the solution of the
guarded recursive specification that consists of the following equation:

B = Z?"l(d) . Sg(d) -B.
deD

For more information on the silent step in the theory without timing, including
details about CFAR, see [6]. We have obtained a guarded recursive specification

10



of a buffer with capacity one. Thus, we see that the PAR protocol is functionally
correct. We want to stress that, in order to achieve this result, it was necessary
to calculate first the time-dependent behavior of the whole protocol, because
the PAR protocol is only correct if the timing parameters are set correctly. A
complete verification in process algebra without timing is not possible without
resorting to artificial tricks such as excluding the premature time-out of an ac-
knowledgement by inhibiting a time-out so long as it does not lead to deadlock
(see e.g. [14]).

Next, we can have a look at the performance properties. Starting from the
specification of 0 (Sy || K || L|| Rp) at the end of Section 4, we can easily calculate
that 77 (0g (Sy || K| L || Rp)) is the solution of the guarded recursive specification
that consists of the following equations:

=3"r(@) - o5V + oly(X)

dED
t/ th—k
Y[ = o (2 0rd (s20d) -0, (Z7)) + Y ofa(z oo (Y])
k<tx
’ ’
7' =olh(z- X"+ Y oh(z: afj‘“ff“}*“'%*’“(w’)) :
k<tr
U’ = O—feII( (7 reI V/I Z Urel T Jrel (U”)) )
k<tx
’
- reI X// Zarel T- O_fesl—(tK+tR+k)(U//)) )
k<tr

Not many simplifications have been achieved. This is mainly because we cannot
leave out silent steps that occur in between delays. In effect, all internal choices
made, e.g. whether or not a channel forwards a datum correctly, remain visible.
Some initial observations concerning this matter, as well as an analysis of a
slightly different version of the PAR protocol, were made in [8]. In any case,
from this specification, we can conclude informally that the protocol takes at
least tg + tx + tr time slices between consumption and delivery of a datum,
and in general, between consumption and delivery we have tg +tx +tp + 1 -t
time slices, where i > 0. After delivery, at least t; + ¢z time slices must pass
before the next datum can be consumed, and in general, we have t}y + t, or
ts + 1t + j - t's — tr time slices, where j > 0.

6 Towards a Coarser Equivalence

The experience with analyzing the PAR protocol (and other protocols) triggered
a quest for a new equivalence. We now informally introduce an equivalence that
is coarser than rooted branching tail bisimulation equivalence, the version of
branching bisimulation equivalence for processes with discrete relative timing
introduced in [2] and used in [4] to construct a model for the axioms of ACPIr*
(ACP¥* extended with abstraction, see Appendix A). The coarser equivalence
treats an internal action always as redundant if it is followed by a process that
is only capable of idling till the next time slice.

11



Our motivation for this equivalence is that it requires unlikely means to
perceive differences between spending time in not performing any action and
spending time in performing actions that are considered to be unobservable.
Consider a process p of which one of the options is to idle till the next time slice
and then to behave as process ¢. In addition, consider a process p’ that behaves
as p except that in the above-mentioned option idling till the next time slice is
preceded by performing an internal action in the current time slice. In the case
of p, the capabilities of the process change by idling till the next time slice. In
the case of p’, the capabilities of the process change by performing an internal
action, but this change is only observable after the subsequent idling till the next
time slice. In either case, the capabilities after the idling are the same. It is hard
to imagine a realistic experiment that can distinguish between the processes p
and p’.

In Section 7, we will define the coarser equivalence, called ab-bisimulation
equivalence,! in terms of rooted branching tail bisimulation equivalence. For a
better understanding, we first introduce the transition relations used in [4] for
the operational semantics of ACP&: a binary action step relation - - _ and a
unary action termination relation - - |/ for each a € AU {7}, a binary time
step relation - — _ for each m € N — {0}, and a unary deadlocked relation _ 1.
The transition relations can be explained as follows:

t % t': process t is capable of first performing action a in the current time
slice and then proceeding as process t';

t < \/: process t is capable of first performing action @ in the current time
slice and then terminating successfully;

t /= t': process t is capable of first idling till the mth-next time slice and
then proceeding as process t';

t1: process t has deadlocked before the current time slice.

An action step t; - to is called a silent step if @ = 7. The time step relations
are defined such that t — ¢ and t = " only if ¢ and " are the same. In other
words, the time steps of a process are combined in the operational semantics of
ACPY™. This is no longer the case after the saturation of the transition relations
as described below.

Informally, two closed terms t,t’ are ab-bisimulation equivalent if ¢,¢ are
rooted branching tail bisimulation equivalent after saturation of the transition
relations used for the operational semantics in the following two ways:

— whenever there is a silent step with thereafter only time steps, we add cor-
responding direct time steps; and conversely;

— whenever there are time steps of equal length to different processes, we add
a time step of the same length to the alternative composition of those pro-
cesses; and conversely.

! Here ab-bisimulation stands for adapted branching.

2 The set A of actions is a parameter of ACPI™ see further Appendix A.
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The first kind of additions corresponds with the idea to treat internal actions
always as redundant if they are followed by a process that is only capable of
idling till the next time slice. The second kind of additions is needed because it
is now impossible to combine in all cases in advance the time steps of a process.

Under ab-bisimulation equivalence, performing an internal action is in cer-
tain cases considered to be the same as not performing any action. That is why,
in the case of some operators, the internal action must be distinguished from the
other actions in the rules for the operational semantics. The necessary changes
in the transition rules lead to corresponding changes in the axioms. In Section 7,
we give the new rules needed for the operational semantics (Table 3) as well as
the new axioms (Table 4). The distinction needs to be made between the internal
action and the other actions in the case of the following operators: relative time-
out, relative initialization, parallel composition, left merge, and communication
merge. If we restrict ourselves to relative delay, alternative composition, sequen-
tial composition, encapsulation and abstraction, the additional identifications
made by ab-bisimulation equivalence are completely characterized by the axiom
-0 (2 +4) = o (x + §) (axiom DRTB4). If we do not restrict ourselves
to these operators, each of the axioms DRTO5, DRI5, CM3DRID and CM7DR
(see Appendix A) has to be replaced by new axioms that are equivalent to the
original axiom, except that they exclude the cases where the operator on the
left-hand side has an argument of the form z - agjl(x +0) — i.e. the cases where
axiom DRTB4 can be used.

Notice that rooted branching tail bisimulation equivalence is the variant of
rooted branching bisimulation equivalence for processes with discrete relative
timing needed in the presence of the deadlocked process & (see e.g. [2]). In cases
where rooted branching bisimulation equivalence suffices, the same saturation
based approach can be used to define an equivalence that treats an internal
action always as redundant if it is followed by a process that is only capable of
idling till the next time slice.

7 The New Equivalence and Corresponding Axioms

In this section, we define ab-bisimulation equivalence, we give the new transition
rules needed for the operational semantics of some operators, and we give the
new axioms.

The definition of ab-bisimulation equivalence given below resembles the in-
formal explanation given in Section 6. That is, it is defined as rooted branching
tail bisimulation equivalence with respect to saturated transition relations. Our
attempts to define ab-bisimulation equivalence more directly all resulted in def-
initions that were less elegant. The second way of saturation used in the defini-
tion, i.e. saturation according to the transition rules given in Table 2, originates
from [5].

For the description of the saturation by means of additional transition rules,
two auxiliary transition relations are introduced: a unary idling relation Z(-)
and a binary summand relation _ < _. They can be explained as follows:
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Z(t): process t is only capable of idling till the next time slice;
t < t': process t’' is amongst other things able to behave as process t.

In consequence of the additional transition relations, the definitions of branch-
ing tail bisimulation equivalence and rooted branching tail bisimulation equiva-
lence from [4,2] have to be extended to take these transition relations into ac-
count. In the definitions, we denote the reflexive and transitive closure of - = _
by . — _. So t — t’ indicates that ¢’ is reachable from ¢ by performing zero or

more silent steps. Moreover, we write ¢ 9, 4 to indicate that either t % ¢ or
a=T1andt=1.

A branching tail bisimulation is a symmetric binary relation B on closed
terms such that for all closed terms t1,t} with B(¢1,t]) the following conditions
hold:

1. whenever t; —* tq, then there are closed terms ¢}, ¢} such that t| —» ¢} o, th

and B(t1,t7) and B(ta,t});

2. whenever t; % 4/, then there is a closed term ¢} such that t|; —» t7 % /
and B(t1,t7);

3. whenever t; v to, then there are closed terms ¢}, t, such that tj —» t§ + t}
and B(t1,t7) and B(ta,t});

4. whenever t1 1, then #] T;

5. whenever Z(t1), then there is a closed term ¢} such that ¢, — ¢} and Z(¢})
and B(t1,t7);

6. whenever to =< t1, then there are closed terms ¢, ¢, such that ¢} — ¢} and
th < t7 and B(t1,t7) and B(ta,t}).

Two closed terms ¢ and t' are branching tail bisimulation equivalent, written
t < ¢/, if there exists a branching tail bisimulation B such that B(¢,t).

If B is a branching tail bisimulation, then we say that the pair (¢1,t}) satisfies
the root condition in B if the following holds:

1. whenever t; < to, then there is a closed term ¢}, such that #; % t, and

Btz t5);

2. whenever t; - /, then t] - \/;

3. whenever t; +% 1o, then there is a closed term ¢} such that ¢} - ¢} and
B2, ty);

4. whenever Z(t1), then Z(t});

5. whenever ty =< 1, then there is a closed term ¢, such that t, < ] and
B(ta, th).

Two closed terms ¢ and ¢ are rooted branching tail bisimulation equivalent, writ-
ten ¢ <2 ¢/, if there exists a branching tail bisimulation B such that the pair
(t,t'), and all pairs (t1,¢]) with ¢ + ¢; for some m > 0 and B(t;,t}), satisfy
the root condition in B.

Two closed terms ¢ and ¢ are ab-bisimulation equivalent, written ¢t < t/,
if t & ¢ after saturation with silent steps and time steps according to the
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Table 1. Rules for first way of saturation (m > 0, n > 0)

5o, o oz, Z(z") sz
x5 gz r = irld(aj)
zf I(z), I(y)  Z(=) I(x) z ¥

I (@) IZ@+y) I@-y) Iy@) ZELT (@)
I(z), I(y)  ZI(x) I(z), Z(y) I(=z) I(x)

(zlly) Z(=zlly) Z@ly) Z@u(x) Z(r1(w)
M for each equation X =tx € E {I(gl)) K G,K} » =2 I(@)
I(XIE)) I( iex F(@) I(x)

Table 2. Rules for second way of saturation (m > 0, n > 0)

A L L e

o+ 2 4+ 2 x5 g

zy z =y o S v 2y

z =< §=2 d=<az ol 2oh(y) 2 Xz+y ' <z+y

@ <z, y 2y z =y z =y x =y
gty ety zozXy-z ovg) Jugy) Tale) 2T4©)

' 2w v 2y o Jx v 2y
 ly2zlly viz=zzly 2 y=Zzlly ¥i|zZ3z]|y

z =y z =y y=z Ty T =y
zllz2yllz z|lz2ylz zlywlz Ouw(z)X0u(y) 7r(z) 2 71(Y)

r < (tx|E in‘<Gi i€ K
ﬂforeachequationX:ter (6) = G0 i KCL

z 2 (X|E) iEK F(i) 2 i€L G(?)

transition rules given in Table 1® and saturation with time steps according to
the transition rules given in Table 2.4

As mentioned before in Section 6, under ab-bisimulation equivalence, the
internal action must be distinguished from the other actions in the transition
rules for relative time-out, relative initialization, parallel composition, left merge,
and communication merge. This leads to the following changes in the transition
rules describing the operational semantics of ACPd*+Rec (ACP¥* extended
with abstraction and guarded recursion, see Appendix A):

— the four transition rules in the upper row of Table 3 are restricted to cover
only a € A;
— the four transition rules in the lower row of Table 3 are added.

The coarser equivalence and these changes in the transition rules lead to the
following changes in the axioms of ACPY*+Rec:

— axiom DRTB4 given in Table 4 is added;

% Recall that T (z) differs from « only in not being capable of performing actions in
the current time slice. Hence, we also have that T}

(@) Vs o if o s g
4 In Tables 1 and 2, =} stands for “not x1”.
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Table 3. New transition rules (a € A, n > 0)

a /7 a ’ a ’ a 7
T — T — T z—z, yf z—z, yf
ntl
rel
¢ Do, ~I(@) @ D, ~I@) @ Da, I(@), yl wDal, <I(a), yl
ntl
Urel

v (@) St Tg(e) et wlly Sy wlly Sally

(z) =o' Tpai(z) = 2’ zlly =o' lly |y =aly

Table 4. New axioms (a,b € AU {7,d}, m,n >0, As = AU {6})

oot @+ =0t (@+9) DRTB4
V(e - z) = vg(a) -z ifa € As DRTO5a
vz - v () = vH(D) - v (@) DRTO5b
vz (a-z+y) =vg(D) (@ -z+y) ifa € A DRTO5c
Tgle-z) =7g(a) = if a € As DRI5a
Tz vl (@) = TH(D) - v (@) DRI5b
Uz (2 z+y)) =040 (@ = +y) ifa € A DRI5c
az|l(y+d)=a (=] (y+39) if a € As CM3DRIDa
zom@) L@+ =z (vul@) |l (y+9) CM3DRIDb
(@ z+ty lz+Y)=z-((a-z+yll(z+9) ifaeA CM3DRIDc
a-z|b-y=(alb) (z|y) ifa€AsorbeA; CM7DRa
Tovg(@) |z y=28 CM7DRb
z-(a-x+y)|lz-z2=3 ifa € A CMT7DRc
zowlz-vyly) =8 CM7DRd
x|z (a-y+z2)=3 ifa € A CMT7DRe

— axioms DRTO5, DRI5, CM3DRID and CM7DR are replaced by axioms
DRTO5a-DRTOb5¢, DRI5a—DRI5c, CM3DRIDa~CM3DRIDc and CM7DRa—
CM7DRe given in Table 4.

Axiom DRTB4 is the axiom that characterizes the additional identifications
made by ab-bisimulation equivalence. The sets of axioms DRTO5a-DRTOb5c,
DRI5a-DRI5c, CM3DRIDa-CM3DRIDc and CM7DRa-CM7DRe are equivalent
to the axioms DRTO5, DRI5, CM3DRID and CM7DR, respectively, except that
they exclude the cases where the operator on the left-hand side has an argument
of the form 7 - o™ (z + §).

Of the latter axioms, we have until now only used CM3DRID and CM7DR
in the analysis of the PAR protocol. Moreover, we have not used them in cases
excluded by the corresponding new axioms. Therefore, we seem to have used the
new axioms from the start.

If we assume that with the adapted operational semantics ab-bisimulation
equivalence is a congruence, it is straightforward to show that the adapted ax-
iomatization is sound for ab-bisimulation equivalence. We claim that with the
adapted operational semantics ab-bisimulation equivalence is a congruence. We
also claim that the adapted axiomatization is complete for ab-bisimulation equiv-
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alence. In ongoing work, the authors are constructing the full proofs of these
results.

8 Analysis of the PAR Protocol Revisited

We take up the analysis of the PAR protocol again, but now using the additional
axiom DRTB4.

In this case, we abstract from the actions in I without preceding abstraction
from the timing of actions. Starting from the specification of O (S | K || L || Rp)
at the end of Section 4, we can now calculate that 7;(0(Sy || K || L || Ry)) is
the solution of the guarded recursive specification that consists of the following
equations:

=D _n(d) o (V) + oia(X7)
deD
* etK+tR tR"l‘tL * tis‘_(tK"rtR) * tS *
Yi=o (s2(d) - (o (2 X7) + 0, (Z27) +0,a(Y]),

rel rel rel O el

7% — o_tK'f‘t/R"rtL (£X*) ts(z*)

rel O el

Many simplifications have been achieved by using axiom DRTB4. In particular,
all internal actions that hinder performance analysis could be removed. More-
over, it is now possible to show that the PAR protocol is functionally correct
by abstracting from the timing of actions next. That is, we can calculate that
e (T71(Om (Se || K || L || Rp))) is the solution of the guarded recursive specification
of a buffer with capacity one. Surprisingly, CFAR is not needed in this case.

A more intelligible specification of 77(0m(Sy || K || L || Rp)) can be obtained
by using the summation operator described in Section 2. Let E be a guarded
recursive specification that includes the equation X = ¢ + o7(X). Then the
equation (X|E) = >",. 0 ((t|E)) is derivable. Using this result, we can easily
rewrite the specification of 77(9m (S, || K || L || Rp)) given above to the following
one:

X7 =3 oni(d)- Yoo ()

deD i>0
tho 4t tpttr+jts—t
(o X+ Yo T g x)),

rel
7>0

where we write 71(d) for the term (Y|Y = ri(d) + oL,(Y)). This specification
clearly exhibits both the functional behaviour and the performance properties
of the PAR protocol. It is manifest that the protocol behaves as a buffer with
capacity one, that a datum is delivered tg + tx + tg + i - t'y time slices after
its consumption (for some ¢ > 0), and that the next datum can be consumed
the +tr or thy +tr + j - t's — tg time slices after the delivery (for some j > 0).
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9 Concluding Remarks

We have described and analyzed the PAR protocol using the version of process
algebra with discrete relative timing and abstraction from [4]. We were able
to describe the protocol adequately. In addition, we were able to analyze its
functional correctness thoroughly. That is, we could prove that the protocol
behaves correctly if the time-out time of the sender is longer than the time
that a complete protocol cycle takes. On the other hand, we were not able to
analyze its performance properties as thoroughly. Therefore, we have proposed
a variant of the version of branching bisimulation equivalence for processes with
discrete relative timing used in [4], called ab-bisimulation equivalence, which still
coincides with the original version of branching bisimulation equivalence from [9]
in the case without timing. We believe that we have a plausible motivation for
this coarser equivalence. In any case, we have shown that the axioms based on
this equivalence permit thorough performance analysis in the case of the PAR
protocol.

In [11], the PAR protocol is described and analyzed using a version of pro-
cess algebra with continuous absolute timing. The description originates from
an earlier description in [1]. In the case of the analysis in [11], handwavings are
needed to come as far as in the case of our analysis. Other protocols that are de-
scribed and analyzed in versions of process algebra with timing include the ABP
(Alternating Bit Protocol) and the CABP (Concurrent Alternating Bit Proto-
col), both in [10], and Fischer’s mutual exclusion protocol, in [15]. In virtually
all cases, there is a need for a coarser equivalence. The equivalences suggested
in [10,15] are in the case without timing also coarser than the original version
of branching bisimulation equivalence from [9]. We claim that, in the case of the
above-mentioned protocols, there is no need for an equivalence that is coarser
than ab-bisimulation equivalence.
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A Process Algebra with Discrete Relative Timing

For reference, the axioms of ACPY and its extension with abstraction and
guarded recursion, are given in this appendix.

ACP®* assumes that a fixed but arbitrary finite set A of actions and a fixed
but arbitrary communication function, i.e. a partial commutative and associative
function v : A x A — A, has been given. The function -~y is regarded to give the
result of synchronously performing any two actions for which this is possible,
and to be undefined otherwise. The axiom system of ACP*' consists of the
equations given in Tables 5 and 6.

In Table 7, some equations concerning parallel composition are given that
are derivable for closed terms from the axioms of ACPY"® and hold in the model
of ACPY* presented in [4,3]. These equations are called the azioms of standard
concurrency. In most applications, vy(y(a,b),c) is undefined for all a,b,c € A.
That case is called handshaking communication. Under the assumption of hand-
shaking communication, the equation given in Table 8, called the handshaking
axiom, is derivable for closed terms.

The extension of ACP¥* with abstraction is called ACPJ™. This extension
assumes that 7 & A and that (a, 7) is undefined for all a € AU {r}. The axiom
system of ACPY™* consists of the equations in Table 5, with the understanding
that the axiom schemas in addition cover the case that a = 7, the equations in
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Table 6, with the understanding that the axiom schemas in addition cover the
cases that a = 7 and b = 7, and the equations given in Table 9.

The extension of ACPY™ with guarded recursion is called ACPJ"*+Rec. The
axiom system of ACPJ"+Rec consists of the axioms of ACP" and the equations
given in Table 10.

The defining axioms of time free projection are given in Table 11. Useful
axioms of the summation operator are given in Table 12. We use F' and G as
variables ranging over functions that map each n € N to a process and can be
represented by terms containing a designated free variable ranging over N. For
more information on such second-order variables, see e.g. [4,12].

Table 5. Axioms of BPAY" (¢ € AU {6}, m,n > 0)

r+y=y+=x Al 0’2|($):$ DRT1
(g+y)+z=c+(@y+2z) A2 o (or(@) = org " (@) DRT?2
r+zr==x A3 om(x) +oyy) =0o,u(x+y) DRT3
@+y)z=z sty s Ad ot (@) -y = ol ) DRT4
(x-y)-z=z-(y-2) A5 oL =3 DRT7
r+d==x A6ID a+d=a A6DRa
§-x=34 AT7ID

() =4 DRTO0  T%(8) = o74(d) DRIO
vo(z) =§ DRTO1 o(z) =z DRI1
vti@) =g DRTO2 75" (a) = 0/4(9) DRI2

v T (o (@) = ojy(vii (x))  DRTO3 507" (07(x)) = 074 (Ud (x)) DRI3

V(T +y) = vg(e) +vgly) DRTO4  Tg(z+y) =vo(z) +04(y) DRI4
vz - y) = vg(x) -y DRTO5 Tz - y) =v5(x) -y DRI5

Table 6. Additional axioms for ACP¥* (a,b € AU {6}, c € A, n>0)

zlly=(@|lytylez)+z|y CM1 Sle=46 CMID3
Slle=4 CMID1 z|d=146 CMID4
z||d=4 CMID2 a-z|b=(ald) = CM5DR
all(x+3) =a-(x+9) CM2DRID alb-z=(alb) = CM6DR
gzt =g (zl(y+9) CM3DRID  a-z|b-y=(alb) (zlly) CM7DR
(@) L (via(¥) + 075(2)) = og(z L 2) DRCM2 (vea(@) +8) | o (y) =4  DRCMSBID
(z+y)llz=zlz+tyll = CM4 O’:;I+1(:L’) | (v}el(y)+é) =J DRCM4ID
aH(S) - DO () | ot (y) = oz | y) DRCM5
Oma)=aifag H DIDR @ty lz=alz+ylz  CM8
Om(a)=difacH D2DR ellytz) =zlyt+alz CM9

O (org(2)) = 0,4 (0m (x)) DRD alb=cify(a,b) =c CF1DR
Ou(z +y) = 0u(z) + Ou(y) D3 al|b=4if y(a,b) undefined CF2DR
O (v - y) = On(x) - Ou (y) D4
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Table 7. Axioms of standard concurrency

zlly=yl = rzly=ylz
@y llz=z|(yl=2) (zly)lz==z|(yl=2)
@lyllz=zllz) zlyl)=(@|yl=

Table 8. Handshaking axiom

vz |yl2) +4=48

Table 9. Additional axioms for ACPY™ (¢ € AU {5, 7}, n > 0)

e (- (Vu(y) + 2+ +vy(y) =z (vy(y) +2+4) DRTBI
(- (@) 2+ +2) =a- (vyly) +2+9) DRTB2
T (on(z- (Y+9) +vu(z) ==z (ou(y+8) +vy(z)) DRTB3
(8 =4 TIO
Tr(a) =aifa gl TI1IDR
Ti(a) =zifacT TI2DR
T1(0(2)) = op(T1(2)) DRTI
T1(x +y) = 71(x) + 71 (Y) TI3
Tr(z - y) = 71(z) - 71 (y) TI4

Table 10. Additional axioms for ACP%"*+Rec

(X|E) = (tx|E) foreach X =tx € E RDP
E = X = (X|E) foreach X € V(E) RSP

Table 11. Axioms for time free projection (a € AU {4, 7}, n > 0)

e (8) = (X|X = 3§+ o (X)) DRTFPO
m(a) = (X|X =a+ oL (X)) DRIFP1

i (0 (x)) = ™ () DRTFP2
(@ 4+ y) = 7 (@) + mr (y) DRTFP3
mif (x - y) = mee () - mee (y) DRTFP4
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Table 12. Axioms for summation (n > 0)

;EK F(3) :.'-JEK F(5) SUML (Vi€ K+ E(i) = G(i) 2,
o F(i) =6 sumz iex F) =1, iexc G()  SUM6
pi€in} F(i) = F(n) SUM3 iex O(F (1) = 0q( ;ex F(i)) SUMT7
ieEr F(i) = ieK(F(%-i— G(i)) =
ieli:)F(i)J'_ ieL F(i) SUM4 P ieK F(i) + ieK G(i) SUMS
K#0= eKT =T SUM5 ieK(F(i)~z):( ieKF(i))'z SUM9
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