
Contents

Preface v

1 General Introduction 1
1.1 Formal methods 2
1.2 Development and exploitation of VDM 4
1.3 Formal specification in VDM 5
1.4 Verified design in VDM 8
1.5 Computer-based support for VDM 9
1.6 VDM and other methods 10
1.7 Extensions of VDM 14

2 Introduction to VVSL 19
2.1 Specifying interference in VVSL 20
2.2 Modular structuring of specifications in VVSL 24
2.3 Types in VVSL 30

3 Foundations of Flat VVSL 35
3.1 Introduction to MPLω 35
3.2 Signatures for MPLω 38
3.3 Language of MPLω(Σ) 39
3.4 Proof system of MPLω(Σ) 42
3.5 Interpretation of MPLω(Σ) 44
3.6 Properties of MPLω 46
3.7 Inductive definitions in MPLω 48

4 Specialization for Flat VVSL 59
4.1 Symbols and signatures for VVSL 59
4.2 Semantic domains for flat VVSL 63
4.3 States and computations 64

ii CONTENTS

4.4 Implicit conversions 67
4.5 Basic and constructed types 68

5 Definition of Flat VVSL 71
5.1 Contexts 72
5.2 Contexts and typing 79
5.3 Syntax notation 83
5.4 Organization of the definition 84
5.5 Basic modules 84
5.6 The definition sublanguage 91
5.7 The type sublanguage 108
5.8 The expression sublanguage 116
5.9 The temporal formula sublanguage 136

6 Foundations of the Structuring Language 149
6.1 Introduction to DA 150
6.2 Symbols and origins 152
6.3 Domains and operations of DA 155
6.4 Description Algebra 160
6.5 Abstract meaning of descriptions 162
6.6 DA with parameters 166
6.7 Introduction to λπ-calculus 170
6.8 Algebraic systems for λπ-calculus 171
6.9 Typed variable symbols for λπ[A] 173
6.10 Terms of λπ[A] 174
6.11 Rules of λπ[A] 176
6.12 Model construction for λπ[A] 179
6.13 Reduction for λπ-calculus 181

7 Specialization and Generalization for VVSL 185
7.1 MDA and MSA 186
7.2 Instantiating λπ-calculus 192
7.3 Semantic domains for the structuring language 199

8 Definition of the Structuring Language 201
8.1 Contexts 203
8.2 Typed names 209
8.3 Organization of the definition 210
8.4 Specification documents 210
8.5 The module sublanguage 212

9 Discussion 223
9.1 DA and more abstract models 223
9.2 Proof rules for VVSL 231

CONTENTS iii

9.3 Logic-based semantics of an imperative language 238

10 Introduction to Case Studies 245
10.1 Scope of the specifications 247
10.2 Subject matter of the specifications 250
10.3 Related work 253
10.4 Outline of the first specification 254
10.5 Outline of the second specification 258

11 Formalization of RDM Concepts 261
11.1 Assumptions 262
11.2 Attribute sets, etc. 264
11.3 Tuples 267
11.4 Relations 270
11.5 Additional functions on relations 273
11.6 Databases 275
11.7 Tuple structures 278
11.8 Relation schemas 280
11.9 Database schemas 282
11.10Relation constraints 286
11.11Database constraints 290

12 An External RDBMS Interface 297
12.1 More assumptions 298
12.2 Selection formula 300
12.3 Query 303
12.4 Declaration 312
12.5 DBMS state 314
12.6 Manipulation 315
12.7 Definition 318
12.8 System 321

13 An Internal RDBMS Interface 325
13.1 RDM concepts 326
13.2 More assumptions 327
13.3 Simple formula 328
13.4 Access 331
13.5 Access table 334
13.6 Transition record 338
13.7 Transition log 341
13.8 Log table 342
13.9 AH state 344
13.10Access handling 346
13.11System 355

iv CONTENTS

A Glossary of Mathematical Notation 357
A.1 General mathematical notation 357
A.2 Special mathematical notation 358

B Glossary of VVSL Notation 361
B.1 Flat VVSL, VDM notation 362
B.2 Flat VVSL, temporal logic notation 365
B.3 Structuring sublanguage 365

C Summary of Notation for Semantics, etc. 367
C.1 Semantic functions, etc. 367
C.2 Contexts, typing, etc. 369
C.3 Basis for the semantics 372

D Basic and Constructed Types 375
D.1 Boolean type 376
D.2 Natural type 376
D.3 Integer type 377
D.4 Rational type 379
D.5 Enumerated type 380
D.6 Sequence type 381
D.7 Set type 382
D.8 Map type 384
D.9 Composite type 386
D.10 Nil 386

E Abbreviations 387

References 391

Index 396

Preface

This book is about formal specification of software systems and semantics
of specification languages. The role of logic is striking. The notation em-
ployed in formal specification includes logical notation. The perception that
the meaning of a specification can be taken to be a presentation of a logical
theory underlies the approach to the semantics of specification languages
which is applied in this book. Modularization mechanisms for building large
structured specifications are regarded as operations for adapting and com-
bining presentations of logical theories of a special kind. This book has
been titled ‘Logic and Specification’ because logic turns out to play such a
predominant part in various aspects of specification examined here.

A large software system often needs a precise specification of its intended
behaviour. In order to achieve precision, specifications are written in a spec-
ification language with a well-defined syntax and formal semantics (a se-
mantics by which the meaning of constructs in the language is precisely de-
scribed using established concepts from mathematics). Formal specification
refers to the use of such a specification language in writing specifications.

This book describes the outcome of a project which addressed the prob-
lem of giving a formal semantics for a specification language. This area is
still in development. A main aim of this book is to illustrate a particular
approach to tackle the problem of giving a formal semantics for a specifica-
tion language. The language used for illustration, known as VVSL, extends
VDM-SL (the specification language offered by the Vienna Development
Method) with features for specifying interfering operations and for mod-
ular structuring of specifications. It is a specification language which is
directly motivated by actual practices of software engineering.

The particular approach uses a mathematical framework for the seman-
tics of specification languages consisting of the logic MPLω, the algebra DA
(a model of modular specification based on this logic) and λπ-calculus (a
variant of classical lambda calculus). It was first applied to the recently de-
veloped specification language COLD-K. This book contains a presentation

vi Preface

of this mathematical framework and a presentation of a formal semantics of
VVSL based on this framework. The latter presentation shows how MPLω,
DA and λπ-calculus are used to give a formal semantics for a specification
language. For that purpose, the approach could just as well be applied to
another specification language. Indeed, it was applied to VVSL for another
main purpose, viz. to provide VVSL with a formal semantics.

VVSL is an interesting specification language. It incorporates the ver-
sion of VDM-SL used in Systematic Software Development using VDM by
C.B. Jones – published by Prentice Hall International. The extensions of
VDM-SL aim to meet actual needs of advanced formal specification tasks
(VVSL was first used to produce a formal specification of the PCTE inter-
faces). Another aim of this book is to demonstrate the practical usefulness
of the extensions concerned for realistic specification tasks. It contains two
complete formal specifications in VVSL.

One specification describes the basic concepts of the relational data
model and the operations which can be performed by a hypothetical rela-
tional database management system. The other specification describes the
underlying concepts and operations of a hypothetical system for handling
concurrent access to a relational database by multiple transactions. Both
specifications show how large specifications can be modularly structured in
VVSL. The latter specification also shows how operations which interfere
through shared state components can be specified in VVSL. Each of these
specifications describes an idealization of existing systems of a certain kind.
Either provides a reference point against which the correctness of proposed
solutions to common problems in systems of the kind concerned can be
established.

This book provides research material intended for academic and indus-
trial researchers in computer science interested in formal specification in
general or semantics of specification languages in particular. The material
concerning semantics of specification languages does not get round real
problems which are often not dealt with in theoretical work. This material
matters mostly to researchers working on foundational issues of the seman-
tics of specification languages and developers of specification languages. It
can also be used as illustration in theoretical courses. Some background in
mathematical logic and set theory is assumed. The case study type material
is mainly interesting to developers of software systems who are interested
in formal specification. It can be used in software engineering courses on
formal specification. The case studies are instances of advanced formal spec-
ification. They deal with examples of practical application which are not
simplified. The case studies are expected to appeal to researchers working
on databases as well.

This book is organized as follows. Chapter 1 pays attention to the role
of formal specification in formal methods for the development of software.
Among other things, the main features of VDM-SL are outlined. The re-

PREFACE vii

maining chapters concentrate on VVSL. Chapter 2 gives a general overview
of the special features of VVSL. Chapters 3 to 9 are concerned with giv-
ing a formal semantics for VVSL. The approach applied in this book uses
a mathematical framework which is presented in Chapters 3 and 6. The
appropriate specializations and generalizations of this framework for the
semantics of VVSL are described in Chapters 4 and 7. The semantics it-
self is presented in Chapters 5 and 8. Chapter 9 discusses some points
raised by the material in Chapters 3 to 8, but for which space could not be
found there. Chapters 10 to 13 are concerned with advanced case studies in
VVSL. The case studies are related to relational databases. An introduc-
tion to them is given in Chapter 10. The underlying concepts of relational
database management systems and the operations for data manipulation
and data definition which can be performed by such systems are described
in Chapters 11 and 12, respectively. Underlying concepts and operations of
systems for handling concurrent access to a relational database by multiple
transactions are described in Chapter 13. A glossary of the mathematical
notation used in this book is provided in Appendix A and a glossary of
VVSL notation is provided in Appendix B.

This book is a major revision of my Ph.D. thesis (Middelburg, 1990). It
has been substantially rewritten and restructured so as to streamline the
material. A number of technical changes have made it possible to simplify
parts of the material that is concerned with giving a formal semantics for
VVSL, including material on the mathematical framework which forms the
basis of the semantics. The new Chapter 1 put the material into context.

Acknowledgements

The material in this book has grown out of my contribution to the ES-
PRIT project 1283: ‘VDM for Interfaces of the PCTE’. I wish to thank the
members of the project team for their critical feedback on my contribution.
The work presented in this book has been carried out partly at PTT Re-
search. I wish to express my appreciation to my department head, Jeroen
Bruijning, for his support. I also wish to thank my colleagues Martin Kooij
and Ben Lippolt for patiently solving most of the problems that I encoun-
tered with the computer network and several computer programs during
the writing of this book. I am much indebted to Loe Feijs, Hans Jonkers,
Karst Koymans and Gerard Renardel de Lavalette for their foundational
work related to COLD-K. This book has been largely based on that work.
I also wish to express special gratitude to them for their interests in the
work presented in this book and their comments on preliminary versions of
parts of it. Special thanks go to Jan Bergstra and Cliff Jones for providing
inspiration and encouragement.

1

General Introduction

The aim of this chapter is to put the material presented in later chapters
into context. Key themes of this book are (1) advanced formal specification,
(2) extension of an existing specification language for advanced formal spec-
ification and (3) semantics for the extended specification language. Formal
specification is a major aspect of formal methods for the development of
software. The Vienna Development Method (VDM) (Jones, 1990) is a par-
ticular formal method for software development. This chapter illustrates
with the help of VDM what formal methods have to offer. Thus, it gives
an idea of what formal specifications are and what they can be used for.

VDM is used as an example because background on VDM is useful any-
how: this book addresses extensions of VDM-SL, the specification language
offered by VDM. Furthermore, it is one of the most widely used formal
methods and has achieved a level of maturity and acceptance. The Inter-
national Standardization Organization (ISO) is working on a standard for
VDM-SL. Besides VDM, Z currently rouses much interest. There are many
similarities between VDM and Z, but they also have complementary merits.
VDM and Z are briefly compared. However, this chapter does not contain
a survey of formal methods. Both VDM and Z are model-oriented meth-
ods, where the approach is to specify a system by describing a model of it.
This contrasts sharply with the property-oriented or algebraic approach to
specification, where a system is described in terms of its desired properties.
For completeness, this approach is broadly compared with the approach of
VDM.

This chapter pays attention to the role of formal specification in formal
methods for the development of software. The remaining chapters of this
book concentrate on a new language for writing specifications that has come
about by combining VDM-SL with languages for specifying interference and
modular structuring. Those chapters pay attention to issues ranging from
the mathematical basis for its semantics to the practical usefulness of its
special features for their purposes. This chapter ends with glancing at the

2 GENERAL INTRODUCTION

relevant extensions of VDM-SL. The next chapter offers an introduction to
the new language itself.

In summary: this chapter gives an idea of what formal methods stand for,
illustrates this using VDM, compares VDM with some other approaches,
and touches upon extensions of VDM-SL. It also informs briefly on the
development and exploitation of VDM and on computer-based support for
VDM.

1.1 Formal methods

The need for precise specifications is accepted in most engineering disci-
plines. Software systems are in no less need of precise specifications. A
precise specification of what is required of a software system that is to be
developed provides a reference point against which the correctness of the
ultimate system can be established and guided by which it can be con-
structed. For example, precise arguments can be given for design decisions.
These aspects of precise specification are regarded as the most important
aspects by professional developers.

Apart from that, there are other aspects of precise specification which can
be very useful. For example, a precise specification also makes it possible
to analyse a system before its development is undertaken. This opens up a
way to increase the confidence that the specified system conforms to the re-
quirements for it. If a change to an existing software system is contemplated
– which is the rule rather than the exception – then its consequences have
to be taken into account before the change is actually carried out. Without
a precise specification, it is often difficult to grasp the consequences.

In order to achieve sufficient precision, a specification must be written
in a specification language with a syntax and semantics which describe
the form and meaning of its constructs in a fully precise way. For if there
may be dispute about the form or intended meaning of constructs in the
language concerned then there can be no question of a sufficiently precise
specification.

Formal methods bring mathematical precision into software develop-
ment. The major aspects of formal methods are formal specification and
verified design. In the past, the accent was on formal specification. Cur-
rently, it shifts to verified design and supporting tools for verification in
design. Formal specification languages without accompanying design and
verification techniques are no longer considered to be formal methods.

Formal specifications employ mathematical notation extended to make
it easier to specify software systems. These extensions are given a precisely
defined meaning based on established concepts from mathematics. This
makes it possible to settle disputes about the intended interpretation of
any particular formal specification. It also opens up the possibility of for-
mulating claims concerning specifications as mathematical theorems and

FORMAL METHODS 3

constructing mathematical proofs to justify these claims.
Formal methods assume that first a formal specification can be made of

what is required of a system to be developed and that next the design can
be decomposed into manageable steps which can be separately justified.

Verified designs employ formal proofs to justify design steps. Each design
step generates a number of proof obligations which must be discharged by
formal proofs. There are several paradigms for verified design, each with
specific kinds of proof obligations. Verified design in VDM is an example of
the important paradigm of ‘iterative specification, design and verification’.
Other paradigms are ‘program transformation’ and ‘constructive mathe-
matics’.

In practice, verified design means that computer-based support is highly
desirable for formal software development methods. Particularly, assistance
is needed to find the proofs that the discharge of proof obligations takes.
The proofs concerned are mostly unlike proofs in mathematics. The proofs
in software development are basically long and tedious. They are mainly
intended to cross-check that no details have been overlooked in a design.
However, the amount of detail involved is usually large. For that very rea-
son, formal proofs as well as computer-based support for it are essential.
Note that computer-based support for verified design amounts to computer-
aided design.

Existing development methods such as SDM (Turner, 1987) are mainly
about the planning and organization of the development of computer-based
systems. They suggest what phases are required within the development
process, offer guidance on how to structure each phase in terms of mutually
dependent activities and indicate how these activities should be approached
and undertaken. Emphasis is on the management aspects of the develop-
ment process and the quality assurance. Nothing is offered to specify the
necessary programs in a sufficiently precise and unambiguous way and to
construct these programs such that they fully agree with their specifica-
tions.

Formal methods for software development are exactly about these mat-
ters. However, they do not proscribe the use of ideas and heuristics from
other methods. Therefore, formal methods may complement development
methods such as SDM. They allow details of specification and construction
of programs to be captured in a mathematically precise way. This is useful
for programs which are large, complex or critical. Such programs occur in
systems of different kinds. This includes administrative systems – the kind
of systems which SDM is geared for.

The use of formal methods of developing software may contribute to a
solution of certain problems that could not be tackled satisfactorily other-
wise. More expectations and promises applying to the usefulness of formal
methods can be given. Suffice it to quote Jones – one of the key people in
this area – from (Jones, 1990, pp. 279–280). One quotation concerns formal

4 GENERAL INTRODUCTION

specification:

‘The mathematical notation can, when used with care, achieve conciseness
of expression as well as precision. I believe that these ideas are important.
But a major issue relating to specifications is whether they match the user’s
requirements.’

Another quotation concerns verified design:

‘The material relating to design aims to provide developers with ways to in-
crease their confidence that the systems they create satisfy the specifications.
This must be part of a software engineer’s training. With machine-checked
proofs, an enormous increase in confidence would be justified, but it must be
understood that nothing can ever provide absolute certainty of correctness.’

The latter quotation makes out a good case for (considering) the use of
formal methods.

The next four sections outline a specific formal method, viz. VDM.

1.2 Development and exploitation of VDM

VDM is a formal method for the description and development of software
which has emerged from a software development approach conceived around
1973–1975. VDM addresses all of the stages of development from spec-
ification through to code. Its language for writing formal specifications,
called VDM-SL, is probably one of the most widely used formal specifi-
cation languages for the description of complex systems. The method was
developed in an industrial environment and has been used in a wide vari-
ety of applications. It has been used, amongst other things, for compilers
(Pascal, CHILL, Ada, occam) and interpreters (Prolog), database manage-
ment systems (PRTV, IMS, System 2000, System R), operating systems
(IBM OS/360, operating system of System X partially), graphics systems
(GKS), a formal development support system (mural), and the architecture
of hypertext systems.

VDM is clearly explained in the book (Jones, 1990), which makes VDM
accessible to the software engineer. Realistic case studies can be found in
the companion book (Jones and Shaw, 1990). A knowledge of programming
and some familiarity with logic and set theory should be sufficient to learn
the method. Of course, experience is needed to tackle large or complex
problems, but the usual myth about the necessity for high level training
rests on nothing.

A draft ISO standard for VDM-SL is now available for comment. An
important development in the area of supporting tools is the availability
of the formal development support system mural (Jones, Jones, Lindsay
and Moore, 1991), which is suited for VDM. Research dedicated to VDM
currently pays attention to topics related to software development that
are not yet or insufficiently covered by VDM – and other formal methods –

FORMAL SPECIFICATION IN VDM 5

such as specification and design of parallel programs, specification in object-
oriented style and modular structuring of specifications.

Formal specification and verified design in VDM are illustrated in Sec-
tion 1.3 and Section 1.4, respectively.

1.3 Formal specification in VDM

A VDM specification describes what is required of a system to be developed
in terms of the operations which can be performed by the system. The
notion of state is central. Operations may yield results which depend on
a state and may change that state. Generally, operations correspond to
subprograms – such as procedures – of the final system. A pre-condition
is used to bound the circumstances under which the system is required to
perform an operation and a post-condition is used to delimit the possible
effects of performing the operation. Pre- and post-conditions are logical
expressions. The kinds of data (objects) manipulated by the operations are
described in terms of abstract mathematical concepts such as (finite) sets
and sequences.

The important ingredients of VDM-SL are the logical notation of a spe-
cial logic of partial functions, LPF (Barringer, Cheng and Jones, 1984),
notations for finite sets, maps, sequences and composite objects, the nota-
tion of implicit specifications of functions and operations – with pre- and
post-conditions – and the notation of direct definitions of functions and
operations. Belonging to each ingredient are proof rules.

Specifications give also rise to proof obligations in VDM. Pre- and post-
conditions can be used to specify functions and operations which cannot
be implemented. That is why it has to be shown for each function and
operation specification that there exists an implementation of it.

Example: an employment agency

This example is about a system which keeps track of the state of an em-
ployment agency with respect to the persons seeking employment and the
vacancies offered by companies. It also answers questions such as ‘who are
suitable candidates for this vacancy?’ This means that the skills of a person
seeking employment as well as the required skills for vacancies are recorded.
Because a company may have several vacancies for which the same skills
are required, vacancies are identified by vacancy numbers. The states of
this system may be defined as follows:

Agency :: cands: Person m−→ Skills
vacs: Vacno m−→ Vacdata

6 GENERAL INTRODUCTION

Skills = Skill-set

Vacno = N

Vacdata :: comp: Company
skills: Skills

The states of this system are composed of two components: cands and vacs.
The first component is used to keep track of information about the persons
seeking employment (called candidates) and the second component is used
to keep track of information about the vacancies offered by companies. Both
components are finite maps. The range of the first component consists
of finite sets (of skills) and the range of the second component consists
of objects which are once again composed of two components (comp and
skills). Person, Skill and Company need not be further defined at this
point. They can be regarded as being given.

The operation to introduce a new candidate can now be specified:

APPLY (p:Person, s:Skills)
ext wr cands: Person m−→ Skills
pre p /∈ dom cands

post cands =
↼−−−
cands ∪ {p 7→ s}

In the pre-condition is expressed that APPLY (p, s) must be executed
successfully if person p is not already seeking employment. In the post-
condition is expressed that p must be added to the persons seeking em-
ployment (with skills s). In the post-condition the names of the state com-
ponents refer to the state prior to the execution of the operation if they
have been decorated with a backward-pointing hook (↼) and to the state
after execution otherwise. The post-condition appears to be rather like an
assignment statement. It should be borne in mind that it is a logical ex-
pression which asserts a relationship between values.

The specification of an operation does not consist only of a pre-condition
and a post-condition, but also of an external clause (starting with the key-
word ext) in which is enumerated which state components may be inter-
rogated and/or modified. wr indicates that the state component concerned
may be interrogated and modified and rd indicates that it may only be
interrogated. In the specification of the operation APPLY , the external
clause means that only the state component cands may be interrogated
and that this state component may also be modified.

The above operation specification gives rise to the following proof obli-
gation for implementibility :

∀ag ∈ Agency , p ∈ Person, s ∈ Skills·
pre-APPLY (ag , p, s) ⇒ ∃ag ′ ∈ Agency · post-APPLY (ag , p, s, ag ′)

In other words, for each combination of initial state and arguments there

FORMAL SPECIFICATION IN VDM 7

has to be at least one possible final state. Note that the pre- and post-
condition of the operation APPLY are quoted. This convention is part of
VDM-SL. The proof of the above follows immediately from the definition
of the operation ∪ on maps. It is often the case that proof obligations of
this kind can be discharged with a minimum of work.

Note that the specified operation APPLY is deterministic. For each com-
bination of initial state and arguments there is only one possible final state.
This is not the case for the following operation to introduce a new vacancy:

SUBSCR(c:Company , s:Skills) n:Vacno
ext wr vacs: Vacno m−→ Vacdata
pre true

post n /∈ dom↼−−vacs ∧ vacs = ↼−−vacs ∪ {n 7→ mk-Vacdata(c, s)}

This operation has to assign a vacancy number to the new vacancy. The
post-condition leaves open how this occurs. It only asserts that the assigned
vacancy number should not be already in use. In the post-condition use is
made of a special property of LPF, the underlying logic of VDM. ↼−−vacs ∪
{n 7→ mk-Vacdata(c, s)} is undefined if n /∈ dom↼−−vacs is false. Now the
question is what the truth value of vacs = ↼−−vacs ∪ {n 7→ mk-Vacdata(c, s)}
is. However, this does not cause any problem because the truth value of a
formula of the form A ∧ B is always false in LPF if one of the formulae
A and B is false (likewise it is always true if both formulae are true, and
undefined otherwise). The pre-condition true expresses that this operation
must be executed successfully under all circumstances.

The specified operations APPLY and SUBSCR are both for keeping the
state of the employment agency up to date. APPLY does not yield any
result, but SUBSCR yields the number that has been assigned to the new
vacancy. The following operation only interrogates the state to show the
persons that are suitable candidates for a given vacancy, but it does not
modify the state:

SUITCAND(n:Vacno) ps:Person-set
ext rd cands: Person m−→ Skills

rd vacs: Vacno m−→ Vacdata
pre n ∈ dom vacs
post ps = {p ∈ Person | skills(vacs(n)) ⊆ cands(p)}

One can think of other useful operations, such as an operation AVAILVAC
to inquire the numbers of the available vacancies for a given candidate, an
operation VACDATA to inquire the information about the vacancy with a
given number, and an operation ASSIGN to assign a given vacancy to a
given candidate. These operations are only mentioned here, but we shall
return to VACDATA in a later section.

8 GENERAL INTRODUCTION

1.4 Verified design in VDM

VDM distinguishes two kinds of steps in verified design, viz. data reification
and operation decomposition. Design steps of both kinds give rise to proof
obligations. The proof obligations associated with data reification have to
do with the various aspects of it, such as data representation and modelling
of functions and operations. For operation decomposition the proof obli-
gation depends upon the kind of decomposition: sequential decomposition,
decomposition into conditionals or loops, etc.

Given an abstract specification of a system, a design step might consist of
the choice of representation for its states (which should reflect implemen-
tation considerations) and the modelling of its operations on the chosen
representation. In VDM, this is called data reification. The relationship
between the representation and the abstraction is expressed by a function
which is called a retrieve function.

In the case of the example of the previous section, the following repre-
sentation might be chosen:

Agencyc :: cands: Person m−→ Skills
vacs: Vacdata∗

vacnos: Vacno-set

An implementation consideration for this choice might be that usually all
information about vacancies will be looked up sequentially. The component
vacnos is meant to record the vacancy numbers that are in use. In this
representation, these vacancy numbers also serve as indices to the sequence
vacs. The retrieve function belonging to it is defined as follows:

retr :Agencyc → Agency
retr(agc) 4

mk-Agency(cands(agc), {n 7→ vacs(agc)(n) | n ∈ vacnos(agc)})

One of the proof obligations associated with this design step is a proof
obligation for adequacy :

∀ag ∈ Agency · ∃agc ∈ Agencyc · retr(agc) = ag

In other words, for each abstract state there must be at least one represen-
tation. The proof of the above, using VDM’s induction rule for finite maps,
follows relatively easily from some elementary properties of finite sequences
and maps. Proof obligations of this kind usually require inductive proofs.

COMPUTER-BASED SUPPORT FOR VDM 9

Modelling of the operation SUBSCR might lead to the following:

SUBSCRc(c:Company , s:Skills) n:Vacno
ext wr vacs: Vacdata∗

wr vacnos: Vacno-set
pre true

post n /∈ ↼−−−−vacnos ∧ vacnos = ↼−−−−vacnos ∪ {n}∧
∀n ′ ∈ ↼−−−−vacnos · vacs(n ′) = ↼−−vacs(n ′)∧
vacs(n) = mk-Vacdata(c, s)∧
∀m /∈ ↼−−−−vacnos · n ≤ m

In this case, the smallest unused index is assigned to the new vacancy. For
a correct modelling, an arbitrary unused index is sufficient.

This operation modelling gives rise to the following proof obligation
(which is known as a result rule):

∀agc , ag ′c ∈ Agencyc , c ∈ Company , s ∈ Skills,n ∈ Vacno·
post-SUBSCRc(agc , c, s, ag ′c ,n) ⇒
post-SUBSCR(retr(agc), c, s, retr(ag ′c),n)

In other words, when viewed via the retrieve function, the operation on the
representation may have no other effects than those of the original abstract
operation. The proof of the above follows, mainly by equational reasoning,
from generally known properties of finite sequences and maps.

The next section gives an idea of the assistance which a specific support
system for formal methods such as VDM provides for the discharge of proof
obligations.

1.5 Computer-based support for VDM

Also in VDM, verified design means that computer-based support is desir-
able. Available is a formal development support system, called mural , its
main components are a VDM support tool and a proof assistant. Together
they provide support for the creation of VDM specifications and designs as
well as for the discharge of the associated proof obligations. The main idea
underlying the design of mural is that it must offer a more inviting envi-
ronment than pencil and paper. For the most part, this is reached because
the user, rather than the system, is leading in finding proofs.

The VDM support tool supports the creation of VDM specifications and
designs (which can be grouped into developments). The proof obligations
associated with the created specifications and designs can also be generated
with the VDM support tool. These proof obligations can then be discharged
with the help of the proof assistant. Frequently, the generated proof obliga-
tions are very illuminating. They are also useful in case no formal proofs are
provided: although we may assume that design steps are based on insight,
the proof obligations often bring out details which have been overlooked.

10 GENERAL INTRODUCTION

Important aspects of the proof assistant are: (1) the user guides the
creation of a proof based on his insight and the system carries out routine
work; (2) the system leaves the user free not to work out all the steps of a
fully formal proof.

During the creation of a proof, the user continuously sees a presentation
of the incomplete proof on the screen. What is not yet formally justified has
been marked. If the user wants to work out the proof further by applying
one of the proof rules in a specific way, then the system takes care of
bringing its presentation on the screen up to date. Among the routine
work meant under (1) is the search for potential next steps in a proof if
the user cannot find them himself and the checking of the consequences of
each of these steps for the course of the proof. All this means that the user
does not need to plan the proof by hand.

The freedom as mentioned under (2) is important because it is not always
useful to work out all the steps of a fully formal proof. As in mathematics,
there are usually steps in the proofs which might be regarded as trivial
steps. The proof of such steps does not increase the confidence that a prod-
uct is being developed which will satisfy the requirements for it. However,
it remains known what is not formally justified so that it can be returned
to later in case of doubt.

1.6 VDM and other methods

In previous sections VDM was used to illustrate what formal methods have
to offer. This section informs briefly on Z and the algebraic approach by
comparison with VDM in respect of formal specification.

Z

The closest method to VDM is Z which has emerged from a style of spec-
ification and design conceived around 1980. The meaning of constructs in
the Z notation in terms of mathematical concepts is treated extensively by
Spivey (1988). Just as in VDM, the description of a system in Z consists
of a definition of the states of the system followed by the specification of
the operations which can be performed by the system.

For comparison, the example from Section 1.3 is partly repeated below
in the Z notation. The states may be defined in Z as follows:

[Person,Skill ,Company]

Agency
cands:Person 7 7→ Skills
vacs:Vacno 7 7→ Vacdata

VDM AND OTHER METHODS 11

Skills =̂ FSkill

Vacno =̂ N

Vacdata
comp:Company
skills:Skills

The abstract mathematical concepts in terms of which the states are de-
scribed here, do not differ from the ones used in Section 1.3. Apart from
details on the level of concrete syntax, the only difference is that Person,
Skill and Company are here explicitly regarded as being given.

When specifying operations in Z, in addition to the given formal se-
mantics of the Z notation some informal conventions about the correspon-
dence between specifications and operations are needed: (1) arguments have
names which end with a question mark, (2) results have names which end
with a exclamation mark, (3) the names of state components refer to the
final state if they are followed by ′ and refer to the initial state otherwise
(the names with ′ are introduced by ∆). Note that VDM does not have
such informal conventions.

The operation to introduce a new candidate can be specified in Z as
follows:

APPLY
∆Agency
p?:Person
s?:Skills

p? /∈ dom cands
vacs ′ = vacs
cands ′ = cands ∪ {p? 7→ s?}

The pre- and post-condition are not, as in VDM, separated. The expres-
siveness of Z is increased by this, but at the same time it is made difficult
to associate suitable proof obligations with specifications and design steps.
There is no special notation to indicate that a certain state component
may only be interrogated. Therefore the condition vacs ′ = vacs has been
included above.

As in VDM, the specification of non-deterministic operations is no prob-
lem in Z. For example, the specification of the operation to introduce a new
vacancy might be specified as follows:

12 GENERAL INTRODUCTION

SUBSCR
∆Agency
c?:Company
s?:Skills
n!:Vacno

cands ′ = cands
n! /∈ dom vacs
vacs ′ = vacs ∪ {n! 7→ µVacdata | comp = c? ∧ skills = s?}

Clearly, there are many similarities between the notations of VDM and
Z. Due to the differences, VDM is better suited for software development
from specification through to code and Z for the analysis phase preceding
specification.

The algebraic approach

The algebraic approach embraces techniques for specification, design and
verification which takes the line that a system is described in terms of
its desired properties. Generally, these properties are described by giving
(conditional) equations which relate the operations concerned to each other.
Many algebraic specification languages have been developed. Among them
are Clear (Burstall and Goguen, 1981), ACT ONE (Ehrig, Feys and Hansen,
1983), the Larch Shared Language (Guttag and Horning, 1986) and ASF
(Bergstra, Heering and Klint, 1989). Although much work has been done
on the mathematical foundations of algebraic formal methods for software
development, little is known about such methods. A good overview of the
algebraic approach is given by Wirsing (1990).

In order to be able to give an idea of algebraic specification with the
help of the example from Section 1.3, the following is assumed: (1) partial
functions (functions that do not always yield a result) are allowed and (2)
all models that satisfy the given equations are taken into account. These
assumptions exclude many existing algebraic specification languages. Ac-
cepting partial functions leads to the problem that either side of an equa-
tion may be undefined. In such cases, the equation will be considered to be
false. By so doing, the meaning of equations, especially conditional ones,
does not always agree with the intuition.

In the algebraic approach states are not directly defined. Furthermore,
the initial state of each operation must explicitly be treated as an actual
argument of the operation and the final state of each operation that mod-
ifies the state must explicitly be treated as an actual component of the
result. Only in this way can the operations be related to each other by
means of equations. The states are then implicitly specified by the equa-
tions concerned. A way to find the equations needed is as follows: (1) choose

VDM AND OTHER METHODS 13

a collection of primitive interrogation operations (operations that interro-
gate the state) from which the required interrogation operations can be
derived, (2) characterize each of the modification operations (operations
that modify the state) by equations which sufficiently describe its effects
on the results of all primitive interrogation operations, and (3) characterize
each of the required interrogation operations by equations which sufficiently
describe its result in terms of the primitive interrogation operations.

The operation apply (the operation names are now written in lower case
letters) might be characterized by the following conditional equations:

iscand(apply(a, p, s), p) = true if iscand(a, p) = false
iscand(apply(a, p, s), p′) = iscand(a, p′) if iscand(a, p) = false,

p 6= p′

candata(apply(a, p, s), p) = s if iscand(a, p) = false
candata(apply(a, p, s), p′) = candata(a, p′) if iscand(a, p) = false,

iscand(a, p′) = true
isvac(apply(a, p, s),n) = isvac(a,n) if iscand(a, p) = false
vacdata(apply(a, p, s),n) = vacdata(a,n) if iscand(a, p) = false

The choice of primitive interrogation operations is as follows: an operation
iscand to inquire whether or not a given person is a candidate (i.e. seeking
employment), an operation candata to inquire the skills of a given candi-
date, an operation isvac to inquire whether or not a given number is in use
as a vacancy number, and the operation vacdata. Note that the primitive
interrogation operations iscand and candata together take over the role
of the state component cands (Section 1.3). Likewise isvac and vacdata
together take over the role of the state component vacs. This emphasizes
one of the greatest differences compared to model-oriented specification
as in VDM: states are not explicitly described. It seems that by doing so
the intuitive clarity of the specification is lost. Furthermore each opera-
tion has to be regarded as a function. This complicates the specification of
non-deterministic operations (e.g. the operation subscr) considerably.

The above suggests that algebraic specification of operations is rather dif-
ficult. This is not very surprising considering that the notation employed is
very elementary and not at all adapted to make it easier to specify software
systems. For example, there are no special provisions to describe systems
in terms of operations which interrogate and/or modify a state such as in
VDM-SL. Algebraic specification is, however, relatively easy for the data
types which are used in VDM-SL to model the states of a system (natural,
integer and rational numbers, finite sets, maps and sequences, etc.). This
holds also for other data types which are useful or needed for some kinds of
applications (e.g. finite relations). Such algebraic specifications, generally,
lead to simplification of the proofs that the discharge of proof obligations
takes. Therefore, algebraic specification techniques seem to show to full ad-
vantage in a specification language in which algebraic specification (of data

14 GENERAL INTRODUCTION

types) can be combined with model-oriented specification (of state-based
systems).

COLD-K

Such a specification language is COLD-K. COLD is an abbreviation of
‘Common Object-oriented Language of Design’ and K stands for ‘Kernel’.
This language can be regarded as an algebraic specification language ex-
tended with special provisions to describe state-based systems. COLD-K
and the allied formal method were developed recently at the Philips Re-
search Laboratories in Eindhoven (Jonkers, 1989b; Feijs and Jonkers, 1992).

VDM-SL can be viewed as a restricted version of COLD-K with a lot
of syntactic sugar. Therefore, it is not useful to repeat the example from
Section 1.3 once again in COLD-K. For the implicit specification of oper-
ations, formulae of dynamic logic are used in COLD-K. This is only one
of the points where COLD-K is superior to VDM-SL in descriptive power.
Proof obligations are, however, only associated with specifications and de-
sign steps making use of the restricted version of COLD-K corresponding
to VDM-SL.

1.7 Extensions of VDM

When putting formal specification into practice, there is sometimes a need
for specifying operations that are sensitive to interference by concurrently
executed operations. It also happens that provisions for modular structur-
ing of specifications are needed because of the size or complexity of the sys-
tem being specified. The ESPRIT project ‘VDM for Interfaces of the PCTE’
(VIP) was faced with this. It had to deal with the absence of a language that
could meet the needs of the most important task of the project: producing
a formal specification of the PCTE interfaces (VIP, 1988a, 1988b). This
led to the development of an extended version of VDM-SL, called VVSL,
short for ‘VIP VDM Specification Language’. The extensions of VDM-SL
relate to the following special features of VVSL:

• operations that are sensitive to interference by concurrently executed
operations through shared state components can be implicitly specified
in a VDM-like style with the use of inter-conditions, which are formulae
from a language of temporal logic, in addition to the usual pre- and
post-conditions;

• large state-based specifications can be modularly structured by means
of modularization and parametrization mechanisms which permit two
modules to have state components in common, including hidden state
components, and allow requirements to be put on the modules to which
a parametrized module may be applied.

EXTENSIONS OF VDM 15

VVSL has been improved in the course of the work on the formal spec-
ification of the PCTE interfaces based on the feedback by the specifiers
about their actual needs. This led to various preliminary versions of VVSL,
which were also developed by the author.∗ The somewhat sketchy first pa-
per (Middelburg, 1988) on VVSL applies to a preliminary version. The
other papers on VVSL, such as (Middelburg, 1992a, 1992b), apply to the
ultimate version.

Specifying interference

What matters to the users (persons, programs or whatever) of a software
system are the operations that the system can execute and the observable
effects of their execution. A software system may provide for concurrent
execution of multiple operations in a multi-user environment. If the sys-
tem provides for concurrent execution, then it may arise that some of its
operations are intentionally made sensitive to interference by concurrently
executed operations. Some operations of the PCTE interfaces are of this
kind.

The execution of an operation that is sensitive to interference through
shared state components terminates in a state and/or yields a result that
depends on intermediate state changes effected by the concurrent execution
of other operations. Its execution may even be suspended to wait for an
appropriate state change (which may additionally lead to non-termination).
If such an operation is specified by means of a pre- and post-condition
only, then which interference is required for the occurrence of many final
states and/or yielded results is not described. Describing this with inter-
conditions can be done in a way that is similar to the way it is naturally
discussed.

Modular structuring

The following goals of modular structuring of a formal specification are
generally recognized: (1) to enhance the comprehensibility of the specifica-
tion, (2) to improve the adaptability of the specification and (3) to make
reuse of existing modules possible. As the size or complexity of the sys-
tem being specified increases, it becomes more important to achieve these
goals. Therefore, provisions for modular structuring of specifications espe-
cially supply a need in the case of large and complex systems such as the
PCTE.

In the case of a good modular structure, the development of theories
about the separate modules becomes possible. This can be of help to the
∗ It is worth mentioning that the preliminary version of VVSL described by the author

in the report (VIP, 1987) and the language described under the name EVDM by
Oliver (1988) are the same.

16 GENERAL INTRODUCTION

justification of design steps and the clarification of what is described in a
module (to enhance its potential for reuse). One might want a modular
structure that is suitable for subsequent development of the system being
specified, but it is questionable whether this is generally obtainable.

In VVSL, modules can be adapted and combined by means of renaming ,
importing , and exporting . The basic modularization concepts of decompo-
sition and information hiding are supported by importing and exporting,
respectively. Renaming provides for control of name clashes in the com-
position of modules. The usual flat VDM specifications are used as the
basic building blocks. Modules can also be parametrized over modules, by
means of abstraction, and these parametrized modules can be instantiated
for given modules, by means of application. The concept of reusability is
primarily supported by abstraction and application.

Giving semantics for VVSL

VVSL can be regarded as a combination of VDM-SL and the language of
a temporal logic together with a structuring language that is put on top of
it. However, it was not sufficient to combine these languages syntactically.
In order to achieve a formal specification, they had also to be combined
semantically. This book describes, among other things, the outcome of a
project which applied a particular approach of giving a semantics for a
specification language to VVSL.

The logic MPLω, the algebra DA (a model for modularization of spec-
ifications) and λπ-calculus (a variant of classical lambda calculus for pa-
rametrization of specifications) are used in later chapters to give a formal
semantics for VVSL.

MPLω is mainly obtained by additions to the language, the proof sys-
tem and the interpretation of classical first-order logic. These additions
make it more suitable as a semantic basis for specification languages which
are intended for describing software systems. However, classical reasoning
is not invalidated. The semantics presented describes the meaning of flat
specifications, the building blocks of modularly structured specifications,
as presentations of theories by sets of formulae of MPLω.

DA has some special features, which make it more suitable as the un-
derlying model for modularizing model-oriented, state-based specifications
than the models proposed for modularly structured algebraic specification.
Nevertheless, many laws commonly holding in those models also hold in
DA. In λπ-calculus, no essential deviations from classical typed lambda
calculus are imposed: λπ-calculus has parameter restrictions in lambda ab-
stractions and consequently a conditional version of the rule (β). This ex-
tension permits requirements to be put on the actual parameters to which
parametrized modules may be applied. The semantics presented describes
the meaning of modularly structured specifications as terms from an in-

EXTENSIONS OF VDM 17

stance of λπ-calculus for a subalgebra of DA extended with higher-order
generalizations of the operations of this algebra. The building blocks of
these terms are the constants of the relevant subalgebra of DA. These con-
stants are the above-mentioned presentations of theories by sets of formulae
of MPLω.

The next chapter goes into the special features of VVSL. Subsequent
chapters contain presentations of MPLω, DA, λπ-calculus and a formal
semantics of VVSL based on this framework.

2

Introduction to VVSL

The purpose of this chapter is to make the reader familiar with the speci-
fication language which is the subject of the formal semantics presented in
later chapters. It is not intended to be a tutorial on VVSL. It only gives
a general overview of the special features of VVSL. These special features
are connected with the following extensions of VDM-SL:

• the addition of an inter-condition to the implicit specification of opera-
tions (which includes a pre-condition and a post-condition), to support
implicit specification of operations which interfere through shared state
components;

• the provision of modularization and parametrization mechanisms which
are adequate for writing large state-based specifications in VDM style
and have a firm mathematical foundation.

The work on the formal specification of the PCTE interfaces in the VIP
project (VIP, 1988a, 1988b) led to these extensions. They are based on the
actual needs of the specifiers.

This chapter shows how interfering operations can be specified in VVSL
with the use of inter-conditions and how specifications of systems can be
modularly structured in VVSL. The other main features of VVSL are in
common with VDM-SL. These were outlined in the previous chapter. There
is, however, one important difference between VDM-SL and its variant as
incorporated in VVSL: the type discipline of the latter is stronger. There-
fore, the type discipline of VVSL is also sketched in this chapter. Quoting
pre- and post-conditions is not supported by VVSL. Although it is a syn-
tactic difference of minor importance, it is worth noticing further that in
VVSL, unlike in VDM-SL, the headers used for explicit specification (i.e.
direct definition) of functions are similar to the headers used for implicit
specification.

VVSL without its modularization and parametrization constructs is re-
ferred to as flat VVSL. The structuring sublanguage of VVSL consists

20 INTRODUCTION TO VVSL

of the modularization and parametrization constructs complementing flat
VVSL.

2.1 Specifying interference in VVSL

This section explains the specification of interfering operations with inter-
conditions. This approach to specifying interference is broadly compared
with alternative approaches. In order to motivate the addition of an inter-
condition to the usual implicit specification of operations, the need for
specifying interference is first illustrated by means of an example. The
same example will later be used to illustrate the use of the inter-condition.

Example: wait and lock (first attempt)

This example is about an operation to lock a given object. Because the
objects concerned can only be locked when they are not locked, execution
of the operation is meant to be suspended to wait until the object is not
locked. Waiting should be interruptable to prevent it lasting for ever. The
state component locked is used to indicate which objects are currently
locked. The state component signal is used for interruption. The following
is an attempt to specify this operation in VDM-SL:

WLOCK (obj :Object)
ext rd signal : B

wr locked : Object-set
pre true

post obj ∈ locked ∨ signal

The external clause allows the state components locked and signal to be in-
terrogated by WLOCK , but it may only modify locked . The pre-condition
means that WLOCK (obj) must be executed successfully under all circum-
stances. The post-condition requires that it must terminate in a state where
obj is locked or signal is up. According to this specification it is sufficient
that WLOCK (obj) just pretends to lock obj if obj is already locked. It
cannot be expressed in the post-condition that it should wait until obj is
not locked. Neither the synchronization required here nor other ways in
which an operation might interfere with its environment can be specified
with pre- and post-conditions. This problem can be solved by the addition
of an inter-condition.

Specifying interference with inter-conditions

VVSL can be considered to be a variant of VDM-SL in which operations
which interfere through shared state components can be specified while
maintaining the VDM style of specification where possible. This is mainly

SPECIFYING INTERFERENCE IN VVSL 21

accomplished by adding an inter-condition to the usual implicit specifi-
cation of operations. The inter-condition is used to delimit the possible
effects of performing the operation concerned which relates to interference
through shared state components.

In case of sensitivity to interference, the pre-condition of an operation
only bounds the circumstances under which the system is required to start
execution of the operation, but it allows that the operation is only executed
successfully if certain interference by concurrently executed operations oc-
curs. Moreover, the post-condition will be rather weak in general, for initial
states must often be related to many final states or results which should
only occur due to certain interference by concurrently executed operations
through shared state components. The inter-condition is mainly needed to
describe which interference is required for successful execution and/or the
occurrence of such final states or results.

An operation is called atomic if it is insensitive to interference by con-
currently executed operations and it is called non-atomic otherwise. The
inter-condition can be used to express that an operation is atomic, but
this may also be indicated by leaving out the inter-condition. This means
that atomic operations can be implicitly specified as in VDM-SL. For such
operations, the new interpretation is equivalent to the original VDM inter-
pretation. The inter-condition is normally used to specify the way in which
a non-atomic operation interferes with its environment. For example, it can
be used to specify the synchronization required by the operation WLOCK .

Example: wait and lock (second attempt)

The operation can now be specified as follows:

WLOCK (obj :Object)
ext rd signal : B

wr locked : Object-set
pre true

post obj ∈ locked ∨ signal
inter is-E U (obj /∈ locked ∧ is-I ∧©©©(obj ∈ locked ∧ ¬©©©true)) ∨

is-E U (signal ∧ ¬©©©true)

The inter-condition means that one of the following occurs:
• Eventually WLOCK (obj) will lock obj at a point in time that obj is

not locked and it will terminate immediately thereafter. Until then all
changes have to be effected by its interfering environment.

• Eventually WLOCK (obj) will terminate at a point in time that signal
is up. Until then all changes have to be effected by its interfering envi-
ronment.

So the inter-condition excludes non-termination of WLOCK (obj): it nor-
mally waits until the object to be locked is not locked, but it can be inter-

22 INTRODUCTION TO VVSL

rupted if otherwise it would be waiting for ever.
The inter-condition is a formula from a temporal language which is out-

lined below. The outline includes an explanation of the temporal operators
used above: is-I (‘is internal’), is-E (‘is external’), ©©© (‘next’), and U (‘until’).

The temporal language

An inter-condition defines the possible successions of state changes that can
be generated by the operation concerned working interleaved with an in-
terfering environment, distinguishing between state changes effected by the
operation itself and state changes effected by its interfering environment.
The state changes of the former kind are called internal steps, those of the
latter kind are called external steps and the successions of state changes
are called computations. Computations of atomic operations have at most
one internal step and no external steps. Successful executions correspond
to finite computations.

An inter-condition is a formula from a temporal language which has
been inspired by a temporal logic that includes operators referring to the
past (Lichtenstein, Pnueli and Zuck, 1985), a temporal logic that includes
the ‘chop’ operator (Hale and Moszkowski, 1987), a temporal logic that
includes ‘transition propositions’ (Barringer and Kuiper, 1985) and a tem-
poral logic with models in which ‘finite stuttering’ cannot be recognized
(Fisher, 1987). The operators referring to the past, the chop operator and
the transition propositions obviate the need to introduce auxiliary state
components acting as history variables, control variables and scheduling
variables, respectively.

For a given computation and a given point in that computation, the
evaluation of a temporal formula yields true, false or neither-true-nor-
false. The meaning of the logical connectives and quantifiers is as in LPF
(Barringer, Cheng and Jones, 1984), the underlying logic of VDM. They
distinguish between false and neither-true-nor-false. The temporal opera-
tors identify false and neither-true-nor-false. So the three-valuedness can
be safely ignored when only the temporal operators are considered. The
meaning of the temporal operators is explained by the following informal
evaluation rules:

is-I: Evaluation yields true if there is an internal step from the
current point in the computation.

is-E: Evaluation yields true if there is an external step from the
current point in the computation.

ϕ1 C ϕ2: Evaluation yields true if it is possible to divide the computa-
tion at some future point into two subcomputations such that
evaluation of ϕ1 yields true at the current point in the first
subcomputation and the evaluation of ϕ2 yields true at the

SPECIFYING INTERFERENCE IN VVSL 23

starting point of the second subcomputation, or the computa-
tion is infinite and evaluation of ϕ1 yields true at the current
point in the computation.

©©©ϕ: Evaluation yields true if there is a next point in the computa-
tion and evaluation of the temporal formula ϕ yields true at
that point.

ϕ1 U ϕ2: Evaluation yields true if evaluation of the temporal formula ϕ2

yields true at the current or some future point in the compu-
tation and evaluation of the temporal formula ϕ1 yields true
at all points until that one.

©©−©ϕ: Evaluation yields true if there is a previous point in the com-
putation and evaluation of the temporal formula ϕ yields true
at that point.

ϕ1 S ϕ2: Evaluation yields true if evaluation of the temporal formula ϕ2

yields true at the current or some past point in the computa-
tion and evaluation of the temporal formula ϕ1 yields true at
all points since that one.

©©©τ : Evaluation yields the value that is yielded by evaluation of the
temporal term τ at the next point in the computation. In case
there is no next point, evaluation is undefined.

©©−©τ : Evaluation yields the value that is yielded by evaluation of the
temporal term τ at the previous point in the computation. In
case there is no previous point, evaluation is undefined.

The notations 3ϕ (meaning ‘eventually ϕ’), 2ϕ (meaning ‘henceforth
ϕ’) and their counterparts for the past can be defined as abbreviations:

3ϕ := true U ϕ, −3ϕ := true S ϕ,

2ϕ := ¬ (3¬ϕ), −2ϕ := ¬ (−3¬ϕ).

An inter-condition is a temporal formula that must yield true at the starting
point of the computations of the operation concerned.

Dynamic constraints

Just as in VDM-SL, an invariant can be used to restrict the possible states
of a system. In addition to this, a dynamic constraint can be used to restrict
its possible computations as well. Its role is similar to that of a state invari-
ant. A dynamic constraint is a temporal formula that must yield true at all
points of the computations of any operation. This means that a dynamic
constraint can be thought of as a kind of global inter-condition.

A dynamic constraint for a lock manager offering, amongst other things,
the operation WLOCK specified before might be:

dyn signal ⇒ 3¬©©©true

24 INTRODUCTION TO VVSL

In this dynamic constraint is expressed that any operation of the lock
manager must eventually terminate after the signal has gone up.

Alternative approaches to specifying interference

If an operation that is sensitive to interference is specified by means of a pre-
and post-condition only, then its specification does not describe which in-
terference is required for the occurrence of many final states and/or yielded
results. For example, the earlier specification of WLOCK without the inter-
condition permits that the operation just pretends to lock the given object if
it is already locked, while it should wait until the object is not locked. Rely-
and guarantee-condition pairs, as proposed by Jones (1983) for specifying
interference, can be regarded as abbreviations of simple inter-conditions.
Their main limitation is the inadequacy in case synchronization with con-
currently executed operations is required. Synchronization is often needed
(also for WLOCK). Stølen (1991) adds a wait-condition to the rely- and
guarantee-condition pairs to make it possible to deal with synchronization.
It appears that this recent addition allows many non-atomic operations to
be adequately specified, but it is certain that auxiliary state components
must be employed. Because internal steps and external steps can only be
related via the auxiliary state components, the specifications concerned will
fail to mirror the intuition behind the operations.

Specifying interference with inter-conditions can be done close to the
way it is naturally discussed. Moreover, anything that can be specified
with rely-, guarantee- and wait-conditions (with or without auxiliary state
components) can also be specified with inter-conditions. It is argued by
Stølen that it is less intricate to reason about shared-state interference with
rely-, guarantee- and wait-conditions. The examples show that the intricacy
is still present, but it has been disguished by relying on the judicious use
of auxiliary state components.

2.2 Modular structuring of specifications in VVSL

Goals of modular structuring of specifications were given in Section 1.7.
This section discusses the modular structuring of specifications with the
modularization and parametrization constructs of VVSL. This approach to
modular structuring is also broadly compared with alternative approaches.
The modularization and parametrization constructs of VVSL are informally
explained and their use is illustrated by means of an example.

The goals of modular structuring lead to the use of the following main
criteria for the choice of modular structure: (1) the intuitive clarity of
the modular structure, (2) the simplicity of the separate modules and (3)
the suitability of the separate modules for reuse. Of course, provisions for
modular structuring should make it easy to meet these criteria. A larger

MODULAR STRUCTURING OF SPECIFICATIONS IN VVSL 25

and more complex example is required to illustrate this. Such examples are
given in Chapters 11 to 13.

The language for modularization and parametrization

VVSL can be considered to be a variant of VDM-SL for flat specifications
together with a language for modularization and parametrization that is
put on top of it, both syntactically and semantically. The usual flat VDM
specifications can be adapted and combined by means of renaming , im-
porting , and exporting . Flat specifications are the basic modules. Like all
modules, they are essentially interpreted as presentations of logical theories.
The models of their logical theory coincide with the models according to the
original interpretation. Modules can also be parametrized over modules, by
means of abstraction, and these parametrized modules can be instantiated
for given modules, by means of application.

The modularization and parametrization constructs of VVSL are like
those of COLD-K (Jonkers, 1989b) and have the same semantic basis.
Description Algebra, an algebraic model of modular specification intro-
duced by Jonkers (1989a), is used as the semantic foundation of modular-
ization. λπ-calculus, a variant of classical lambda calculus introduced by
Feijs (1989), is used as the semantic foundation of parametrization. The
modularization and parametrization constructs of VVSL can be informally
explained in terms of:

visible names: a collection of names for types, state components, func-
tions and operations which may be used externally;

formulae: a collection of formulae representing the properties character-
izing the types, state components, functions and operations denoted by
the visible names (hidden names may also occur in these formulae as
symbols).

Together, these collections constitute a theory presentation.
Due to the possibility of ‘identifier overloading’, the names mentioned

above must be ‘typed names’ and not just the identifiers which are used as
names in VVSL (except in signatures and renamings, see below). A typed
name has one of the following forms:

t for types,
v : t for state components,
f : t1 × · · · × tn → tn+1 for functions,
op: t1 × · · · × tn ⇒ t ′1 × · · · × t ′m for operations.

In VVSL, the constructs for denoting sets of typed names are called signa-
tures. A signature is usually an enumeration of the typed names concerned:

u1, . . . , un ,

26 INTRODUCTION TO VVSL

where uj (1 ≤ j ≤ n) is a typed name. Related to signatures are renamings.
They correspond to mappings from typed names to typed names and are
used to replace the visible names of a module by new ones. A renaming is
of the following form:

u1 7→ i1, . . . , un 7→ in ,

where uj (1 ≤ j ≤ n) is a typed name and ij is the new untyped name for
it. The translation of the new untyped name to the appropriately typed
one is straightforward.

The modularization and parametrization constructs of VVSL are the
following:

module D end: The basic module construct. Its visible names are the names
introduced by the definitions D. Its formulae represent the properties
characterizing the types, state components, functions and operations
which may be associated with these names according to the definitions.
If this construct occurs as an importing module, then the visible names
from the imported module, that are used but not introduced in it, are
treated as if they are introduced.

rename R in M : The renaming module construct has the same meaning as
the module M , except that the names have been changed according to
the renaming R.

import M1 into M2: The import module construct combines the two mod-
ules M1 and M2. Its visible names are the visible names of both modules.
The formulae representing the properties characterizing what is denoted
by these names (as well as hidden ones, if present) are also combined.

export S from M : The export module construct restricts the visible names
of module M to those which are also in the signature S , leaving all other
names hidden. The formulae remain the same.

abstract m1:M1, . . . ,mn :Mn of M : The module abstraction construct pa-
rametrizes the module M . Usually, the module names m1, . . . ,mn occur
in M . The visible names and formulae of the abstraction module de-
pend upon what these module names stand for. That is, m1, . . . ,mn act
as formal parameters. What the actual parameters may be is restricted
by the parameter restriction modules M1, . . . ,Mn . The visible names of
the actual parameter corresponding to mi must include the visible names
of the parameter restriction module Mi . Likewise the properties repre-
sented by its formulae must include those represented by the formulae
of Mi .

apply M to M1, . . . ,Mn : The module application construct instantiates the
parametrized module M . The modules M1, . . . ,Mn act as actual param-
eters. Its meaning is the meaning of M when its formal parameters stand
for M1, . . . ,Mn . If some actual parameter does not satisfy the parameter

MODULAR STRUCTURING OF SPECIFICATIONS IN VVSL 27

restriction associated with the corresponding formal parameter, then the
meaning is undefined.

let m 4 M1 in M2: The local module definition construct introduces locally
a name for a module. Its meaning is the meaning of M2 when the module
name m stands for M1.

The definitions of the basic module construct may be free. A free defini-
tion is a definition in which the keyword free occurs following its header. A
free definition introduces a free name and a non-free definition introduces
a defined name. A free name is a name which is supposed to be defined
elsewhere. This means that, in case of a free name, the body of the defini-
tion must be considered to describe assumptions about what is denoted by
the name.

In case of name clashes, the union of the formulae of the imported module
and the importing module of the import construct may lead to undesirable
changes in the properties represented by the formulae. Therefore, a restric-
tion applies to visible names. Visible names are allowed to clash, provided
that the name can always be traced back to at most one non-free definition.
Name clashes of hidden names can be regarded as being avoided by auto-
matic renamings, in case the name can be traced back to more than one
non-free definition. Otherwise they are not avoided. This makes it possible
for two modules to have hidden state components in common.

Actually, all constituent modules of modularization constructs may be
parametrized modules. However, the meaning of the modularization con-
structs is here only explained for the non-parametrized case. For the import
construct and the export construct, the generalization is straightforward.
For the rename construct, it involves the renaming of renamings. This is
not always possible. The parametrization constructs support higher-order
parametrized modules.

Example: an access handler

This example is about an access handler for relational databases, i.e. a
system which handles concurrent access to stored relations by multiple
transactions. A complete modularly structured specification of such a sys-
tem is given later in Chapter 13. The most important module is outlined
in this section. The operations which constitute the interface of the access
handler are specified in this module.

Most of these operations can be regarded as requests on behalf of some
transaction to perform an action on a subset of a stored relation. Trans-
actions are introduced as the units of consistency. It is assumed that each
action which is performed on behalf of a transaction may violate data-
base consistency, but that each transaction, when executed alone, preserves
database consistency. The access handler provides for the interleaved per-

28 INTRODUCTION TO VVSL

formance of actions requested by several transactions in such a manner
that each transaction sees a consistent database and produces a consistent
database.

ACCESS HANDLING is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

abstract

V: apply VAL CONST to Z
of

export

START : ⇒ Trans nm,
COMMIT :Trans nm ⇒,
ABORT :Trans nm ⇒,
SELECT :

Trans nm × Rel nm × Simple wff ⇒ Relation × Status,
INSERT :Trans nm × Rel nm × Simple wff ⇒ Status,
DELETE :Trans nm × Rel nm × Simple wff ⇒ Status,
CREATE :Trans nm × Rel nm ⇒ Status,
DESTROY :Trans nm × Rel nm ⇒ Status

from

import

X
U
apply RELATION to Y,Z
apply apply SIMPLE WFF to Y,Z to V
apply apply AH STATE to X,Y,Z,U to V

into

module

types

Status = {GRANTED, REJECTED}
operations

START ()tnm:Trans nm
. . .

COMMIT (tnm:Trans nm)
. . .

...
end

MODULAR STRUCTURING OF SPECIFICATIONS IN VVSL 29

The module ACCESS HANDLING is based on assumptions with
respect to relation names, attributes, values, transaction names and value
constants. In order to formalize this, the module is parametrized by means
of abstraction (the assumptions are expressed in the parameter restriction
modules).

The interface of the access handler comprises operations for starting and
stopping a transaction (by successful termination or abortion), operations
for accessing a subset of one of the stored relations to interrogate it (by
selection) or to modify it (by insertion or deletion), and operations for
creating and destroying stored relations. These operations reflect roughly
what is offered in the access handlers of existing RDBMSs. Only these
access handling operations are exported. The idea is that interrogating or
modifying the various state components should only be done by means of
the operations made available by the access handler.∗

The definitions of the access handling operations are based on definitions
regarding relations, simple formulae and states of the access handler. In
order to formalize this, the modules concerned are imported. The states
of the access handler provide all the details of the active transactions that
can be used to grant their waiting and coming requests in a consistency
preserving order. They also provide all the details that are required to abort
any of the active transactions. More explanation of what the imported
modules are about is given in Chapters 11 and 13.

Alternative approaches to modular structuring

There are various approaches to modular structuring of specifications. The
approach of COLD-K has been adopted for VVSL. This approach to mod-
ular structuring deviates somewhat from established approaches. Firstly,
the meaning of a module is a theory presentation. It has this in common
with the approach of the Larch Shared Language (Guttag and Horning,
1986). In other approaches, their meaning is usually more abstract (viz.
a theory or a model class). Secondly, the origins of names are taken into
account in the treatment of name clashes in the composition of modules.
It has this in common with the approach of Clear (Burstall and Goguen,
1980). In other approaches, name clashes are usually treated in an ad hoc
way. Together, these two deviations from established approaches to mod-
ular structuring make it possible for two modules to have hidden state
components in common.

This is considered important. Effective separation of concerns often mo-
tivates the hiding of state components from a module. In case a suitable
modular structuring requires that the same state components are accessed
from several modules, it is indispensable for the adequacy of a modular-

∗ State components are actually called state variables in VVSL.

30 INTRODUCTION TO VVSL

ization mechanism that it permits two or more modules to have hidden
state components in common. It is usually wanted if loosely connected
operations interrogate and/or modify the same state component(s). This
occurs in many large software systems. Chapter 12 provides an example.
Operations for querying and updating a database are not specified in the
same module as operations for changing the schema of the database. Only
operations are exported from the modules concerned, but the operations
of both kinds interrogate or modify the current database as well as the
current database schema. This means that these modules have two hidden
state components in common.

2.3 Types in VVSL

Types play a predominant role in the well-formedness of expressions in
VVSL. Subtypes and overloading of function names, which are both sup-
ported by VVSL, complicate the typing of expressions. This section dis-
cusses the type discipline of VVSL, which is related to the typing approach
for subtypes and generic operators described by Reynolds (1985) and their
treatment by Goguen and Meseguer (1987). This type discipline is briefly
compared with the usual type disciplines of strongly typed languages and
the weak type discipline of VDM-SL and its main consequences are illus-
trated by means of small examples.

Subtypes

The type discipline of VVSL aims to classify exactly the expressions that
possibly make sense as well-typed expressions. This means that the well-
typed expressions also include the expressions for which it is not possible
to decide whether the meaning is defined or not. Such expressions are rem-
iniscent of expressions in programming languages that need dynamic type
checking. This means that the type discipline of VVSL is not truly strong.

In strongly typed languages without subtyping, every well-formed ex-
pression has a unique type. A type determines a set of values which are
called the elements of the type. The value of an expression is always an
element of its type.

In strongly typed languages with subtyping, there is a subtype ordering
on types and every well-formed expression has a unique minimal type with
respect to this ordering. If a type T is a subtype of a type T ′ then the set
determined by the type T is always a subset of the set determined by the
type T ′. The usefulness of such an order relation on types lies in the fact
that an element of a type T that is a subtype of a type T ′ can be allowed
in any situation where an element of the type T ′ is expected: the required
conversion is simply an inclusion function. Consequently, every expression
having type T can be used as an expression having type T ′. This means

TYPES IN VVSL 31

that the requirement that expressions have unique types is not applicable to
languages with subtyping, but uniqueness of minimal types is. It is useful to
assume that the subtype ordering is a pre-ordering. The effect of a subtype
ordering on the possible types of expressions remains unchanged if it is
replaced by the least pre-ordering extending it. Furthermore, the existence
of minimal types for every set of types is guaranteed by a subtype ordering
that is a pre-ordering. Their uniqueness, needed to describe the meaning
of expressions unambiguously, is not guaranteed by this property.

It is typical of the type discipline suggested above that it is too rigid
and too inexpressive. In VVSL, a type is frequently defined as a subtype of
another type. With this type discipline, it becomes practically impossible
to define functions on the former type recursively in terms of functions on
the latter type. Therefore, the type discipline has been weakened for VVSL:
every expression having type T can also be used as an expression having
a type T ′ that is a subtype of the type T provided that this lowering of
the type does not lead to non-uniqueness of its minimal type. The implied
conversion is a retraction function, i.e. a partial function which maps the
elements of the subtype to themselves and which is undefined otherwise
– which corresponds to dynamic type checking. With this weakened type
discipline, the value of an expression is not necessarily an element of its
minimal type. However, the value of the expression is possibly an element
of its minimal type in the sense that it is always an element of a type of
which this minimal type is a subtype. Moreover, its minimal type is the least
type with this property. This is about the best that can be done without
relying on proofs. Note also that – owing to the restriction on the lowering
of types – an expression having type T cannot be used as an expression of
type T ′ if T and T ′ are incomparable, i.e. T is not a subtype of T ′, nor is
T ′ a subtype of T .

For example, with types A, B and C defined by

A = N∗

B = N m−→ B

C = A|B ,

an expression of the form c(1), where c is an expression having type C , is
ill-typed in VVSL. Lowering the type of c would lead to non-uniqueness of
its minimal type. Therefore, the minimal type of c is just the union type
C . Consequently, c(1) is definitively ill-typed. Note that lowering the type
of c, which is required for c(1) to make sense, would require conversion to
a type which may be incomparable with the type of which the actual value
of c is an element.

The ability to lower the type of an expression to a certain extent is one of
the main differences between this and the type discipline of strongly typed
languages with subtyping. Another main difference is a restraint imposed

32 INTRODUCTION TO VVSL

on the subtype ordering.
In VVSL, a type can be defined as a subtype of another type or as

a union of other types which are thereby subtypes of the defined types.
The subtype ordering includes only what arises straight from the prevalent
type definitions, from reflexivity and from transitivity. Properties based
on the underlying sets such as monotonicity of type constructors are not
taken into account. In a model-oriented specification, one describes the
types of interest in terms of basic types and type constructors. In case
two such types are described in the same way, e.g. by using the same type
constructor, automatic conversion between the two constructed types, just
because the underlying set allows it, is considered to be useless. This is,
however, the case in VDM-SL.

For example, with types D and E defined by

D = N-set

E = Z-set,

D is not a subtype of E , since monotonicity of the set type constructor is
not taken into account in VVSL.

A type discipline where every expression having type T can also be used
as an expression having type T ′ provided that T and T ′ are subtypes of
a common type, which is even weaker than the type discipline of VVSL, is
considered to be unacceptable. Even when there cannot be a single value
that is an element of more than one of the types concerned (as for the types
B and Z), this condition can be met in VVSL (by defining another type as
the union of the types). Roughly speaking, this lowering of types is allowed
by the weak type discipline of VDM-SL.

Minimal typing rules

In Section 5.8, a minimal typing predicate is defined by a set of inductive
rules. These rules can be viewed as type inference rules that prescribe how
to establish the minimal type of an expression from the minimal types of
its immediate subexpressions. There is one rule for each kind of expression.
Just as the value of an expression depends upon the meanings assigned
to the names occurring free in it, so its minimal type depends upon the
minimal types assigned to the names occurring free in it. Contexts are
used to record names and their types (contexts are further explained in
Section 5.1). We say that expression e is well-typed in a context N if there
is a type T such that expression e has minimal type T in context N . For
any expression well-typedness is a prerequisite for well-formedness.

TYPES IN VVSL 33

Overloading of function names

Overloading of function names is allowed. Consequently, the meaning of the
function name f in an application expression of the form f (e1, . . . , en) and
the type of the application expression generally depend on the types of the
argument expressions e1, . . . , en . In other words, overloading of function
names leads to generic function names. There is a complication due to sub-
typing. The complication arises if the function name f is introduced for two
functions of n arguments where the i -th argument type of the one function
is a subtype of the i -th argument type of the other function (for 1 ≤ i ≤ n).
To describe the meaning of f (e1, . . . , en) unambiguously, the former func-
tion needs to be a restriction of the latter function. This condition is met
by the various pre-defined function names for which the above-mentioned
situation occurs. For user-defined function names, this cannot be guaran-
teed in advance. Because well-typedness should stand for an unambiguous
meaning, the situation is only allowed for pre-defined function names. In
other words, an application expression f (e1, . . . , en) is deemed to be ill-
typed, if there is not a unique f (in its context) that fits the minimal types
of the argument expressions e1, . . . , en , unless f is a pre-defined function
name. In the case of a pre-defined function name, the function with the
greatest argument types is chosen.

Types and modules

Defining types in VVSL introduces subtype relationships with accompa-
nying implicit conversions. If types are defined as subtypes of basic types
(boolean type, natural type, etc.) or constructed types (sequence types,
set types, etc.) constructed from basic types and/or other defined types,
then the introduced subtype relationships are pragmatically relationships
between ‘abstract data types’ and their ‘representations’. A modularization
mechanism for model-oriented specifications that does not hide such rep-
resentations is not very useful. Therefore, the modularization mechanism
provided by VVSL hides such representations. This means that the sub-
type relationships concerned contribute only to the subtype ordering inside
the defining module. Besides, all pre-defined type and function names as-
sociated with the types used for representation are not visible outside the
defining module.

Owing to its hiding of representations, the modularization mechanism
provides naturally for the prevention of the inadvertent introduction of
needless restrictions on the well-formedness of expressions due to multiple
use of the same basic or constructed type for representation. Note that
exporting only provides for hiding of user-defined names. Therefore, explicit
hiding of representations by means of exporting is not possible.

Subtype relationships between defined types do contribute to the subtype

34 INTRODUCTION TO VVSL

ordering outside the defining module whenever the types concerned are vis-
ible. The practical usefulness of union types would be severely diminished
without this provision. It would, for example, be impossible to apply func-
tions on union types outside the defining module. Moreover, inheritance is
supported: a module about a type T is inherited in a module about a type
T ′ by importing the former module into the latter and defining the type
T ′ as a subtype of T .

3

Foundations of Flat VVSL

The main aim of this chapter is to introduce the logic which is used as
the basis for the semantics of flat VVSL presented in Chapter 5. This
logic, called MPLω (Many-sorted Partial infinitary Logic), is a many-sorted
infinitary first-order logic of partial functions. MPLω has some features in
addition to those of classical first-order logic, which make it suitable as
the basis for a semantics of flat VVSL. These features are mainly obtained
by additions to the language, proof system and interpretation of classical
first-order logic. In this way, no essential deviations from classical reasoning
are imposed. The language, proof system and interpretation of MPLω were
first presented by Koymans and Renardel de Lavalette (1989).

The first section gives an overview of the special features of MPLω and
discusses its suitability as a semantic basis for flat VVSL. The language,
proof system and interpretation of this logic are precisely defined in subse-
quent sections. The presentation of MPLω in this chapter is for the greater
part the result of a major rewrite of the one in (Koymans and Renardel
de Lavalette, 1989). A number of technical changes have made it possi-
ble to simplify the treatment. Properties that are relevant to the use of
this logic for a semantics of VVSL are also presented. For the proofs, the
reader is referred to (Koymans and Renardel de Lavalette, 1989; Renardel
de Lavalette, 1989). The last section shows how a large class of induc-
tive definitions of predicates and functions can be treated as abbreviations
of formulae of MPLω. This was first sketched in (Koymans and Renardel
de Lavalette, 1989, Section 4) and later worked out in detail by (Renardel
de Lavalette, 1989, Appendix D). The last section of this chapter stream-
lines and expands the latter treatment.

3.1 Introduction to MPLω

This section gives an idea of what MPLω is and connects this with its role
in a semantics of VVSL. Subsequent sections go into the details of MPLω.

36 FOUNDATIONS OF FLAT VVSL

Overview of MPLω

In MPLω, sort symbols are used in addition to function and predicate
symbols. Sort symbols are interpreted as non-empty domains of values.
There is a standard equality predicate symbol =S (used in infix notation)
for every sort symbol S . Every function symbol has a type S1×· · ·×Sn →
Sn+1 and every predicate symbol has a type S1×· · ·×Sn , where S1, . . . ,Sn+1

are sort symbols. We write f :S1 × · · · × Sn → Sn+1 and P :S1 × · · · × Sn

to indicate this. Si (1 ≤ i ≤ n) corresponds to the i -th argument domain
and Sn+1 corresponds to the result domain.

Functions are generally partial functions. Hence, not every term will refer
to an object in the intended domain. In other words, partial functions give
rise to non-denoting terms (alternatively called undefined terms). The po-
tential occurrence of non-denoting terms in formulae makes reasoning about
partial functions problematic in classical first-order logic. MPLω adopts an
approach to solve the problem with non-denoting terms in formulae, which
stays within the realm of classical two-valued logics. Atomic formulae that
contain non-denoting terms are logically false. In this way, the assumption
of the excluded middle does not have to be given up. When a formula
cannot be classified as true, it is inexorably classified as false. No further
distinction is made. However, denoting terms and non-denoting terms can
be distinguished. t =S t means that t is denoting (for terms t of sort S),
which is also written t↓S . There is a standard undefined constant symbol
↑S for every sort symbol S . ↑S is a non-denoting term of sort S .

If A0,A1,A2, . . . are countably many formulae, then the formula
∧

n An

can be formed. This allows a large class of recursive and inductive defini-
tions of functions and predicates to be expressed as formulae of MPLω.

If A is a formula, then the term ιx :S (A) can be formed which is called
a description. Its intended meaning is the unique value x of sort S that
satisfies A if such a unique value exists and is undefined otherwise. This
means that not every description will be denoting. Descriptions can be
eliminated: it is possible to translate formulae containing descriptions into
logically equivalent formulae without descriptions.

Free variables may be non-denoting, but in ιx :S (A), ∀x :S (A), ∃x :S (A),
x is always denoting. So we have t↓S ↔ ∃x :S (x =S t). Owing to the
different treatment of free variables and bound variables, frequent reasoning
about non-denoting terms can be avoided.

The formation rules for MPLω are the usual formation rules with an
additional rule for descriptions and with the rule for binary conjunctions
replaced by the rule for countably infinite conjunctions from Lω (Karp,
1964; Keisler, 1971), classical first-order logic with countably infinite con-
junctions. The proof system of MPLω presented in a later section is a
Gentzen-type sequent calculus that resembles one for Lω. Obviously, there
are additional axioms for equality, undefined, and description.

INTRODUCTION TO MPLω 37

A set of sort, function and predicate symbols that contains all sort sym-
bols occurring in the types of the function and predicate symbols from the
set is called a signature. The formulae that contain only symbols from a sig-
nature Σ constitute the language of MPLω over Σ . The language of MPLω

over Σ is interpreted in structures which consist of an interpretation of ev-
ery symbol in Σ as well as an interpretation of each of the equality symbols
associated with the sort symbols in Σ . These interpretations have to be in
accordance with the treatment of non-denoting terms outlined above. The
classical interpretation of the connectives and quantifiers is used. Unlike
bound variables, free variables may be non-denoting.

Suitability of MPLω

VVSL is close to a strongly typed language. It is more convenient to inter-
pret VVSL in a many-sorted logic than to interpret it in a logic without
sorts (akin to having only one sort available), because the types map nat-
urally to sorts.

MPL, the finitary fragment of MPLω (obtained by replacing countably
infinite conjunctions and disjunctions by binary conjunctions and disjunc-
tions), is suitable for the semantics of the expression sublanguage of VVSL.
Functions used in VVSL are generally partial functions, but MPL handles
partial functions. Moreover, it does so without imposing essential devia-
tions from classical reasoning.

In the definition sublanguage of VVSL, a function can be defined directly
in terms of a defining expression in which the function being defined may be
recursively used. Such recursively defined functions require an additional
non-standard feature of the logic used for the semantics. An obvious choice
is to add a least fixpoint operator to MPL, but to add countably infinite
conjunctions also allows a large class of recursive definitions to be expressed
as formulae. In contrast to adding a least fixpoint operator, adding count-
ably infinite conjunctions to MPL does not invalidate the interpolation
property (see Section 3.6). The interpolation property is a prerequisite for
appropriate properties of the modularization mechanisms of full VVSL.

Connections with LPF

MPLω is a two-valued logic of partial functions. Several logics of partial
functions have been developed in a three-valued setting. In particular, the
logical expressions of VDM-SL are considered to be formulae of the lan-
guage of the three-valued logic of partial functions, called LPF (Barringer,
Cheng and Jones, 1984).

In this logic, non-denoting terms make atomic formulae that are logi-
cally neither-true-nor-false. Thus, the assumption of the excluded middle
is given up. The classical connectives and quantifiers have counterparts in

38 FOUNDATIONS OF FLAT VVSL

LPF. Each behaves according to its classical truth-condition and falsehood-
condition; only if neither of them meets it will yield neither-true-nor-false.
This is Kleene’s strong way of extending the classical connectives and quan-
tifiers to the three-valued case (Kleene, 1952). Classical reasoning cannot
be used out of the positive fragment of LPF. In particular, the deduction
theorem does not hold in LPF. The departures from classical reasoning are
mainly consequences of the fact that, unlike formulae of MPLω, formulae
of LPF inherit the possibility of being non-denoting.

The logical expressions of VVSL and the ones of VDM-SL are the very
same. Like the other parts of flat VVSL, this part is provided with a se-
mantics by interpretation in the language of MPLω. The approach to this
interpretation, which is actually an interpretation of the language of LPF
in the language of MPLω, is connected with the layered approach to handle
partial functions adopted in the logic PPλ (Gordon, Milner and Wadsworth,
1979). It is proved in (Middelburg and Renardel de Lavalette, 1992) that
LPF can be reduced to MPLω in the following sense: formulae of LPF can
be translated into formulae of MPLω and what can be proved remains the
same after translation. As a corollary we have that reasoning in LPF can
be taken for being derived from reasoning in MPLω.

The next four sections describe MPLω precisely. The first of these sec-
tions gives the assumptions which are made about sort, function and pred-
icate symbols and introduces the notion of signature.

3.2 Signatures for MPLω

A language of MPLω is constructed with sort, function and predicate sym-
bols that belong to a certain set, called a signature. For a given signature,
say Σ , the language concerned is called the language of MPLω over signa-
ture Σ or the language of MPLω(Σ). The corresponding proof system and
interpretation are analogously called the proof system of MPLω(Σ) and
the interpretation of MPLω(Σ), respectively.

We assume a set SORT of sort symbols, a set FUNC of function symbols,
and a set PRED of predicate symbols. Every f ∈ FUNC has a function
type S1 × · · · × Sn → Sn+1 and every P ∈ PRED has a predicate type
S1×· · ·×Sn (S1, . . . ,Sn+1 ∈ SORT). To indicate this, we use the notation
f :S1 × · · · × Sn → Sn+1 and P :S1 × · · · × Sn . For every S ∈ SORT , there
is a standard function symbol ↑S :→ S , called undefined , and a standard
predicate symbol =S :S × S , called equality . Function symbols of function
type → S are also called constant symbols of sort S .

Definition. A signature Σ is a finite subset of SORT ∪FUNC ∪PRED
such that

for all f ∈ Σ , f :S1 × · · · × Sn → Sn+1 ⇒ S1, . . . ,Sn+1 ∈ Σ ;
for all P ∈ Σ ,P :S1 × · · · × Sn ⇒ S1, . . . ,Sn ∈ Σ .

LANGUAGE OF MPLω(Σ) 39

We write S(Σ) for Σ ∩ SORT , F(Σ) for Σ ∩FUNC , P(Σ) for Σ ∩PRED ,
SF(Σ) for {↑S | S ∈ S(Σ)}, SP(Σ) for {=S | S ∈ S(Σ)}. SIGN denotes the
set of all signatures for MPLω.

We also assume a set VAR of variable symbols. Every x ∈ VAR has a sort
S (S ∈ SORT). Furthermore, it is assumed that SORT , FUNC , PRED ,
VAR, {↑S | S ∈ SORT}, and {=S | S ∈ SORT} are mutually disjoint sets.
We write SYMB for SORT ∪FUNC ∪PRED ∪VAR. We write w ≡ w ′,
where w ,w ′ ∈ SYMB , to indicate that w and w ′ are identical symbols.

The language, proof system and interpretation of MPLω(Σ) are defined
in Section 3.3, Section 3.4 and Section 3.5, respectively.

3.3 Language of MPLω(Σ)

The language of MPLω(Σ) contains terms and formulae. They are con-
structed according to the formation rules which are given below.
Definition. The terms and formulae of MPLω(Σ) are simultaneously and
inductively defined by the following formation rules:
1. variable symbols of sort S are terms of sort S , for any S ∈ S(Σ);

2. if f ∈ F(Σ)∪ SF(Σ), f :S1× · · · × Sn → Sn+1 and t1, . . . , tn are terms of
sorts S1, . . . ,Sn , respectively, then f (t1, . . . , tn) is a term of sort Sn+1;

3. if A is a formula and x is a variable of sort S , S ∈ S(Σ), then ιx :S (A)
is a term of sort S ;

4. > and ⊥ are formulae;

5. if P ∈ P(Σ) ∪ SP(Σ), P :S1 × · · · × Sn and t1, . . . , tn are terms of sorts
S1, . . . ,Sn , respectively, then P(t1, . . . , tn) is a formula;

6. if A is formula, then ¬A is a formula;

7. if 〈An〉n<ω = 〈A0,A1, . . .〉 are formulae, then
∧

n An is a formula;

8. if A is a formula and x is a variable of sort S , S ∈ S(Σ), then ∀x :S (A)
is a formula.

We write sort(t), where t is a term, for the sort of t .
The string representation of formulae as suggested by the formation rules
above can lead to syntactic ambiguities. Parentheses are used to avoid such
ambiguities.
Definition. For every countable set Γ of formulae of MPLω(Σ), sig(Γ),
the signature of Γ , is the smallest signature such that for every formula
A ∈ Γ , A is a formula of MPLω(sig(Γ)). We write sig(A), where A is a
formula, for sig({A}).

We shall henceforth use (with or without subscripts):
S and S ′ to stand for arbitrary sort symbols in S(Σ),
f and g to stand for arbitrary function symbols in F(Σ),

40 FOUNDATIONS OF FLAT VVSL

P and Q to stand for arbitrary predicate symbols in P(Σ),
x , y and z to stand for arbitrary variable symbols (of appropriate sorts),
t and t ′ to stand for arbitrary terms of MPLω(Σ),
A and A′ to stand for arbitrary formulae of MPLω(Σ).

Notational conventions and abbreviations

Constant symbols may be used as terms: in terms of the form f (t1, . . . , tn)
the parentheses may be omitted whenever n = 0. The undefined symbols
(↑S) are used without subscript when this causes no ambiguity. The equality
symbols (=S) are used in infix notation. They are also used without sub-
script when this causes no ambiguity. Sometimes ∀x1:S1 (· · · ∀xn :Sn (A) · · ·)
is simply written as ∀x1:S1, . . . , xn :Sn (A).

Definitions. Disjunction, existential quantification, etc. are introduced as
abbreviations:

A1 ∧ A2 :=
∧

n A′n ,where A′0 = A1,A′n = A2 for 0 < n < ω,
A1 ∨ A2 := ¬(¬A1 ∧ ¬A2),
A1 → A2 := ¬A1 ∨ A2,
A1 ↔ A2 := (A1 → A2) ∧ (A2 → A1),∨

n An := ¬∧
n ¬An ,

∃x :S (A) := ¬∀x :S (¬A),
t↓S := t =S t ,
t1 'S t2 := (t1↓S ∨ t2↓S) → t1 =S t2,
t1 6=S t2 := ¬(t1 =S t2).

The need to use parentheses in the string representation of formulae is
reduced by ranking the precedence of the logical symbols ¬, ∧, ∨, →, ↔.
The enumeration presents this order from the highest precedence to the
lowest precedence.

The definedness symbols (↓S), non-existential equality symbols ('S), and
non-equality symbols (6=S) are also used without subscript when this causes
no ambiguity.

The atomic formula t1 =S t2 is false whenever t1 or t2 is non-denoting.
So =S does not satisfy ↑S=S↑S . t1 'S t2 is true whenever both t1 and t2
are non-denoting. So 'S satisfies t 'S t for all terms t of sort S .

Free variables and well-formedness

The terms and formulae of MPLω(Σ) that can be constructed from the
signature Σ according to the formation rules which are given above in-
clude ill-formed terms and formulae. Only terms and formulae with a finite
number of free variables are well-formed.

LANGUAGE OF MPLω(Σ) 41

Definition. The free variables of terms and formulae are given by the
function free, which is inductively defined by

free(x) = {x},
free(f (t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn),
free(↑S) = { },
free(ιx :S (A)) = free(A)− {x},
free(>) = { },
free(⊥) = { },
free(P(t1, . . . , tn)) = free(t1) ∪ . . . ∪ free(tn),
free(t1 = t2) = free(t1) ∪ free(t2),
free(¬A) = free(A),
free(

∧
n An) =

⋃{free(An) | n < ω},
free(∀x :S (A)) = free(A)− {x}.

So free(E) is the set of variable symbols occurring free in the term or
formula E . We write free(Γ), where Γ is a set of formulae, for

⋃{free(A) |
A ∈ Γ}. A variable symbol x is called free in Γ if x ∈ free(Γ). A formula
A of MPLω(Σ) is a closed formula iff free(A) = { }.
Definition. A term or formula E of MPLω(Σ) is well-formed iff free(E)
is finite. In what follows, terms and formulae are always assumed to be
well-formed.

The notion of a free occurrence of a variable in a term or formula is also
used in connection with substitution and proofs.

Substitution

Substitution is basic for proofs in MPLω. It is also used in the definition
of abbreviations. For the latter purpose, it is sometimes convenient to use
simultaneous substitution of several variables.

Definition. Let x1, . . . , xn be distinct variable symbols and let t1, . . . , tn
be terms such that xi and ti are of the same sort (for i = 1, . . . ,n). Then
[x1 := t1, . . . , xn := tn] is a substitution for variables. A substitution θ =
[x1 := t1, . . . , xn := tn] denotes a function on terms and formulae that is
inductively defined by

θ(x) = ti if x ≡ xi (1 ≤ i ≤ n),
x if x 6≡ x1, . . . , x 6≡ xn ,

θ(f (t ′1, . . . , t
′
m)) = f (θ(t ′1), . . . , θ(t

′
m)),

θ(↑S) = ↑S
θ(ιx :S (A)) = ιy :S ([x := y](θx (A))) if x free in t1, . . . , tn

(y not in θx (A)),
ιx :S (θx (A)) otherwise,

42 FOUNDATIONS OF FLAT VVSL

θ(>) = >,
θ(⊥) = ⊥,
θ(P(t ′1, . . . , t

′
m)) = P(θ(t ′1), . . . , θ(t

′
m)),

θ(t ′1 = t ′2) = θ(t ′1) = θ(t ′2),
θ(¬A) = ¬ θ(A),
θ(

∧
m Am) =

∧
m θ(Am),

θ(∀x :S (A)) = ∀y :S ([x := y](θx (A))) if x free in t1, . . . , tn
(y not in θx (A)),

∀x :S (θx (A)) otherwise,

where θx stands for:

[x1 := t1, . . . , xi−1 := ti−1, xi+1 := ti+1, . . . , xn := tn] if x ≡ xi (1 ≤ i ≤ n),
θ if x 6≡ x1, . . . , x 6≡ xn .

So θ(E) is the result of simultaneous replacement of the terms t1, . . . , tn
for the free occurrences of the variable symbols x1, . . . , xn in E , avoiding
free variables in t1, . . . , tn becoming bound by means of renaming bound
variables.

The proof system presented in the next section only requires under-
standing of the substitution of a single variable. Simultaneous substitution
of several variables is needed in Section 3.7.

3.4 Proof system of MPLω(Σ)

The proof system of MPLω(Σ) is formulated as a Gentzen-type sequent
calculus.

Definition. A sequent is an expression of the form Γ ` ∆, where Γ and ∆
are countable sets of formulae of MPLω(Σ) with only finitely many different
free variables, i.e. free(Γ) and free(∆) are finite. Instead of { } ` ∆ we write
` ∆, and instead of Γ ` { } we write Γ `. Furthermore, we write Γ ,∆ for
Γ ∪∆ and A for {A}.

The intended meaning of the sequent Γ ` ∆ is that the conjunction of the
formulae in Γ entails the disjunction of the formulae in ∆. A sequent is
proved by a derivation obtained by using the axiom schemas and rules of
inference given below.

We shall use Γ , ∆, Γ ′ and ∆′ to stand for arbitrary countable sets of
formulae of MPLω(Σ) with only finitely many different free variables.

Definition. The proof system of MPLω(Σ) is defined by the following
axiom schemas and rules of inference:

PROOF SYSTEM OF MPLω(Σ) 43

Logical Axioms.

(>) ` >

(⊥) ⊥ `

(taut) A ` A

Non-logical Axioms.

(eqv) ` ∀x :S (x = x) ∧ ∀x :S , y :S , z :S (x = y ∧ x = z → y = z)

(sub) t1 = t2, [x := t1]A ` [x := t2]A

(f ↓) ` f (t1, . . . , tn)↓ → t1↓ ∧ . . . ∧ tn↓

(↑↓) ` ¬(↑S ↓)

(P↓) ` P(t1, . . . , tn) → t1↓ ∧ . . . ∧ tn↓

(=↓) ` t1 = t2 → t1↓ ∧ t2↓

(ι) ` ∀y :S (y = ιx :S (A) ↔ ∀x :S (A ↔ x = y))

Rules of Inference.

(¬L)
Γ ` ∆,A

Γ ,¬A ` ∆
(¬R)

Γ ,A ` ∆
Γ ` ∆,¬A

(
∧

L)
Γ ,Ai ` ∆

Γ ,
∧

n An ` ∆
for all i (

∧
R)

〈Γ ` ∆,An〉n<ω

Γ ` ∆,
∧

n An

(∀L)
Γ ` ∆, t↓S Γ , [x := t]A ` ∆

Γ ,∀x :S (A) ` ∆
(∀R)

Γ , x↓S ` ∆,A
Γ ` ∆, ∀x :S (A)

(cut)
Γ ` ∆,A Γ ′,A ` ∆′

Γ ,Γ ′ ` ∆,∆′ (weak)
Γ ` ∆

Γ ,Γ ′ ` ∆,∆′

Restriction on the axiom schema (ι): y not free in A.
Restriction on the rule (∀R): x not free in Γ ∪∆.

Multiple instances of axiom schema (eqv) for the same sort symbol are
superfluous.

Definition. A derivation (or proof) is a possibly infinitely branching tree
with branches of finite length, where the nodes are labelled with sequents in
such a way that the labels of terminal nodes are instances of axiom schemas
and the label of any non-terminal node is obtained from the labels of its

44 FOUNDATIONS OF FLAT VVSL

immediate descendants by applying an inference rule. A sequent Γ ` ∆ is
derivable if there exists a derivation with its root labelled by Γ ` ∆. We
write MPLω(Σ):Γ ` ∆ (and sometimes just Γ ` ∆ without more ado) to
indicate that Γ ` ∆ is derivable.

This sequent calculus resembles a Gentzen-type sequent calculus for in-
finitary classical first-order logic with equality. There are additional non-
logical axiom schemas concerning definedness for the function and predicate
symbols (including the undefined and equality symbols). There is also an
axiom schema for descriptions. The slightly adapted rules for the univer-
sal quantifier are due to the treatment of free and bound variables: free
variables may not denote but bound variables always do.

The interpretation presented in the next section can be viewed as a
justification of the axioms and rules of inference given above: the axioms
are all valid under the interpretation and the rules of inference preserve
validity.

3.5 Interpretation of MPLω(Σ)

Terms and formulae of MPLω(Σ) are interpreted in structures which consist
of an interpretation of every symbol in the signature Σ as well as an inter-
pretation of the equality symbols. The interpretations of sort symbols must
be sets containing a special element ⊥. When a term is non-denoting, ⊥ is
used as its interpretation. The interpretation of every symbol concerned is
in accordance with the following treatment of non-denoting terms: atomic
formulae that contain non-denoting terms are logically false.
Definition. A structure A with signature Σ consists of:
1. for every S ∈ S(Σ), a non-empty set SA such that ⊥ ∈ SA;
2. for every f ∈ F(Σ), f :S1 × · · · × Sn → Sn+1,

a total map f A:SA
1 × · · · × SA

n → SA
n+1 such that

for all d1 ∈ SA
1 , . . . , dn ∈ SA

n ,
d1 = ⊥ or . . . or dn = ⊥ ⇒ f A(d1, . . . , dn) = ⊥;

3. for every P ∈ P(Σ), P :S1 × · · · × Sn ,
a total map PA:SA

1 × · · · × SA
n → {T, F} such that

for all d1 ∈ SA
1 , . . . , dn ∈ SA

n ,
d1 = ⊥ or . . . or dn = ⊥ ⇒ PA(d1, . . . , dn) = F;

4. for every S ∈ S(Σ),
a total map =A

S :SA × SA → {T,F} such that

for all d , d ′ ∈ SA,
=A

S (d , d ′) = T if d 6= ⊥ and d ′ 6= ⊥ and d = d ′,
F if d = ⊥ or d ′ = ⊥ or d 6= d ′.

INTERPRETATION OF MPLω(Σ) 45

Instead of wA we write w when it is clear from the context that the inter-
pretation of symbol w in structure A is meant.

The interpretation of terms and formulae of MPLω(Σ) in a structure
A is furthermore defined with respect to an assignment in A, which is a
function that assigns to variables of sorts in Σ elements of the corresponding
domains in A.

Definition. Let A be a structure with signature Σ . Then an assignment
in A is a mapping α:VAR → ⋃{SA | S ∈ S(Σ)} such that α(x) ∈ SA if x
is a variable of sort S . For every assignment α in A, variable symbol x of
sort S ∈ S(Σ) and element d ∈ SA, we write α(x → d) for the assignment
α′ such that α′(y) = α(y) if y 6≡ x and α′(x) = d .

The interpretation of terms is given by a function mapping term t of sort
S , structure A and assignment α in A to the element of SA that is the value
of t in A under assignment α. Similarly, the interpretation of formulae is
given by a function mapping formula A, structure A and assignment α in A
to the element of {T, F} that is the truth value of A in A under assignment
α. We write [[t]]Aα and [[A]]Aα for these interpretations. The superscripts are
omitted when it is clear from the context which structure is meant.

Definition. The interpretation functions for terms and formulae are in-
ductively defined by

[[x]]α = α(x),
[[f (t1, . . . , tn)]]α = f ([[t1]]α, . . . , [[tn]]α),
[[↑S]]α = ⊥,
[[ιx :S (A)]]α = the unique d ∈ S − {⊥}

such that [[A]]α(x→d) = T if it exists,
⊥ otherwise,

[[>]]α = T,
[[⊥]]α = F,
[[P(t1, . . . , tn)]]α = P([[t1]]α, . . . , [[tn]]α),
[[t1 = t2]]α = =S ([[t1]]α, [[t2]]α),

[[¬A]]α = T if [[A]]α = F,

F if [[A]]α = T,
[[
∧

n An]]α = T if [[An]]α = T for all n < ω,

F if [[An]]α = F for some n < ω,
[[∀x :S (A)]]α = T if for all d ∈ S − {⊥}, [[A]]α(x→d) = T,

F if for some d ∈ S − {⊥}, [[A]]α(x→d) = F .

We write A |= A[α] for [[A]]Aα = T.

The notion of consequence is useful to characterize the relation between
the interpretation of MPLω(Σ) and the proof system of MPLω(Σ).

46 FOUNDATIONS OF FLAT VVSL

Definition. For countable sets Γ and ∆ of formulae of MPLω(Σ), ∆ is a
consequence of Γ , written Γ |= ∆, iff for all structures A with signature
Σ , for all assignments α in A, if A |= A[α] for all A ∈ Γ then A |= A′[α]
for some A′ ∈ ∆.

Theorem. MPLω has the following soundness and completeness proper-
ties:

soundness: if Γ ` ∆, then Γ |= ∆;
completeness: if Γ |= ∆, then Γ ` ∆.

Proof: See (Koymans and Renardel de Lavalette, 1989, Section 3.2). 2

3.6 Properties of MPLω

Some other properties are presented here without proofs. They are relevant
to the use of this logic as the underlying logic for a semantics of VVSL.

The splitting interpolation property is needed for appropriate properties
of the modularization mechanisms of VVSL. Informally, this interpolation
property can be described as follows: if a conjunction of formulae entails a
formula A, then a part of the conjunction, say Γ , can always be replaced
by a formula that is entailed by that part of the conjunction. In order
to exclude trivial cases, each symbol that occurs in the replacing formula
must also occur in Γ and either A or the remaining part of the conjunction
(variable symbols occurring free included).

Theorem. MPLω has the following splitting interpolation property:
Let Γ and ∆ be countable sets of formulae of MPLω(Σ) with only finitely
many different free variables and let A be a formula of MPLω(Σ). Then

if MPLω(Σ):Γ ,∆ ` A,
then MPLω(Σ):Γ ` I and MPLω(Σ):∆, I ` A
for some formula I such that
par({I }) ⊆ par(Γ) ∩ (par(∆) ∪ par({A})),

where par(Γ) = sig(Γ) ∪ free(Γ) ∪ {sort(x) | x ∈ free(Γ)}.
Proof: The normal interpolation property (obtained by taking ∆ = { })
is proved for MPLω in (Koymans and Renardel de Lavalette, 1989, Sec-
tion 3.3) using splitting interpolation as the induction hypothesis. For
MPLω, the normal interpolation property is equivalent to the splitting in-
terpolation property. 2

At the level of theories (i.e. sets of formulae that are closed under entail-
ment), this is equivalent to saying that exporting (restriction of the theory
to a subsignature) distributes over importing (closed union of two theo-
ries) provided that the exported signature is a common subsignature of the
signatures of both theories.

PROPERTIES OF MPLω 47

The proof of the following result in (Renardel de Lavalette, 1989, Ap-
pendices B,C) shows that MPLω is well related to classical first-order logic
with countably infinite conjunctions.

Theorem. MPLω can be reduced to L=
ω , classical first-order logic with

equality and countably infinite conjunctions:

MPLω(Σ): ` A iff L=
ω (Σ∗): Ax(Σ) ` A∗

for appropriate mappings •∗ (for signatures and formulae) and an appro-
priate mapping Ax (mapping signatures of MPLω to sets of formulae of
L=

ω).
Proof: By the construction of appropriate mappings. These mappings are
straightforward to construct, see (Renardel de Lavalette, 1989, Theorem
C.1.2). 2

MPL, the finitary fragment of MPLω, is obtained from MPLω by replac-
ing countable conjunctions by binary conjunctions. This is done as follows:

replace formation rule 7 (Section 3.3) by the rule:

If A1 and A2 are formulae, then A1 ∧ A2 is a formula;

replace rules of inference (
∧

L) and (
∧

R) (Section 3.4) by the rules:

(∧ L)
Γ ,A1,A2 ` ∆

Γ ,A1 ∧ A2 ` ∆
(∧ R)

Γ ` ∆,A1 Γ ` ∆,A2

Γ ` ∆,A1 ∧ A2
;

replace the interpretation rule for countable conjunctions (Section 3.5) by
the following rule:

[[A1 ∧ A2]]α = T if [[A1]]α = T and [[A2]]α = T
F if [[A1]]α = F or [[A2]]α = F .

Furthermore, sets of formulae in sequents must be finite and derivations
must be finitely branching trees.

The following result shows that the step from binary conjunctions to
countably infinite conjunctions is only a minor step; it does not change
anything in an essential way.

Theorem. MPLω is a conservative extension of MPL, i.e.

for every formula A of MPL(Σ), MPLω(Σ): ` A iff MPL(Σ): ` A.

Proof: See (Renardel de Lavalette, 1989, Theorem C.1.1). 2

The soundness, completeness and interpolation results of MPLω carry over
to its finitary fragment. Besides, MPL can be reduced to L=, classical
(finitary) first-order logic with equality. This demonstrates the lack of in-
terference between countably infinite conjunctions and the other special
features of MPLω.

48 FOUNDATIONS OF FLAT VVSL

3.7 Inductive definitions in MPLω

A large class of inductive definitions of predicates and functions can be
regarded as mere abbreviations of formulae of MPLω. In this section, in-
ductive predicate definitions P : I= A and inductive function definitions
f : I= A (the symbol : I= is read as ‘is inductively defined by’) are defined as
abbreviations of formulae using additional abbreviations. The additional
abbreviations introduce notation from set theory (e.g. set comprehension)
and notation from λ-calculus (e.g. lambda abstraction) for explicit defini-
tion of predicates and functions. Set comprehension for explicit definition of
predicates, lambda abstraction for explicit definition of functions and pred-
icate operators (which map predicates to predicates) can also be treated
as definitional extensions of MPLω, see (Renardel de Lavalette, 1989, Sec-
tion D.1.7).

Firstly, the intuition of defined predicates as predicates which are explic-
itly defined by set comprehension is made precise.

Defined predicates

Definition. A defined predicate of MPLω(Σ) is an expression of the form

{x1:S1, . . . , xn :Sn | A},
where x1, . . . , xn are distinct variable symbols of sorts S1, . . . ,Sn , respec-
tively.
The type of a defined predicate {x1:S1, . . . , xn :Sn | A} is S1 × · · · × Sn .
For terms t1, . . . , tn of sorts S1, . . . ,Sn , {x1:S1, . . . , xn :Sn | A}(t1, . . . , tn)
is defined as an abbreviation of a formula of MPLω(Σ) by

{x1:S1, . . . , xn :Sn | A}(t1, . . . , tn) :=
[x1 := t1, . . . , xn := tn]A ∧ t1↓ ∧ . . . ∧ tn↓ .

t1↓ ∧ . . . ∧ tn↓ is added in order to guarantee that all defined predicates
are strict, i.e. yield false if some argument is undefined.
Each predicate symbol P ∈ P(Σ), P :S1 × · · · × Sn , is identified with the
defined predicate {x1:S1, . . . , xn :Sn | P(x1, . . . , xn)}.

We shall henceforth use D , D ′ and D ′′ (with or without subscripts) to
stand for arbitrary defined predicates of MPLω(Σ).

Definition. The following abbreviations of defined predicates are used:

6©S1×···×Sn
:= {x1:S1, . . . , xn :Sn | ⊥},

(x1:S1, . . . , xn :Sn)C :=
{y1:S1, . . . , yn :Sn | y1 6= x1 ∨ . . . ∨ yn 6= xn},⋃{{x1:S1, . . . , xn :Sn | Am} | m ∈ ω} :=

{x1:S1, . . . , xn :Sn |
∨

m Am}.

INDUCTIVE DEFINITIONS IN MPLω 49

Definition. Inclusion and extensional equality between defined predicates
are defined as abbreviations of formulae of MPLω(Σ) by

{x1:S1, . . . , xn :Sn | A1} ⊆ {x1:S1, . . . , xn :Sn | A2} :=
∀x1:S1, . . . , xn :Sn (A1 → A2),

{x1:S1, . . . , xn :Sn | A1} = {x1:S1, . . . , xn :Sn | A2} :=
∀x1:S1, . . . , xn :Sn (A1 ↔ A2).

Definition. Functionality of D = {x1:S1, . . . , xn :Sn , y :S | A} is defined
as an abbreviation of a formula of MPLω(Σ) by

Func(D) := ∀x1:S1, . . . , xn :Sn , y :S , z :S
(D(x1, . . . , xn , y) ∧ D(x1, . . . , xn , z) → y = z).

Having introduced defined predicates, we may consider the (simultane-
ous) replacement of defined predicates for the occurrences of predicate sym-
bols in terms and formulae.
Definition. Let P1, . . . ,Pn (n ≥ 0) be distinct predicate symbols and
let D1, . . . ,Dn be defined predicates such that Pi and Di are of the same
type (i = 1, . . . ,n). Then [P1 :=D1, . . . ,Pn :=Dn] is called a predicate sub-
stitution. A predicate substitution ρ = [P1 :=D1, . . . ,Pn :=Dn] denotes
a function on terms and formulae that is defined analogously to variable
substitution, with the following rule for predicate application:

ρ(P(t1, . . . , tm)) = Di(ρ(t1), . . . , ρ(tm)) if P ≡ Pi (1 ≤ i ≤ n),
P(ρ(t1), . . . , ρ(tm)) if P 6≡ P1, . . . ,P 6≡ Pn .

The main difference with positive predicate substitution (defined below) is
that the rule for negation is analogous to the one for variable substitution,
i.e. it is simply ρ(¬A) = ¬ ρ(A).
Definition. If ρ is a predicate substitution, then ρ+ is called a posi-
tive predicate substitution and ρ− is called a negative predicate substitu-
tion. A positive predicate substitution ρ+ = [P1 :=D1, . . . ,Pn :=Dn]+ and
a negative predicate substitution ρ− = [P1 :=D1, . . . ,Pn :=Dn]− denote
functions on formulae not containing descriptions (i.e. terms of the form
ιx :S (A)) that are defined analogously to predicate substitution, with the
rule for predicate application replaced by the rules:

ρ+(P(t1, . . . , tm)) = Di(t1, . . . , tm) if P ≡ Pi (1 ≤ i ≤ n),
P(t1, . . . , tm) if P 6≡ P1, . . . ,P 6≡ Pn ,

ρ−(P(t1, . . . , tm)) = P(t1, . . . , tm),

and with the rule for negation replaced by the rules:

ρ+(¬A) = ¬ ρ−(A),
ρ−(¬A) = ¬ ρ+(A).

Positive predicate substitution is used below for turning a formula which
inductively defines a predicate into a corresponding predicate operator. The

50 FOUNDATIONS OF FLAT VVSL

restriction to formulae not containing descriptions is not very important,
since descriptions can be eliminated from any formula – by applying the
mapping •∗ defined in (Koymans and Renardel de Lavalette, 1989, Sec-
tion 3.1.2). The reason for the restriction is that occurrences of predicate
symbols in a description are at the same time ‘positive’ and ‘negative’.

Defined predicates are now used to introduce predicate operators.

Predicate operators and their fixpoints

If a predicate is explicitly defined by means of a recursive definition, then
the definition determines a mapping from predicates to predicates, called
a predicate operator in this section. The least fixpoint of this predicate
operator is considered to be the predicate being defined. Abbreviations are
introduced below which are in accordance with this intuition.

Definition. A predicate operator of MPLω(Σ) is an expression of the form

ΛP .D .

If P :S ′1 × · · · × S ′m and D = {x1:S1, . . . , xn :Sn | A}, then the type of a
predicate operator ΛP .D is S ′1 × · · · × S ′m → S1 × · · · × Sn .
For a defined predicate D ′ of type S ′1 × · · · × S ′m , (ΛP .D)D ′ is defined as
an abbreviation of a defined predicate of MPLω(Σ) by

(ΛP .D)D ′ := {x1:S1, . . . , xn :Sn | [P :=D ′]A}.
Definition. For a predicate operator Φ of type S1×· · ·×Sn → S1×· · ·×Sn ,
Fix(Φ), the fixpoint of Φ, is defined as an abbreviation of a defined predicate
of MPLω(Σ) by

Fix(Φ) :=
⋃{Φm(6©S1×···×Sn

) | m ∈ ω},
where Φ0(D) := D and Φm+1(D) := Φ(Φm(D)).

If Φ is a continuous predicate operator, then one can prove that Fix(Φ) is
indeed the least fixpoint of Φ.

Definition. For a predicate symbol P , P :S1 × · · · × Sn , and a defined
predicate D = {x1:S1, . . . , xn :Sn | A}, the predicate operator ΛP .D is
called continuous iff

{∀y1:S1, . . . , yn :Sn (Am → Am+1) | m ∈ ω} `
∀x1:S1, . . . , xn :Sn([P :={y1:S1, . . . , yn :Sn |

∨
m Am}]A ↔∨

m [P :={y1:S1, . . . , yn :Sn | Am}]A)

is derivable for all countably infinite sets {A0,A1,A2, . . .} of formulae of
MPLω(Σ).
We also write A ∈ Cts(P , x1:S1, . . . , xn :Sn) for ΛP .{x1:S1, . . . , xn :Sn | A}
is continuous.

INDUCTIVE DEFINITIONS IN MPLω 51

Fact. Let Φ = ΛP .D be a predicate operator of type S1 × · · · × Sn →
S1× · · · × Sn . If Φ is continuous, then Fix(Φ) is the least fixpoint of Φ, i.e.

` Φ(Fix(Φ)) = Fix(Φ),
` Φ(P) ⊆ P → Fix(Φ) ⊆ P .

Proof: Fix(Φ) is Kleene’s least fixpoint construction (which stops at ω for
a continuous operator), expressed in MPLω. 2

So we have introduced a least fixpoint operator in MPLω by means of
abbreviations. This means that explicit recursive definitions of predicates
can be expressed as formulae in MPLω. Inductive definitions can also be
expressed as formulae in MPLω if they can be translated into corresponding
explicit recursive definitions. This is possible for a large class of inductive
definitions.

Inductive predicate definitions as formulae

If a predicate P is implicitly defined by means of an inductive definition A,
then we can usually obtain a corresponding defined predicate D such that

` [P :=D]A,
` A → D ⊆ P .

For example, the predicate P inductively defined by

P(0) ∧ ∀y :N (P(y) → P(s(y)))

can also be defined as the least fixpoint of the predicate operator

ΛP .{x :N | x = 0 ∨ ∃y :N (P(y) ∧ x = s(y))}.
A formula equivalent to x = 0 ∨ ∃y :N (P(y) ∧ x = s(y)) can be obtained
from the inductive definition as follows:
1. replace the positive occurrences of P by {z :N | z 6= x} in the formula

that inductively defines P :

{z :N | z 6= x}(0) ∧ ∀y :N (P(y) → {z :N | z 6= x}(s(y)));

2. take the negation of the resulting formula:

¬ (0 6= x ∧ ∀y :N (P(y) → s(y) 6= x)).

It appears that this transformation can also be applied to other formulae.
This is now worked out in detail, mainly by introduction of appropriate
abbreviations.
Definition. Let P :S1 × · · · × Sn . Then δP .A, the predicate P which is
inductively defined by A, is defined as an abbreviation of a defined predicate
of MPLω(Σ) by

δP .A :=
Fix(ΛP .{x1:S1, . . . , xn :Sn | ¬[P :=(x1:S1, . . . , xn :Sn)C]+A}).

52 FOUNDATIONS OF FLAT VVSL

If the recursive definition obtained from the inductive definition A deter-
mines a continuous predicate operator and A is moreover ‘complement
preserving’, then δP .A is indeed the predicate inductively defined by A.

Definition. Let P :S1 × . . .× Sn . Then a formula A is called complement
preserving for P , written A ∈ Pres(P), iff

` [P :={x1:S1, . . . , xn :Sn | ¬[P :=(x1:S1, . . . , xn :Sn)C]A}]A;

A is called admissible for P , written A ∈ Adm(P), iff

¬[P :=(x1:S1, . . . , xn :Sn)C]+A ∈ Cts(P , x1:S1, . . . , xn :Sn) and
[P :=Q]−A ∈ Pres(P),

where Q is a predicate symbol of the same type as P such that Q /∈ sig(A).

Fact. Let A ∈ Adm(P). Then δP .A is the (defined) predicate P which is
inductively defined by A, i.e.

` [P := δP .A]A,
` A → δP .A ⊆ P .

Proof: See (Renardel de Lavalette, 1989, Theorem D.2.5). 2

A sufficient syntactic condition for admissibility is now given. If A is a
formula without descriptions of the form

∧
m(∀x1:S1, . . . , xl :Sl

(
km∧

i=1

(Ami) ∧ tm1↓ ∧ . . . ∧ tmn↓ → P(tm1, . . . , tmn)))

where every formula Ami is of the form P(t1, . . . , tn) or does not contain
P , then A ∈ Adm(P). See also (Renardel de Lavalette, 1989, Section D.3).
If A1 ∈ Adm(P) and ` [P :=Q]+A1 ↔ [P :=Q]+A2 for some predicate
symbol Q of the same type as P such that Q /∈ sig({A1,A2}), then also
A2 ∈ Adm(P).

Finally, inductive definitions of predicates can be defined as abbreviations
of formulae of MPLω.

Definition. Let P :S1 × · · · × Sn . Then the inductive predicate definition
P : I= A is defined as an abbreviation of a formula of MPLω(Σ) by

P : I= A := ∀x1:S1, . . . , xn :Sn (P(x1, . . . , xn) ↔ (δP .A)(x1, . . . , xn)).

If A is not admissible for P , then the meaning of this abbreviation possibly
does not correspond to the intended one (viz. the one reflected in the fact
above).

Inductive definitions of functions can be treated by translating them to
inductive definitions of equivalent predicates.

INDUCTIVE DEFINITIONS IN MPLω 53

Defined functions

Firstly, the intuition of defined functions as functions which are explicitly
defined by function abstraction is made precise below.
Definition. A defined function of MPLω(Σ) is an expression of the form

λx1:S1, . . . , xn :Sn .t ,

where x1, . . . , xn are variable symbols of sorts S1, . . . ,Sn , respectively.
The type of a defined function λx1:S1, . . . , xn :Sn .t is S1×· · ·×Sn → sort(t).
For terms t1, . . . , tn of sorts S1, . . . ,Sn , (λx1:S1, . . . , xn :Sn .t)(t1, . . . , tn) is
defined as an abbreviation of a term of MPLω(Σ) by

(λx1:S1, . . . , xn :Sn .t)(t1, . . . , tn) :=
ιy :S (y = [x1 := t1, . . . , xn := tn]t ∧ t1↓ ∧ . . . ∧ tn↓)

(y not free in t).

Note that it is not simply defined by

(λx1:S1, . . . , xn :Sn .t)(t1, . . . , tn) := [x1 := t1, . . . , xn := tn]t ,

since this would not guarantee that all defined functions are strict. In (Re-
nardel de Lavalette, 1989), it was only defined as an abbreviation for terms
t of the form ιx :S (A).
Each function symbol f ∈ F(Σ), f :S1×· · ·×Sn → S , is identified with the
defined function λx1:S1, . . . , xn :Sn .f (x1, . . . , xn).

Definition. Inclusion and extensional equality between defined functions
are also defined as abbreviations of formulae of MPLω(Σ) by

λx1:S1, . . . , xn :Sn .t1 ⊆ λx1:S1, . . . , xn :Sn .t2 :=
∀x1:S1, . . . , xn :Sn (t1↓ → t1 = t2),

λx1:S1, . . . , xn :Sn .t1 = λx1:S1, . . . , xn :Sn .t2 :=
∀x1:S1, . . . , xn :Sn (t1 ' t2).

Inductive function definitions as formulae

A defined function f :S1×· · ·×Sn → S , which is described by an inductive
definition, can be obtained by translating the inductive definition of the
function f into an inductive definition of a corresponding predicate Pf :S1×
· · · × Sn × S , i.e. a predicate Pf such that

` ∀x1:S1, . . . , xn :Sn , y :S (f (x1, . . . , xn) = y ↔ Pf (x1, . . . , xn , y)).

Definition. For a function symbol f :S1 × · · · × Sn → S and predicate
symbol Pf :S1 × · · · × Sn × S , the translation of the formula which in-
ductively defines function f into a formula which inductively defines the
corresponding predicate Pf is given by a mapping σf∼Pf

defined on terms
and formulae. This mapping and an auxiliary mapping εf∼Pf

defined on

54 FOUNDATIONS OF FLAT VVSL

terms are simultaneously defined by the rules below. To enhance readability
we use σ, ε without subscripts. It is assumed that, in a formula containing
f , every occurrence of f is provided with a unique index. For each index
i , xi denotes a distinct variable symbol of sort S not free in the translated
term or formula.

ε(t) = > if f not in t ,
ε(g(t1, . . . , tm)) = Pf (σ(t1), . . . , σ(tm), xi) if g ≡ f and

i is index of the
occurrence of f ,

ε(t1) ∧ . . . ∧ ε(tm) if g 6≡ f ,

σ(t) = t if f not in t ,
σ(g(t1, . . . , tm)) = xi if g ≡ f and

i is index of the
occurrence of f ,

g(σ(t1), . . . , σ(tm)) if g 6≡ f ,

σ(P(t1, . . . , tm)) = P(t1, . . . , tm) if f not in
t1, . . . , tm ,

∃x1:S , . . . , xl :S
(ε(t1) ∧ . . . ∧ ε(tm) ∧
P(σ(t1), . . . , σ(tm))) otherwise,

where x1, . . . , xl are the variables xi occurring in ε(t1) ∧ . . . ∧ ε(tm),

σ commutes with ¬,
∧

and ∀.
Definition. Let f :S1 × · · · × Sn → S . Then δf .A, the function f which is
inductively defined by A, is defined as an abbreviation of a defined function
of MPLω(Σ) by

δf .A := λx1:S1, . . . , xn :Sn .ιy :S ((δPf .σ(A))(x1, . . . , xn , y)),

where Pf is a predicate symbol of type S1 × · · · × Sn × S such that Pf /∈
sig(A).

If the translation of the inductive definition A for the corresponding pred-
icate is admissible, then δf .A is indeed the function inductively defined by
A under the condition that this corresponding predicate is functional.

Definition. For f ∈ F(Σ), f :S1× . . .×Sn → S , a formula A of MPLω(Σ)
is called admissible for f , written A ∈ Adm(f), iff

σ(A) ∈ Adm(Pf).

A is called functionality preserving for f iff

` Func(δPf .σ(A)).

INDUCTIVE DEFINITIONS IN MPLω 55

Fact. Let A ∈ Adm(f). Then δf .A is the (defined) function f which is
inductively defined by A provided that A is functionality preserving for f ,
i.e.

` Func(δPf .σ(A)) → [f := δf .A]A,
` Func(δPf .σ(A)) → (A → δf .A ⊆ f).

Proof: See (Renardel de Lavalette, 1989, Theorem D.4.4). 2

A sufficient syntactic condition for admissibility is now given. If A is a
formula without descriptions of the form

∧
m ∀x1:S1, . . . , xl :Sl(

km∧

i=1

(Ami) ∧ tm1↓ ∧ . . . ∧ tmn↓ →
∀x :S (t = x → f (tm1, . . . , tmn) = x))

where every formula Ami is of the form P(t1, . . . , tn) or does not contain
f and every term tmi does not contain f , then A ∈ Adm(f).

Finally, inductive definitions of functions can be defined as abbreviations
of formulae of MPLω.

Definition. Let f :S1×· · ·×Sn → S . Then the inductive function definition
f : I= A is defined as an abbreviation of a formula of MPLω(Σ) by

f : I= A := ∀x1:S1, . . . , xn :Sn (f (x1, . . . , xn) ' (δf .A)(x1, . . . , xn)).

If A is not admissible for f or not functionality preserving for f , then the
meaning of this abbreviation possibly does not correspond to the intended
one.

The main definitions of the preceding subsections can now be generalized
to simultaneous inductive definitions in the usual way, i.e. by regarding the
simultaneous definition of several predicates or functions as the definition
of a tuple of predicates or functions.

Simultaneous inductive definitions

Definition. A tuple of predicate symbols and a tuple of defined predicates
are expressions of the form 〈X1, . . . ,Xn〉, where the Xi are predicate sym-
bols and the Xi are defined predicates, respectively.

We shall use (with or without subscripts):

P to stand for arbitrary tuples of predicate symbols of MPLω(Σ).
D, D′, D′′ to stand for arbitrary tuples of defined predicates of MPLω(Σ).

Definition. For predicate types T1, . . . ,Tn , 6©〈T1,...,Tn〉 is defined as an
abbreviation of a tuple of defined predicates by

6©〈T1,...,Tn〉 := 〈6©T1
, . . . , 6©Tn

〉.

56 FOUNDATIONS OF FLAT VVSL

⋃{Dm | m ∈ ω}, where Dm = 〈Dm1, . . . ,Dmn〉, is also defined component-
wise:

⋃{Dm | m ∈ ω} := 〈⋃{Dm1 | m ∈ ω}, . . . , ⋃{Dmn | m ∈ ω}〉.
Definition. A tuple-of-predicates operator is of the form ΛP .D. Let P =
〈P1, . . . ,Pn′〉, D = 〈D1, . . . ,Dn〉, Di = {xi1:Si1, . . . , xi ni

:Si ni
| Ai}. For

a tuple of defined predicates D′ = 〈D ′
1, . . . ,D

′
n′〉 such that P and D′ are

component-wise of the same type, (ΛP .D)D′ is defined as an abbreviation
of a tuple of defined predicates by

(ΛP .D)D′ := 〈D ′′
1 , . . . ,D ′′

n 〉
where D ′′

i = {xi1:Si1, . . . , xi ni
:Si ni

| [P1 :=D ′
1, . . . ,Pn′ :=D ′

n′]Ai}.
Definition. For a tuple-of-predicates operator Φ = ΛP .D with P and D
of the same length, say n, and component-wise of the same type, say Ti ,
Fix(Φ), the fixpoint of Φ, is defined as an abbreviation of a tuple of defined
predicates by

Fix(Φ) :=
⋃{Φm(6©〈T1,...,Tn〉) | m ∈ ω},

where Φ0(D) := D and Φm+1(D) := Φ(Φm(D)).

Definition. Let P = 〈P1, . . . ,Pn〉, where Pi :Si1× · · ·×Si ni
. Then δP .A,

the tuple of predicates P which are inductively defined by A, is defined as
an abbreviation of a tuple of defined predicates by

δP .A := Fix(ΛP .〈D1, . . . ,Dn〉)
where Di = {xi1:Si1, . . . , xi ni

:Si ni
|

¬[Pi :=(xi1:Si1, . . . , xi ni
:Si ni

)C]+A}.
We write (δP .A)i for the i -th component of δP .A.

If A is admissible for Pi (for all i), then δP .A is indeed the tuple of predi-
cates inductively defined by A.
Fact. Let P = 〈P1, . . . ,Pn〉 be a tuple of predicate symbols such that A is
admissible for P1, . . . ,Pn . Then δP .A is the tuple of (defined) predicates
P which are inductively defined by A, i.e.

` [P1 :=(δP .A)1, . . . ,Pn :=(δP .A)n]A,

` A →
n∧

i=1

(δP .A)i ⊆ Pi .

Proof: Analogously to the case of non-simultaneous inductive definitions,
see (Renardel de Lavalette, 1989, Theorem D.2.5). 2

Simultaneous inductive definitions of predicates can now be defined as
abbreviations of sets of formulae of MPLω.
Definition. Let P = 〈P1, . . . ,Pn〉 with Pi :Si1×· · ·×Si ni

. Then the simul-
taneous inductive predicate definition P : I= A is defined as an abbreviation

INDUCTIVE DEFINITIONS IN MPLω 57

of a set of formulae by

P : I= A := {A1, . . . ,An}
where Ai = ∀xi1:Si1, . . . , xi ni

:Si ni

(Pi(xi1, . . . , xi ni
) ↔ (δP .A)i(xi1, . . . , xi ni

)).

If A is not admissible for Pi (for some i), then the meaning of this abbre-
viation possibly does not correspond to the intended one.

Definition. A tuple of function symbols and a tuple of defined functions
are expressions of the form 〈X1, . . . ,Xn〉, where the Xi are function symbols
and the Xi are defined functions, respectively.

We shall use f (with or without subscripts) to stand for arbitrary tuples
of predicate symbols of MPLω(Σ).

Definition. Let f = 〈f1, . . . , fn〉, where fi :Si1×· · ·×Si ni
→ Si . Then δf .A,

the tuple of functions f which are inductively defined by A, is defined as
an abbreviation of a tuple of defined functions by

δf .A := 〈M1, . . . ,Mn〉
where Mi = λxi1:Si1, . . . , xi ni

:Si ni
.

ιyi :Si ((δPf .σ(A))i(xi1, . . . , xi ni
, yi)),

where the Pfi are different predicate symbols, Pfi :Sj 1 × · · · × Si ni
× Si ,

such that Pfi /∈ sig(A), and σ is a composition of the mappings σfi∼Pfi
(the

order of composition does not matter).

Simultaneous inductive definitions of functions can now be defined as
abbreviations of sets of formulae of MPLω.

Definition. Let f = 〈f1, . . . , fn〉, where fi :Si1 × · · · × Si ni
→ Si . Then

the simultaneous inductive function definition f : I= A is defined as an
abbreviation of a set of formulae by

f : I= A := {A1, . . . ,An}
where Ai = ∀xi1:Si1, . . . , xi ni

:Si ni

(fi(xi1, . . . , xi ni
) ' (δf .A)i(xi1, . . . , xi ni

)).

If Ai is not admissible or functionality preserving for fi (for some i), then
the meaning of this abbreviation possibly does not correspond to the in-
tended one.

4

Specialization for Flat VVSL

In Chapter 3, the logic MPLω was introduced. The semantics of flat VVSL
presented in Chapter 5 describes the meaning of constructs in flat VVSL
in terms of formulae from this logic. The specific symbols, signatures and
formulae used for this semantics are presented in this chapter.

In the definition of the language, proof system and interpretation of
MPLω, only a few assumptions about symbols are made. First, it is ex-
plained how the symbols are actualized for the use of this logic for a se-
mantics of flat VVSL (this is made more precise in Chapters 6 and 7) and
the main domain for the semantics of flat VVSL, a domain of formulae,
is defined. Thereafter, abbreviations of formulae concerning states, com-
putations and implicit conversions are introduced. Finally, it is explained
how the symbols are constructed that correspond to pre-defined names and
types associated with basic types (boolean, natural, etc.) and constructed
types (sequence types, set types, etc.) and what kinds of formulae occur
in the axioms associated with each of the basic and constructed types (all
this is made more precise in Appendix D).

4.1 Symbols and signatures for VVSL

This section introduces the kind of symbol that is used for the semantics of
VVSL given in later chapters and explains how this kind of symbol is pre-
cisely used. This includes a description of the sets of symbols that underlie
the domain of signatures and the domain of formulae for the semantics
of flat VVSL, which are defined in the next section. This section is an
abridged version of Sections 6.2 and 7.1, which are more precise. Moreover,
this section leaves out anything that is irrelevant to an understanding of
the logic-based semantics of flat VVSL.

60 SPECIALIZATION FOR FLAT VVSL

Symbols with origins

In the definition of MPLω, only a few assumptions about symbols were
made. Thus, symbols may be actualized in many ways. For the use of
MPLω in the formal definition of flat VVSL, this is done in a way which
also takes into account the semantic foundations of the modularization and
parametrization constructs complementing flat VVSL, which are presented
in Chapter 6. Symbols are actualized using identifiers, origins and symbol
types. The symbol types are in turn built from indicators for the different
kinds of types (sort, obj, func and pred) and sort symbols.

In full VVSL, name clashes may occur in the composition of modules. In
order to solve this name clash problem in a satisfactory way, the origin of
each occurrence of a name should be available. This is explained in detail
in Section 6.1. Mainly due to parametrization, origins cannot simply be
viewed as pointers to the definitions of the names. A name defined in a pa-
rametrized module should have different origins for different instantiations
of the parametrized module. This means that in addition to origin con-
stants, origin variables, which can later be instantiated with fixed origins,
and compound origins are needed.

We assume three disjoint countably infinite sets OCon, OVar and Ident
of origin constants, origin variables and identifiers, respectively.

The set Orig of origins is the smallest set including OCon and OVar and
closed under construction of finite sequences.

Symbols are actualized according to the following rules:

• each sort symbol S is a triple 〈i , a, sort〉,
• each function symbol f :S1 × · · · × Sn → Sn+1 is a triple
〈i , a, 〈func,S1, . . . ,Sn+1〉〉,

• each predicate symbol P :S1×· · ·×Sn is a triple 〈i , a, 〈pred,S1, . . . ,Sn〉〉,
• each variable symbol x of sort S is a triple 〈i , a, 〈obj,S 〉〉,
for some i ∈ Ident and a ∈ Orig. Sym denotes the set of all symbols that
are actualized in this way. SType denotes the set of all symbol types (i.e.
possible third components of symbols). We write ι(w), ω(w) and τ(w),
where w = 〈i , a, t〉 ∈ Sym, for i , a and t , respectively.

This actualization of symbols for MPLω is implicit in the remainder of this
chapter. It originates from DA (Description Algebra), which is introduced
in Chapter 6 and used, together with λπ-calculus, as the basis for the
semantics of the structuring sublanguage of VVSL presented in Chapter 8.

A symbol signature is a signature that consists of sort symbols, function
symbols and predicate symbols from Sym.

Symbols are name equivalent if they have the same identifier, the same
kind of type, the same number of sort symbols occurring in the type and

SYMBOLS AND SIGNATURES FOR VVSL 61

corresponding sort symbols that are name equivalent. An equivalence class
of the name equivalence relation on Sym is called a name. We write w ,
where w ∈ Sym, for the name with representative w and we write W ,
where W ⊆ Sym, for the set of names with representatives in W .

The names introduced here are very similar to the typed names of VVSL.
If only flat VVSL is considered, then the origins of symbols can be safely
ignored except in the treatment of modification rights of operations, which
is too closely coupled with the modularization and parametrization mech-
anisms of full VVSL.

Specialization for VVSL

Not all symbols of the kind described above can be freely used in the
semantics of VVSL. Besides symbols corresponding to user-defined names,
symbols corresponding to pre-defined names and symbols corresponding to
constructed types, there are also symbols used which do not correspond to
either user-defined names, pre-defined names or constructed types. In some
respects, these different categories of symbols must be distinguished. This
gives rise to VVSL specific restrictions on the ways in which symbols may
be built from identifiers, origins and symbol types. The specifics of these
symbols, called module symbols, are described below.

We assume three disjoint countably infinite subsets of Ident: the set
UIdent, the set PIdent and the set CIdent. Symbols with an identifier from
UIdent and PIdent correspond to user-defined names and pre-defined names,
respectively, in VVSL. Symbols with an identifier from CIdent correspond
to types in VVSL. Sometimes a user-defined name has to be constructed
from another user-defined name. Therefore, we also assume an injective
mapping mk :UIdent → UIdent that is an identity mapping on its range.
In a concrete representation mk(c) will usually be obtained by prefixing
the string mk- to the string that constitutes the identifier c provided that
it is not already so prefixed. A symbol w is called a special symbol if
ι(w) /∈ UIdent∪PIdent∪CIdent.

The symbols corresponding to user-defined or pre-defined names of types
and functions are now described.
A type symbol is a sort symbol S that is no special symbol. MType denotes
the set of all type symbols.

A proper function symbol is a function symbol f :S1×· · ·×Sn → Sn+1 with
an identifier from UIdent∪PIdent, such that the sort symbols S1, . . . ,Sn+1

are type symbols. MFunc denotes the set of all proper function symbols.

The indication proper is used to distinguish function symbols that corre-
spond to user-defined or pre-defined names of functions.

Sort symbols for the state space and the computation space allow func-
tion symbols and predicate symbols which correspond to names of state

62 SPECIALIZATION FOR FLAT VVSL

components, called state variables in VVSL, and names of operations, re-
spectively. The sort symbols for the state space and the computation space
as well as various associated function and predicate symbols are special
symbols. The origin of all these symbols is 〈〉.
The state sort symbol State and the computation sort symbol Comp are
special sort symbols with different identifiers. The initial state symbol s0:
→ State is a special function symbol. The state selection function symbols
stn :Comp → State (for all n < ω) are special function symbols with differ-
ent identifiers. The internal transition predicate symbols intn :Comp and the
external transition predicate symbols extn :Comp (for all n < ω) are special
predicate symbols with different identifiers. ΣComp denotes the set of all
these basic symbols associated with the state space and the computation
space.

Having introduced symbols for the state space and the computation
space, the symbols corresponding to user-defined names of state variables
and operations can also be described.

A state variable symbol is a function symbol v : State → S with an identifier
from UIdent, such that the sort symbol S is a type symbol. MVar denotes
the set of all state variable symbols.

An operation symbol is a predicate symbol op:S1 × . . . × Sn × Comp×
S ′1 × . . . × S ′m with an identifier from UIdent, such that the sort symbols
S1, . . . ,Sn , S ′1, . . . ,S

′
m are type symbols. MOp denotes the set of all opera-

tion symbols.

Variable symbols ranging over all values of a type (for every type), vari-
able symbols ranging over all states and variable symbols ranging over all
computations are also needed.

A value symbol is an object symbol x such that the sort of x is a type
symbol. MVal denotes the set of all value symbols.

A state symbol is an object symbol s such that the sort of s is State, and a
computation symbol is an object symbol c such that the sort of c is Comp.
The origin of all state and computation symbols is 〈〉. MState denotes the
set of all state symbols and MComp denotes the set of all computation
symbols.

The write variables specified for an operation, indicate that the operation
leaves all state variables other than the ones mentioned as write variables
unmodified. In the semantics, it has to be made explicit what exactly is
left unmodified. In full VVSL, this may expand by module composition.
Because of this it turns out to be convenient to have modification predi-
cate symbols for every collection of write variables. Losing the identity of
state variables by explicit renaming is prevented by using origins instead
of names.

SEMANTIC DOMAINS FOR FLAT VVSL 63

The modification predicate symbols modl : State× State (for all l ∈ Orig∗)
are special predicate symbols with different identifiers. The origin of modl

is l . Mod denotes the set of all modification predicate symbols.

Any element of a type can be generated in a certain way. This gives an
induction principle for the type, which has also to be made explicit. Hence,
it is necessary to have generation predicate symbols for every type.

The generation predicate symbols genS :S (for all S ∈ MType) are special
predicate symbols with the same identifier. The origin of genS is ω(S), the
origin of S . Gen denotes the set of all generation predicate symbols.

A number of pairs of conversion function symbols is associated with the
basic types Z and Q, every basic type that is an ‘enumerated type’ (see
Section 5.7), and every defined type. They are special function symbols
which are used for implicit conversion from subtype to type and vice versa.

The conversion function symbols are inclusion function symbols and re-
traction function symbols. The inclusion function symbols ıS→S ′ :S → S ′

(for S ,S ′ ∈ MType) are special function symbols with the same identi-
fier. The corresponding retraction function symbols ı−1

S ′→S :S ′ → S (for
S ′,S ∈ MType) are also special function symbols with the same identi-
fier. However, the identifiers concerned are different. The origin of ıS→S ′

is 〈ω(S), ω(S ′)〉 and the origin of ı−1
S ′→S is 〈ω(S), ω(S ′)〉. Conv denotes the

set of all conversion function symbols.

Definition. MSym, the set of all module symbols, is defined by

MSym := MType∪MFunc∪MVar∪MOp∪
ΣComp ∪Mod∪Gen∪Conv∪MVal∪MState∪MComp .

A module symbol signature is a symbol signature Σ such that

Σ 6= { } ⇒ {B, tt , ff } ∪ ΣComp ∪Mod ⊆ Σ ⊆ MSym .

MSSig, the set of all module symbol signatures, is defined by

MSSig := {Σ | Σ is a module symbol signature}.
B, tt , ff are used to denote the symbols which are associated with the ba-
sic type B, i.e. the type denoting the set of boolean values (see also Ap-
pendix D).

4.2 Semantic domains for flat VVSL

Having introduced module symbols and module symbol signatures, the se-
mantic domains for the semantics of flat VVSL can be introduced.

Definition. The domain Form of module symbol formulae is defined by

Form := {A | A is a formula of MPLω(Σ), for some Σ ∈ MSSig}.

64 SPECIALIZATION FOR FLAT VVSL

The auxiliary domain Term of module symbol terms is defined by

Term := {t | t is a term of MPLω(Σ), for some Σ ∈ MSSig}.
In the semantics of flat VVSL presented in Chapter 5, the abbreviations

of formulae introduced in Sections 3.3 and 3.7 are used instead of the
abbreviated formulae.
Definition. The auxiliary domain EForm of module symbol formulae and
simultaneous inductive function definition rules is defined by

EForm := Form∪{f :SI= A | f ∈ MFunc,A ∈ Form}.
The simultaneous inductive function definition rules can be eliminated by
replacing them by formulae.
Definition. The elimination of the simultaneous inductive definition rules
from a subset of EForm is given by the mapping µ:P(EForm) → P(Form),
which is inductively defined by:

Γ ′ ⊆ Form∧Γ = Γ ′ ∪ {fj :SI= Aj | 1 ≤ j ≤ n} ⇒
µ(Γ) = Γ ′ ∪ 〈f1, . . . , fn〉 : I= A1 ∧ . . . ∧An .

4.3 States and computations

The special sort symbols State and Comp are used to represent the state
space and computation space, respectively. A computation can be viewed as
a non-empty finite or countably infinite sequence of states and connecting
transitions which are labelled to distinguish between internal and external
transitions:
• The special function symbol stn (n < ω) is used for the partial function

which maps each computation to its (n + 1)-th state (if it exists).
• The special predicate symbol intn (n < ω) is used for the predicate which

holds for a computation if there exists a (n + 1)-th state transition and
it is moreover an internal transition.

• The special predicate symbol extn (n < ω) is used for the predicate which
holds for a computation if there exists a (n + 1)-th state transition and
it is moreover an external transition.

This intuition is captured by the formula Compax of MPLω, which relates
the sorts State and Comp with the functions and predicates stn , intn and
extn (n < ω). This formula states that the n-th state of computation c
exists if the (n + 1)-th state of c exists, that the n-th transition of c exists
iff the (n + 1)-th state of c exists and that the n-th transition of c is not
both internal and external. Furthermore, it states that if, for each n, the
n-th state of computation c1 and the n-th state of computation c2 are the
same (in case it exists for either one) and moreover the n-th transition of
c1 and the n-th transition of c2 are both internal or both external, then c1

and c2 are the same.

STATES AND COMPUTATIONS 65

Definition. The formula Compax is defined as follows:

Compax :=
∀c: Comp
(st0(c)↓ ∧ ∧

n(stn+1(c)↓ → stn(c)↓) ∧∧
n((stn+1(c)↓ ↔ intn(c) ∨ extn(c)) ∧ ¬(intn(c) ∧ extn(c)))) ∧

∀c1: Comp, c2: Comp
(
∧

n(stn(c1) ' stn(c2) ∧
(intn(c1) ↔ intn(c2)) ∧ (extn(c1) ↔ extn(c2))) → c1 = c2).

Let S ∈ MType be the sort symbol that is used for the set of values
determined by the type T . Then for each state variable of (VVSL) type
T , a corresponding function symbol of (MPLω) type State → S is used
for the function which maps each state to the value taken by the state
variable in that state. States that are not distinguishable by means of the
state variables are not required to be really equal. Equality of states is
not considered important; the values taken by the state variables is what
matters.

Let Si ∈ MType be the sort symbol that is used for the set of values
determined by the type Ti , for 1 ≤ i ≤ n, and let S ′i ∈ MType be the
sort symbol that is used for the set of values determined by the type T ′

i ,
for 1 ≤ i ≤ m. Then for each operation with argument types T1, . . . ,Tn

and result types T ′
1, . . . ,T

′
m , a corresponding predicate symbol of type

S1×· · ·×Sn×Comp×S ′1×· · ·×S ′m is used for the predicate which holds for
values x1, . . . , xn , computation c and values y1, . . . , ym if c is a computation
of the operation for arguments x1, . . . , xn that yields results y1, . . . , ym .

Each operation definition mentions a set of write variables. This indi-
cates that all state variables other than the variables mentioned as write
variables are left unmodified by the operation. In full VVSL, what is left
unmodified may expand by module composition. To accommodate this, a
binary predicate modl on states is introduced for every finite sequence l
of origins (in Section 4.1). modl(s1, s2) is intended to express that state s1
may only be transformed into state s2 by modifying state variables with
origins in l . On the definition of a state variable v , a formula is associated
with v . This formula states that, for l with the origin of v not in l , the
state variable v is left unmodified in the transition from state s1 to state
s2 if modl(s1, s2) holds. Varmod(v) is defined as an abbreviation of this
formula.

Definition. For a state variable symbol v , i.e. a function symbol v of type
State → S for some sort S , the formula Varmod(v) is defined by

Varmod(v) :=∧

l∈(Orig−{ω(v)})∗
(∀s1: State, s2:State(modl(s1, s2) → v(s1) ' v(s2))).

66 SPECIALIZATION FOR FLAT VVSL

Varmod(v) is used to guarantee that state variable v can only be modified
with appropriate modification rights.

For the computations of an operation, the set of write variables leads
to the restriction that in internal transitions all state variables other than
the write variables must be left unmodified. Each operation definition also
mentions a set of read variables. Only state variables mentioned as read
variable or write variable are of concern to the behaviour of the opera-
tion. For the computations of an operation, this leads to the additional
restriction that in every transition at least some state variable from the
read variables or the write variables must be modified, unless the transi-
tion is followed by infinitely many transitions where this does not happen.
Modcomp(R,W , c) is defined as an abbreviation of the formula expressing
these two restrictions.

Definition. For sets R and W of state variable symbols, and computation
symbol c, the formula Modcomp(R,W , c) is defined by

Modcomp(R,W , c) :=∧
n(intn(c) → modl(stn(c), stn+1(c))) ∧

∧
n(

∧

v∈R∪W

(v(stn(c)) ' v(stn+1(c))) →
∧

m(
∧

v∈R∪W

(v(stn+m(c)) ' v(stn+m+1(c))))),

where l is defined as follows: let {ω(v) | v ∈ W } = {a1, . . . , ak}, where
a1, . . . , ak are ordered according to some fixed linear order on Orig, then
l = 〈a1, . . . , ak 〉.

So Modcomp(R,W , c) expresses that internal transitions in computation
c leave state variables other than the state variables W unmodified, and
no two consecutive states in computation c are the same after projection
to the state variables R∪W , unless c is infinite and all following states are
the same.

The formulae, that are abbreviated by expressions of the form Varmod(v)
and Modcomp(R,W , c), capture the main aspects of the mechanism of
interrogation and modification rights provided in VVSL by means of the
external clause in operation definitions.

The following abbreviations of formulae are used in the interpretation of
temporal formulae.

IMPLICIT CONVERSIONS 67

Definition. For computation symbols c, c′, the formulae Prefixk (c, c′) and
Suffixk (c, c′) (k < ω) are defined by

Prefixk (c, c′) :=
k∧

m=0

(stm(c) ' stm(c′) ∧
(intm(c) ↔ intm(c′)) ∧ (extm(c) ↔ extm(c′))) ∧

¬(stk+1(c′)↓),
Suffixk (c, c′) :=∧

n(stk+n(c) ' stn(c′) ∧
(intk+n(c) ↔ intn(c′)) ∧ (extk+n(c) ↔ extn(c′))).

Prefixk (c, c′) is a formula stating that computation c′ is the prefix of com-
putation c ending at the (k + 1)-th state of c. Suffixk (c, c′) is a formula
stating that computation c′ is the suffix of computation c starting at the
(k + 1)-th state of c.

That the intuitions of prefix and suffix are captured by these formulae,
follows from the last conjunct of the axiom characterizing computations
(i.e. the formula abbreviated by Compax). Because no constructor functions
for the (possibly infinite) computations are available, there are no simpler
equivalent formulae.

The abbreviations Prefixk (c, c′) and Suffixk (c, c′) are used for ‘chopping’
computations.

4.4 Implicit conversions

VVSL is a typed specification language with subtyping. If T is a subtype
of T ′ or vice versa, then an element of the type T can be allowed in many
situations where an element of the type T ′ is expected. This requires the
implicit application of conversion functions.

Let S ,S ′ ∈ MType be the sort symbols that are used for the sets of values
determined by the types T and T ′, respectively. Then, if T is declared to
be a subtype of T ′, the two special function symbols ıS→S ′ and ı−1

S ′→S are
used for the conversion from T to T ′ and vice versa. These functions can
be viewed as an inclusion mapping and its inverse (a retraction mapping),
respectively.

If T is declared to be a subtype of T ′′ and T ′′ is declared to be a subtype
of T ′, then T is a subtype of T ′. Roughly, the composition of the function
for conversion from T to T ′′ with the function for conversion from T ′′ to
T ′ is used for the conversion from T to T ′ and similarly for the inverse
conversion.

The situation is in fact somewhat more complicated, because there may
also be a type T ′′′ different from T ′′ for which it holds that T is declared to
be a subtype of T ′′′ and T ′′′ is declared to be a subtype of T ′. However, the

68 SPECIALIZATION FOR FLAT VVSL

compositions of conversion functions via different intermediate types yield
the same result. The formula Convax≤ of MPLω states this commutability
property of compositions of implicit conversions.
Definition. For a relation ≤ ⊆ MType×MType, the formula Convax≤ is
defined by

Convax≤ :=
∧

〈S ,S ′〉∈MType×MType

(∀x :S (∃x ′:S ′

(
∧

{S1,...,Sn}∈ch(S ,S ′)

(ıSn−1→Sn
(· · · ıS1→S2(x) · · ·) = x ′)))),

where {S1, . . . ,Sn} ∈ ch(S ,S ′) iff S = S1, S ′ = Sn , Si ≤ Si+1 for 0 < i < n.
Let S ,S ′ ∈ MType be the sort symbols that are used for the sets of values

determined by the types T and T ′, respectively, where T is a subtype of
T ′ or vice versa. Then for each term t of sort S , the term Conv≤S→S ′(t)
of MPLω is a term of sort S ′, which denotes the result of converting the
element of type T that is denoted by t to an element of type T ′.
Definition. For a relation ≤ ⊆ MType×MType, type symbols S ,S ′ ∈
MType and term t ∈ Term of sort S , the term Conv≤S→S ′(t) is defined by

Conv≤S→S ′(t) :=

ιx ′:S ′ (
∧

{S1,...,Sn}∈ch(S ,S ′)

(ıSn−1→Sn (· · · ıS1→S2(t) · · ·) = x ′))

if S ≤ S ′ ∧ S 6= S ′,

ιx ′:S ′ (
∧

{S1,...,Sn}∈ch(S ′,S)

(ı−1
S2→S1

(· · · ı−1
Sn→Sn−1

(t) · · ·) = x ′))

if S ′ ≤ S ∧ S 6= S ′,
t if S = S ′,

where {S1, . . . ,Sn} ∈ ch(S ,S ′) iff S = S1, S ′ = Sn , Si ≤ Si+1 for 0 < i < n.

The terms, that are abbreviated by expressions of the form Conv≤S→S ′(t),
provide for the required type conversions in the interpretation of expres-
sions of VVSL.

4.5 Basic and constructed types

The types of VVSL correspond to sort symbols of MPLω representing sets
of values, characterized by associated defining axioms of these sort sym-
bols, in accordance with the intended meaning of the types. Subtypes and
identifier overloading, which are both supported by VVSL, have no such
direct counterparts in MPLω.

BASIC AND CONSTRUCTED TYPES 69

In the scope of a definition that defines a type as a subtype of a basic or
constructed type, pre-defined type and function names associated with the
basic or constructed type may be used. This gives rise to additional symbols
of MPLω with associated defining axioms. There are also symbols associ-
ated with a basic or constructed type for which there are no corresponding
pre-defined names. This includes a sort symbol for the basic or constructed
type itself and sort symbols for other basic or constructed types associated
with it. For these symbols there are corresponding types instead of names.
It also includes symbols for which there are no corresponding types either:
generation predicate symbols connected with structural induction rules (for
basic and constructed types) and implicit conversions function symbols (for
basic types only). These symbols were introduced in Section 4.1. The sym-
bols with an identifier that is available to the specifier, either directly as a
pre-defined name or indirectly by a type, are called the available symbols
associated with the basic or constructed type concerned. In Appendix D,
the available symbols associated with a basic or constructed type and the
defining axioms of all symbols associated with it are defined by mappings

asymbols: MType → P(MSym),
axioms:MType → P(Form),

respectively.∗
For each basic or constructed type, the axioms include a defining axiom

of an auxiliary unary generation predicate symbol, which holds for values
that can be constructed by means of certain functions associated with the
type, and an axiom stating that all values of the type can be constructed
by means of these constructor functions. Furthermore, a defining axiom is
included for each of the remaining functions associated with the type. If the
type concerned has pre-defined subtype(s), then there are also the defining
axioms of the accompanying pair(s) of conversion function symbols. There
is also always an axiom that defines equality.

The origin and the symbol type of all symbols associated with the basic
and constructed types are uniquely characterized. This is not the case for
the identifier, for which only a restriction to a certain subset of Ident is
given. In this way, the pre-defined names are not fixed. Roughly speaking,
the origin of each symbol is composed of the origins of the symbols for
all types on which its meaning depends. Thus, symbols associated with
basic types (including enumerated types) have an empty origin. For each
symbol, the set of symbols which must be name equivalent to the symbol
is also uniquely characterized. This gives rise to more global restrictions
on the identifiers of the symbols. For example, type symbols corresponding
to set types must be name equivalent iff the symbols corresponding to the

∗ The nil constant symbol corresponding to the pre-defined constant name for the option
value of a type defined as a union with option value is also given in this appendix.

70 SPECIALIZATION FOR FLAT VVSL

element types of the set types are name equivalent and they must be name
inequivalent to all type symbols not corresponding to set types.

The notations used in the following chapter to denote the symbols asso-
ciated with the basic and constructed types, are presented in Appendix D.

5

Definition of Flat VVSL

This chapter contains a logic-based formal semantics for flat VVSL. The
semantics presented describes the meaning of constructs in the language in
terms of formulae from the language of MPLω, the logic that was introduced
in Chapter 3. This presentation illustrates an approach to give a formal
semantics for a model-oriented, state-based specification language without
provisions for modular structuring of specifications. The presented logic-
based semantics describes the meaning of flat VVSL specifications as sets
of formulae characterizing what is described in them.

It is worth noticing again that MPLω, the logic used as the basis for
this semantics, is mainly obtained by additions to the language, the proof
system and the interpretation of classical first-order logic. These additions
make it more suitable as a semantic basis for specification languages which
are intended for describing software systems. However, no essential devia-
tions from classical reasoning are imposed.

The illustrated approach is applicable to any model-oriented specification
language. Generally, formal semantics for such specification languages are
not logic-based. For example, the formal semantics of VDM-SL presented
in the draft ISO standard describes the meaning of specifications in terms
of the models which satisfy them. That is the traditional approach for
model-oriented specification languages. However, a logic-based approach
may be more appropriate for them. It provides a better starting-point for
the development of a proof theory for the specification language concerned.
Furthermore, most current models and theories of modular specification
assume that flat specifications, which are used as the basic building blocks
of modular specifications, correspond to presentations of theories in some
logic.

One of the sections of Chapter 9 is concerned with proof rules for VVSL.
The principal proof rules are presented and their connection with the se-
mantics presented for VVSL is described informally and in broad outline.
They include proof rules for a typed version of LPF, proof rules for a typed

72 DEFINITION OF FLAT VVSL

first-order temporal logic extending LPF and proof rules which are needed
to construct proofs of facts about modules. In another section of that chap-
ter, the logic-based approach is applied to another language to demonstrate
the generality of the approach. The constructs of that language are common
control constructs of imperative programming languages. It is a simplified
version of an extension of VVSL which is needed to be able to specify
operations, which possibly interfere, explicitly by a defining program.

VDM-SL is largely incorporated in VVSL. The semantics presented for
this part is mostly equivalent to the originally intended semantics in (Jones,
1990). Both differ slightly from the semantics which is agreed for the stan-
dard, but it remains interesting to compare the semantics presented in this
chapter with the one presented in the draft ISO standard with respect to
the applied approaches.

The meaning of constructs in flat VVSL is only defined for well-formed
constructs. The well-formedness of constructs is also described. Both the
well-formedness and meaning of a construct generally depend on the def-
initions in the scope in which it occurs. Therefore the presentation of the
syntax and semantics begins with a description of the contexts which are
used for modelling the scope. In later sections, the well-formedness and
meaning of constructs in flat VVSL is described with respect to a con-
text. The syntax of flat VVSL is described by means of production rules
in the form of a BNF grammar. These rules suggest a concrete syntax, but
the intention is still that they describe the abstract syntax of VVSL. This
intention is also explained.

Subsequently, there are sections which deal with the syntax and seman-
tics of the sublanguages of flat VVSL. Each section starts with an overview
of the sublanguage concerned, a presentation of its syntax and some general
remarks regarding the well-formedness, syntactic properties and meaning
of constructs in the sublanguage. Following this introduction, there are
separate subsections on the constructs of the various forms that are dis-
tinguished by the production rules given in the syntax presentation for the
sublanguage concerned. In fact, only a kernel of flat VVSL is defined in
this chapter: the remainder is introduced as abbreviations in Appendix E.

The notations used in this chapter to denote the symbols correspond-
ing to pre-defined names and types associated with the basic types and
constructed types are presented in Appendix D.

5.1 Contexts

This section introduces two closely related notions of context. Some pred-
icates and mappings, which are basic to the context dependent aspects of
well-formedness and meaning of constructs, are also defined. The predi-
cates and mappings, which are used to describe the typing of expressions,
are defined in the next section.

CONTEXTS 73

In VVSL, a definition introduces a name for a type, a function from
certain argument types to a certain result type, a state variable∗ of a certain
type, an operation from certain argument types to certain result types
or a value of a certain type; the constructs within which this name is
visible, constitute the scope of the definition. For this name, there must be
a corresponding symbol in MPLω. The corresponding symbol is obtained
by combining the name with the type information concerned and an origin
(representing the identity of the definition that introduces the name). Both
the well-formedness and meaning of a construct depend on the symbols
corresponding to the names that occur in the construct. A prerequisite for
well-formedness is that these names have been introduced by definitions in
the scope in which the construct occurs.

Definition. The set NSym of normal symbols is defined by

NSym :=
MType∪MFunc∪MVar∪MOp∪{x ∈ MVal | ι(x) ∈ UIdent}.

Normal symbols are symbols corresponding to names that are user-defined
or pre-defined.

A type definition also implicitly declares subtype relationships between
the introduced type name and other types. The well-formedness and mean-
ing of a construct also depend on the subtype relationships being in force.
Pairs of type symbols are used to record the subtype relationships declared
in type definitions.

Definition. The set SDcl of subtype declarations is defined by

SDcl := MType×MType .

A subtype declaration 〈S1,S2〉 indicates that the type corresponding to S1

is a subtype of the type corresponding to S2.
The context of a construct consists of all symbols corresponding to names

introduced by definitions in the scope in which the construct occurs and
additionally the subtype declarations associated with the introduced type
names. This provides all details about the names occurring in the construct
on which its well-formedness and meaning depends.

Before contexts are defined, first an auxiliary predicate is introduced. It
is used to check whether or not a type appears in another type.

Definition. The auxiliary predicate dep: MType×MType is inductively

∗ State variable is the name used in VVSL for state components.

74 DEFINITION OF FLAT VVSL

defined by

dep(S ,S),
dep(S , L(S)),
dep(S , F(S)),
dep(S1, M(S1,S2)),
dep(S2, M(S1,S2)),
dep(Si , Cc(S1, . . . ,Sn)) (for 1 ≤ i ≤ n).

dep(S1,S2) indicates that the type corresponding to S1 appears in the type
corresponding to S2.

Contexts are defined in an indirect way. First, proto-contexts are defined.
Thereafter, contexts are defined as proto-contexts of a special kind. Proto-
contexts are needed in Chapter 8 to describe the meaning of constructs in
the structuring language.
Definition. A proto-context C is a finite subset of NSym∪SDcl such that

∀〈i , a, t(S1, . . . ,Sn)〉 ∈ C ∩ NSym

(
n∧

k=1

(∃S ∈ C ∩ NSym(S = Sk) ⇒ Sk ∈ C),

∀〈S1,S2〉 ∈ C ∩ SDcl
(∀S ∈ MType

(ι(S) ∈ UIdent∧(dep(S ,S1) ∨ dep(S ,S2)) ⇒ S ∈ C)).

A symbol context is a proto-context C such that

∀w1,w2 ∈ C ∩ NSym (w1 = w2 ⇒ w1 = w2).

The set Cxt of all symbol contexts is defined by

Cxt := {C ⊆ NSym∪SDcl | C is a symbol context}.
We write symbols(C) for C ∩ NSym and sdcls(C) for C ∩ SDcl.
The requirements on proto-contexts guarantee that they can be regarded as
representations of symbol signatures if value symbols are ignored. The first
requirement on proto-contexts is a condition akin to the closure condition
that applies to signatures. The second requirement on proto-contexts is a
closure condition concerning subtype declarations, which is needed because
subtype declarations correspond to pairs of conversion function symbols.
The additional requirement on symbol contexts ensures that there are no
two distinct symbols in a context that are the same except for the origins
occurring in them. This means in essence that there has to be a one-to-
one correspondence between typed names and symbols. This strong origin
uniqueness requirement is basic to the suitability of symbol contexts for
their purpose in describing the meaning of constructs in flat VVSL.

Because the origins are not relevant to well-formedness, a simpler kind
of context is more appropriate for well-formedness. It abstracts from the

CONTEXTS 75

origins occurring in the symbols. This abstraction turns symbols essentially
into typed names. Properly speaking, subtype declarations become couched
in terms of types.

Definition. We write C for symbols(C)∪ {〈S1,S2〉 | 〈S1,S2〉 ∈ sdcls(C)}.
The set NCxt of name contexts is defined by

NCxt := {C | C ∈ Cxt}.

We write names(N) for N ∩ NSym and sdcls(N) for N ∩ SDcl.

Note that the requirements on symbol contexts guarantee that no two sym-
bols from a symbol context are identified in the corresponding name con-
text.

The following auxiliary mapping allows us to introduce apposite notation
to denote elements of name context. It maps types to their corresponding
names (i.e. name equivalence classes of symbols). In Section 5.7, types are
defined as constructs of various forms. Type denotes the set of all types.

Definition. The auxiliary mapping name: Type → MType is inductively
defined by

name(B) = B,
name(N) = N,
name(Z) = Z,
name(Q) = Q,

name({ a1, . . . , an }) = E({a1, . . . , an}),
name(t) = S ⇒ name(t∗) = L(S),
name(t) = S ⇒ name(t-set) = F(S),
name(t1) = S1 ∧ name(t2) = S2 ⇒ name(t1

m−→ t2) = M(S1,S2),
n∧

k=1

name(tk) = Sk ⇒

name(compose c of s1: t1 . . . sn : tn) = Cc(S1, . . . ,Sn),

t = ι(S) ∧ sort = τ(S) ⇒ name(t) = S .

Notation. We write for w ∈ NSym:

[type T] if τ(w) = sort,w = name(T);
[func f :T1 × · · · × Tn → Tn+1]

if ι(w) = f ,
∃S1, . . . ,Sn+1

(τ(w) = 〈func,S1, . . . ,Sn+1〉 ∧
n+1∧

k=1

(Sk = name(Tk)));

[var v :T] if ι(w) = v ,∃S (τ(w) = 〈func, State,S 〉 ∧ S = name(T));

76 DEFINITION OF FLAT VVSL

[op op:T1 × · · · × Tn ⇒ T ′
1 × · · · × T ′

m]
if ι(w) = op,
∃S1, . . . ,Sn ,S ′1, . . . ,S

′
m

(τ(w) = 〈pred,S1, . . . ,Sn , Comp,S ′1, . . . ,S
′
m〉∧

n∧

k=1

(Sk = name(Tk)) ∧
m∧

k=1

(S ′k = name(T ′
k)));

[val x :T] if ι(w) = x , ∃S (τ(w) = 〈obj,S 〉 ∧ S = name(T)).

We write for 〈S1,S2〉 ∈ SDcl:

[T1 ≤ T2]
if τ(S1) = sort, τ(S2) = sort,S1 = name(T1),S2 = name(T2).

These notations are extensively used to describe the name context of con-
structs.

For restriction of the scope of state variable definitions, the following
mapping is introduced.

Definition. The mapping nonvars: NCxt → NCxt is defined by

nonvars(N) := N − {[var v :T] | v ∈ UIdent,T ∈ Type}.
nonvars(N) is the name context N without the state variable names.

The name context of a construct provides all details about the names oc-
curring in it on which its well-formedness depends. A property of identifiers,
which is generally required for the well-formedness of a construct in which
they appear, is the property of being defined in the context of the construct
as a name of a certain kind. This property of identifiers makes precise what
is informally described as occurring in the scope of its definition. However,
this description is far from accurate in the presence of pre-defined names.
An identifier that is a pre-defined type or function name associated with
a basic or constructed type is considered to be defined as a type or func-
tion name in a context, provided that the basic or constructed type is used
for type definition. The condition ensures that pre-defined names are not
inadvertently used. This makes most sense in combination with the mod-
ularization and parametrization constructs of full VVSL. It is tantamount
to letting the use of a basic or constructed type bring about the import of
a module (corresponding to the type).

The property of an identifier to be defined in a context as a name of a cer-
tain kind is defined below. First several auxiliary mappings are introduced.
Some of them are also used in Section 8.1.

The following mapping is used to find out which basic and constructed
types contribute pre-defined names in a given context.

Definition. The auxiliary mapping bctypes: Cxt → P(MType) is defined

CONTEXTS 77

by

bctypes(C) :=
{S ∈ MType |
ι(S) /∈ UIdent∧
∃S ′,S ′′ ∈ MType (dep(S ,S ′′) ∧ 〈S ′,S ′′〉 ∈ sdcls(C))}.

bctypes(C) is the set of all type symbols corresponding to basic and con-
structed types used for type definition in the context C . Note that this
set is fixed by the subtype declarations from C . The predicate dep is used
because the basic types B, N, Z and Q may appear as type names in con-
structed types.

The following mapping is used to find out which (mini-)context corre-
sponds to the pre-defined type and function names that are associated with
a given basic or constructed type.

Definition. The auxiliary mapping predefs: MType → Cxt is inductively
defined by

ι(w) = PIdent∧w ∈ asymbols(S) ⇒ w ∈ predefs(S),
dep(Z,S) ⇒ 〈N,Z〉 ∈ predefs(S),
dep(Q,S) ⇒ 〈N,Z〉, 〈Z, Q〉 ∈ predefs(S),
A′ ⊆ A ⇒ 〈E(A′),E(A)〉 ∈ predefs(E(A)).

asymbols(S) includes the symbols for all pre-defined names associated with
the basic or constructed type corresponding to the type symbol S (the
mapping asymbols:MType → P(MSym) is defined in Appendix D).
predefs(S) is the set of symbols for all pre-defined names associated with the
basic or constructed type corresponding to S and additionally all subtype
declarations relevant to that type (in case Z, Q or an enumerated type).

The following mapping is used to find out which context corresponds to
the pre-defined type and function names considered to be defined in a given
context.

Definition. The auxiliary mapping predefs:Cxt → Cxt is defined by

predefs(C) :=
⋃{predefs(S) | S ∈ bctypes(C)}.

predefs(C) is the set of symbols for all pre-defined type and function names
that are considered to be defined in the context C and all subtype decla-
rations relevant to the pre-defined types concerned.

The property of an identifier to be defined in a context as a name of a
certain kind is now defined. The predicates concerned are extensively used
to describe the well-formedness of constructs.

Definition. The predicates deftype, deffunc, defvar , defop and defval :

78 DEFINITION OF FLAT VVSL

NIdent×NCxt are defined by

deftype(t ,C) :⇔ ∃w ∈ (C ∪ predefs(C)) ∩MType (ι(w) = t),

deffunc(f ,C) :⇔ ∃w ∈ (C ∪ predefs(C)) ∩MFunc (ι(w) = f),

defvar(v ,C) :⇔ ∃w ∈ C ∩MVar (ι(w) = v),

defop(op,C) :⇔ ∃w ∈ C ∩MOp (ι(w) = op),

defval(x ,C) :⇔ ∃w ∈ C ∩MVal (ι(w) = x).

In the description of the well-formedness of constructs, we write ‘i is defined
as a type name in N ’ instead of deftype(i ,N), etc.

The subtype ordering being in force depends on the context. The prop-
erty of a type to be a subtype of another type in a context is now defined.
This predicate is basic to the typing of expressions.

Definition. The predicate sub: Type×Type×NCxt is inductively defined
by

[type T] ∈ C ∪ predefs(C) ⇒ sub(T ,T ,C),
[T1 ≤ T2] ∈ C ∪ predefs(C) ⇒ sub(T1,T2,C),
sub(T1,T2,N) ∧ sub(T2,T3,N) ⇒ sub(T1,T3,N).

Instead of sub(T1,T2,N), we write T1 ≤N T2. In the description of the
well-formedness of constructs, we just write ‘T1 is a subtype of T2’.

For each N , ≤N is a pre-ordering on the set of all types that are defined
in N , used for defining types in N or pre-defined as subtypes of the latter
types.

A partial mapping, which gives the symbol with a certain symbol type
corresponding to an identifier in a context, is defined below. A partial
mapping, which gives the sort symbol corresponding to a type in a context,
is also defined. A necessary condition for definedness is that the identifier
itself and each identifier occurring in the type, respectively, is defined (as a
name of the appropriate kind) in the context. This condition is met by all
well-formed constructs. These mappings are extensively used to describe
the meaning of well-formed constructs with respect to a context.

Definition. The two mappings sym:MIdent× SType×Cxt → MSym and
sym:Type×Cxt → MType are inductively defined by

i = ι(w) ∧ t = τ(w) ∧ w ∈ symbols(C ∪ predefs(C)) ⇒
sym(i , t ,C) = w ,

name(T) = w ∧ w ∈ symbols(C ∪ predefs(C)) ⇒ sym(T ,C) = w .

We write:
TC for sym(T ,C),
tC for sym(t , sort,C),
f C
T1×···×Tn→T for sym(f , 〈func,TC

1 , . . . ,TC
n ,TC 〉,C),

CONTEXTS AND TYPING 79

vC
T for sym(v , 〈func, State,TC 〉,C),

opC
T1×···×Tn⇒T ′1×···×T ′m

for
sym(op, 〈pred,TC

1 , . . . ,TC
n , Comp,T ′C

1 , . . . ,T ′C
m 〉,C),

xC
T for sym(x , 〈obj,TC 〉,C).
Semantically, implicit (type) conversion of expressions of VVSL corre-

sponds to explicit (sort) conversion of terms of MPLω. The conversion of
terms involved in the interpretation of an expression generally depends on
the symbol context of the expression. This context determines the conver-
sion function symbols to be used. Conversion of terms of MPLω is given by
the following mapping.
Definition. The mapping cnv :Term×MType×MType×Cxt → Term is
defined by

cnv(t ,S1,S2,C) := Conv≤S1→S2
(t),

where ≤ = sdcls(C ∪ predefs(C)).

Instead of cnv(t ,S1,S2,C), we write cnvC
S1→S2

(t).
cnvC

S1→S2
(t) is the conversion of term t from sort S1 to sort S2 in the symbol

context C .
The abbreviations Conv≤S1→S2

(t) (used above) and Convax≤ (used below)
were introduced in Section 4.4.

Depending upon the symbol context of an expression, the conversion
of terms involved in the interpretation of the expression can sometimes
be carried out in different ways. In these cases, the particular choice is
irrelevant. The formula given by the following mapping states this.
Definition. The mapping cnvax : Cxt → Form is defined by

cnvax (C) := Convax≤,

where ≤ = sdcls(C ∪ predefs(C)).

cnvax (C) is a formula stating that compositions of implicit conversions
via different intermediate sorts must yield the same result, for the implicit
conversions allowed in the symbol context C .

5.2 Contexts and typing

The typing of expressions is context dependent. In this section, the pred-
icates and mappings which are used in Section 5.8 to describe the typing
of expressions and further typing related properties are defined.

The least upper bound of a finite set of types with respect to the subtype
ordering is now introduced. Because the subtype ordering in force depends
on the context, least upper bounds with respect to the subtype ordering also
depend on the context. Least upper bounds do not always exist. In order
to deal with the potential non-existence in a comfortable way, a predicate
is used. This predicate is used to describe the typing of expressions.

80 DEFINITION OF FLAT VVSL

Definition. The predicate lub:P(Type)×Type×NCxt is defined as follows:

lub({T1, . . . ,Tn},T ,N) :⇔
T is the least upper bound of {T1, . . . ,Tn} with respect to ≤N .

lub({T1, . . . ,Tn},T ,N) indicates that T is the least type with T1, . . . ,Tn

as subtypes in the name context N .
The lowering of a type is now defined. It is defined such that it is the least

subtype of the type if that is uniquely defined and its least ‘uniquely defined
approximation’ otherwise. This is used to lower the type of an expression to
the least type such that, according to the subtype ordering being in force,
the value of the expression is always an element of some type of which this
type is a subtype. Thus, the expression becomes well-typed if it can make
sense.
Definition. The mapping lower : Type×NCxt → Type is defined as follows:

lower(T ,N) :=
the least type T ′, with respect to ≤N , such that
T ′ ≤N T ∧ ∀T ′′ ∈ Type (T ′′ ≤N T ⇒ (T ′ ≤N T ′′ ∨ T ′′ ≤N T ′))

lower(T ,N) is the least subtype of T that is comparable with all subtypes
of T , in the name context N .

The raising of a type is now defined similarly. It is used to fix the greatest
common type for the operands of an equality expression. In order to exclude
unintended undefinedness, the operand values are implicitly converted (if
necessary) to this type before being compared.
Definition. The mapping raise:Type×NCxt → Type is defined as follows:

raise(T ,N) :=
the greatest type T ′, with respect to ≤N , such that
T ≤N T ′ ∧ ∀T ′′ ∈ Type (T ≤N T ′′ ⇒ (T ′ ≤N T ′′ ∨ T ′′ ≤N T ′))

raise(T ,N) is the greatest type with T as subtype that is comparable with
all types with T as subtype, in the name context N .

In Section 5.8, the notation N m̀ e ◦◦ T is introduced to indicate that, in
context N , expression e has minimal type T . Generally, minimal typings of
expressions can be inferred from minimal typings of immediate subexpres-
sions. Minimal typings of value names and state variable names are basic
ones. They are given by the following predicate.
Definition. The predicate mtyping : UIdent×Type×NCxt is inductively
defined by

T =
the unique type T ′ such that [val i :T ′] ∈ N ∨ [var i :T ′] ∈ N ⇒
mtyping(i , lower(T ,N),N).

In the description of well-formedness of constructs, we write ‘the minimal
type of i in N is T ’ instead of mtyping(i ,T ,N).

CONTEXTS AND TYPING 81

According to this definition, a value or state variable name has no minimal
typing if it is introduced several times as the name of a value or state
variable. This kind of ambiguity is not allowed.

The minimal type of application expressions of the form f (e1, . . . , en)
where the argument expressions e1, . . . , en have minimal types T1, . . . ,Tn ,
respectively, is regarded as the minimal typing of the function name f with
respect to T1, . . . ,Tn . Thus, minimal typings of function names can be
given in roughly the same way as for value names and state variable names.
A predicate giving minimal typings of function names is defined below. A
function name has no minimal typing, if there is not a unique name that
fits the supplied minimal types of the argument expressions, unless it is a
pre-defined function name – because in that case it is guaranteed that the
ambiguity has no semantic consequences. For pre-defined function names,
the function with the greatest argument types is chosen in order to exclude
unintended undefinedness.

The predicate giving minimal typings of function names is defined in
terms of a predicate indicating the expected types of the arguments of the
function corresponding to a given function name that fits supplied minimal
types of the argument expressions. The latter predicate is defined first. It
is also used to describe the meaning of application expressions.
Definition. The predicate ftypes: NIdent×Type∗ ×Type∗ ×NCxt is induc-
tively defined by

〈T ′
1, . . . ,T

′
n〉 =

the unique sequence of types 〈T ′′
1 , . . . ,T ′′

n 〉 such that
n∧

k=1

(Tk ≤C T ′′
k)∧

∃T ′′ ∈ Type ([func f :T ′′
1 × · · · × T ′′

n → T ′′] ∈ C) ⇒
ftypes(f , 〈T1, . . . ,Tn〉, 〈T ′

1, . . . ,T
′
n〉,C),

〈T ′
1, . . . ,T

′
n〉 =

the greatest sequence of types 〈T ′′
1 , . . . ,T ′′

n 〉,
w.r.t. the component-wise extension of ≤C , such that
n∧

k=1

(Tk ≤C T ′′
k)∧

∃T ′′ ∈ Type ([func f :T ′′
1 × · · · × T ′′

n → T ′′] ∈ predefs(C)) ⇒
ftypes(f , 〈T1, . . . ,Tn〉, 〈T ′

1, . . . ,T
′
n〉,C).

ftypes(f , 〈T1, . . . ,Tn〉, 〈T ′
1, . . . ,T

′
n〉,N) indicates that, in the name context

N , T ′
1, . . . ,T

′
n are the expected types of the arguments of the function

corresponding to the function name f that fits minimal types T1, . . . ,Tn

for the argument expressions.
Definition. The predicate mtyping : NIdent×Type∗ ×Type×NCxt is in-

82 DEFINITION OF FLAT VVSL

ductively defined by

ftypes(f , 〈T1, . . . ,Tn〉, 〈T ′
1, . . . ,T

′
n〉,N)∧

[func f :T ′
1 × · · · × T ′

n → T ′] ∈ N ⇒
mtyping(f , 〈T1, . . . ,Tn〉, lower(T ′,N),N).

mtyping(f , 〈T1, . . . ,Tn〉,T ,N) indicates that, in the name context N , T
is the minimal type of the application expressions of the form f (e1, . . . , en)
where the argument expressions e1, . . . , en have minimal types T1, . . . ,Tn ,
respectively.

A well-formed expression or temporal term must be well-typed. An ex-
pression or temporal term is well-typed in a context if it has a minimal type
in that context. The well-typedness of expressions and temporal terms is
given by the following predicates.

Definition. The predicates wt : Expression×NCxt and wt : TTerm×NCxt
are defined by

wt(e,N) :⇔ ∃T ∈ Type (N m̀ e ◦◦ T),
wt(τ,N) :⇔ ∃T ∈ Type (N m̀ τ ◦◦ T).

In the description of well-formedness, we write ‘e is well-typed in N ’ and
‘τ is well-typed in N ’ instead of wt(e,N) and wt(τ,N), respectively.

In a well-formed equality expression or equality temporal formula the
left-hand side and the right-hand side must be compatible. Two expressions
or temporal terms are compatible in a context if their minimal types have
a least upper bound in that context. The compatibility of two expressions
and two temporal terms is given by the following predicates.

Definition. The predicates compatible: Expression×Expression×NCxt and
compatible: TTerm×TTerm×NCxt are defined by

compatible(e1, e2,N) :⇔
∃T1,T2 ∈ Type

(N m̀ e1
◦◦ T1 ∧ N m̀ e2

◦◦ T2 ∧ ∃T ∈ Type (lub({T1,T2},T ,N))),
compatible(τ1, τ2,N) :⇔
∃T1,T2 ∈ Type

(N m̀ τ1
◦◦ T1 ∧ N m̀ τ2

◦◦ T2 ∧ ∃T ∈ Type (lub({T1,T2},T ,N))).

In the description of well-formedness, we write ‘e1 and e2 are type compati-
ble in N ’ instead of compatible(e1, e2,N) and ‘τ1 and τ2 are type compatible
in N ’ instead of compatible(τ1, τ2,N).

A well-formed expression or temporal term has a unique minimal type.
This type is given by the (partial) mappings defined below. These mappings
are used in Sections 5.8 and 5.9 for the definition of well-formedness.

Definition. The mappings mtype:Expression×NCxt → Type and

SYNTAX NOTATION 83

mtype: TTerm×NCxt → Type are inductively defined by

N m̀ e ◦◦ T ⇒ mtype(e,N) = T ,

N m̀ τ ◦◦ T ⇒ mtype(τ,N) = T .

In the description of well-formedness, we write ‘the minimal type of e in N ’
and ‘the minimal type of τ in N ’ instead of mtype(e,N) and mtype(τ,N),
respectively.

The mappings and predicates lub, lower , raise, mtyping and ftypes have
a name context as last argument. In the remainder of this chapter, such
arguments are always given as superscripts of the names concerned. In other
words, we write lubN ({t1, . . . , tn}, t) instead of lub({t1, . . . , tn}, t ,N), etc.

5.3 Syntax notation

The syntax of VVSL is described by means of production rules in the
form of a BNF grammar. The intention is that the production rules de-
scribe abstract language constructs. The right-hand side of a production
rule is considered to describe the production of abstract constructs which
are objects composed of abstract constructs produced by the nonterminals
occurring in the right-hand side of the rule and generated by a unique
constructor function for the rule concerned. The rule also describes how
applications of the constructor function – which yield constructs produced
by the nonterminal occurring in the left-hand side – are written in the
definitions of well-formedness and semantics. Thus, the intended concrete
syntax is mimicked. This helps to make the definitions more readable.

If the syntax description was regarded as a context-free grammar, the
resulting language would be ambiguous. Notwithstanding, the string rep-
resentation as suggested by the syntax description is the intended concrete
syntax. It is assumed that parentheses are generally used to avoid syntactic
ambiguities with semantic consequences. Some of them cannot be avoided
in this way. The intended resolution of these ambiguities is informally de-
scribed following the production rules concerned.

The nonterminal <empty> has one production rule:

<empty> ::=

This means that <empty> produces only a construct without constituents.
This construct is intended as a special construct that should be represented
by an empty string.

There are nonterminals for which production rules are given in the pre-
sented syntax of VVSL, but which are not interesting from a semantic point
of view. They are of an auxiliary nature.

84 DEFINITION OF FLAT VVSL

5.4 Organization of the definition

Each section that deals with the syntax and semantics of a sublanguage of
VVSL starts with an overview of the sublanguage concerned, a presenta-
tion of its syntax and some general remarks regarding the well-formedness,
syntactic properties and meaning of constructs in the sublanguage.

Following this introduction, there are separate subsections on the con-
structs of the various forms that are distinguished by the production rules
given in the syntax presentation for the sublanguage concerned. These sub-
sections are subdivided into at least four parts: there are always parts for
informal explanation, structure, well-formedness and meaning, but there is
generally also a part for syntactic properties. The structure is a representa-
tion of the constructs of the form concerned as a production with variables
for subconstructs. These variables range over the terminal productions of
fixed nonterminals as follows (subscripts and primes are not shown):

B <basic-module>
D t <type-definition>
Dv <variable-definition>
D f <function-definition>
Do <operation-definition>
T <type>
e <expression>
E <logical-expression>
ϕ <temporal-formula>
τ <temporal-term>
t <type-name>
x <value-name>
f , a, s <function-name>
v <variable-name>
op <operation-name>
c <type-constructor-name>
n <number>

There are no production rules given for the nonterminals of the form
<x-name>. They are supposed to produce identifiers, which are considered
to be terminals. There are no production rules given for the nonterminal
<number> either; (representations of) numbers are also considered to be
terminals.

5.5 Basic modules

Basic modules are the building blocks of modularly structured specifica-
tions in full VVSL. They are considered to be complete specifications in
flat VVSL. This language can be viewed as being composed of four sub-

BASIC MODULES 85

languages: one for definitions, one for types, one for expressions and logical
expressions, and one for temporal formulae. Their hierarchical structure is
indicated by the following:

• Basic modules are constructed mainly from definitions.

• Definitions (Section 5.6) are constructed from types, expressions and
logical expressions, temporal formulae, and names.

• Types (Section 5.7) are constructed from names only.

• Expressions (Section 5.8) are constructed from logical expressions, names
and numbers, and logical expressions (also Section 5.8) are constructed
from expressions and names.

• Temporal formulae (Section 5.9) are also constructed from expressions
and names.

The remainder of this section deals with the syntax and semantics of basic
modules. It begins by introducing basic modules in broad outline.

Overview

In VVSL, one can define types, functions working on values of these types,
state variables which can take values of these types, and operations which
may interrogate and modify the state variables. State variable is the name
used in VVSL for state components. A collection of definitions can be
brought together in a basic module of the following form:

module types Dt state Dv functions Df operations Do end,

where Dt , Dv , Df and Do are the type definitions, the state variable defi-
nitions, the function definitions and the operation definitions, respectively.
How one can define types, functions, state variables and operations, is de-
scribed in Section 5.6.

Example. This example is about tuples. They are defined as maps from
attributes to values. It is assumed that attributes and values are defined
elsewhere. Tuples can be thought of as records, with the attributes corre-
sponding to fields. Functions to construct tuples (singleton and merge), a
function to select the value associated with a given attribute from tuples
(value) and a function to check upon the truth or falsity of a given predicate
for tuples (holds) are defined. Tuple predicates are defined as maps from
tuples to truth values. A tuple predicate holds for a tuple if this map asso-
ciates with the tuple the truth value true. Tuple predicates can be thought

86 DEFINITION OF FLAT VVSL

of as properties that tuples can have.

module

types

Attribute free

Value free

Tuple = Attribute m−→ Value where inv(t) 4 dom t 6= { }
Tuple predicate = Tuple m−→ B

functions

singleton(a:Attribute, v :Value)Tuple
4 {a 7→ v}

merge(t1:Tuple, t2:Tuple)Tuple
4 t1 ∪ t2

value(t :Tuple, a:Attribute)Value
4 t(a)

holds(tp:Tuple predicate, t :Tuple)B
pre t ∈ dom tp
4 tp(t)

end

This basic module only contains definitions of types and functions. Such
basic modules (as well as basic modules that only contain definitions of
state variables and operations) are usual in modularly structured specifi-
cations. In this way state independent aspects and state dependent aspects
are clearly separated in modularly structured specifications. This isolated
simple basic module is not meant to illustrate a good choice to achieve
the goals of modular structuring. Such examples are given in Chapters 11
to 13.

Syntax

Basic modules are the terminal productions of <basic-module>. Regarding
flat VVSL as a language on its own, basic modules must be considered to
be the sentences of flat VVSL, i.e. <basic-module> is the start symbol of
the grammar for flat VVSL.

<basic-module> ::=
module <types> <state> <functions> <operations> end

<types> ::=
<empty>
| types <type-definitions>

BASIC MODULES 87

<type-definitions> ::=
<type-definition>
| <type-definition> <type-definitions>

<state> ::=
<empty>
| state <variable-definition-option>

inv <logical-expression> init <logical-expression>
dyn <temporal-formula>

<variable-definition-option> ::=
<empty>
| <variable-definitions>

<variable-definitions> ::=
<variable-definition>
| <variable-definition> <variable-definitions>

<functions> ::=
<empty>
| functions <function-definitions>

<function-definitions> ::=
<function-definition>
| <function-definition> <function-definitions>

<operations> ::=
<empty>
| operations <operation-definitions>

<operation-definitions> ::=
<operation-definition>
| <operation-definition> <operation-definitions>

In Section 5.6, the production rules for the nonterminals <type-definition>,
<variable-definition>, <function-definition> and <operation-definition> are
presented. For <logical-expression> and <temporal-formula>, the produc-
tion rules are presented in Section 5.8 and Section 5.9, respectively.
The set BasicModule of syntactically correct basic module constructs is
defined by

BasicModule := {B | B is a terminal production of <basic-module>}.

88 DEFINITION OF FLAT VVSL

Well-formedness. The well-formedness of syntactically correct basic mod-
ule constructs is defined by a predicate

wf : BasicModule×NCxt .

wf (B ,N) indicates that B is well-formed in the name context N . Instead of
wf (B ,N), we write ‘B is well-formed in N ’. The well-formedness of basic
modules is defined in terms of the well-formedness of definitions, logical
expressions and temporal formulae (defined in Sections 5.6, 5.8 and 5.9),
and the syntactic properties of definitions (defined in Section 5.6).

Syntactic properties. The name context associated with basic modules
is defined by a mapping

{[•]}: BasicModule → NCxt .

{[B]} consists of the names and the subtype declarations introduced by the
definitions of basic module B .

If the keyword free occurs in a definition, then it introduces a free name.
Roughly speaking, a free name is a name which is supposed to be defined
elsewhere. This makes most sense in full VVSL, where it can be defined in
another module. The free name context associated with basic modules is
defined by a mapping

{[•]}free: BasicModule → NCxt .

{[B]}free consists of the free names introduced by the definitions of ba-
sic module B . {[B]}free is a subset of {[B]}. These syntactic properties are
defined in terms of the syntactic properties of definitions (defined in Sec-
tion 5.6).

Meaning. The meaning of basic modules is defined by a mapping

[[•]]•: BasicModule×Cxt → P(Form).

[[B]]C is the set of formulae corresponding to the basic module B in a symbol
context C . [[B]]C is only defined if {[B]} ⊆ C and B is well-formed in C . The
condition {[B]} ⊆ C enforces that C supplies symbols for all names defined
in B . This allows the meaning of basic modules in flat VVSL to be described
without anticipating their role in modularly structured specifications. In
flat VVSL, basic modules are regarded as merely collections of definitions
together with some general assumptions about states and state changes.
Information hiding is not covered by the meaning of basic modules in flat
VVSL. The meaning of basic modules in flat VVSL is defined in terms
of the meaning of definitions, logical expressions and temporal formulae
(defined in Sections 5.6, 5.8 and 5.9).

In Chapter 8, the modularization and parametrization constructs which
complement flat VVSL are provided with a well-defined semantics that is
built on top of the logic-based semantics presented in this chapter. There,

BASIC MODULES 89

the meaning of a basic module as a modularization construct is described
in terms of its well-formedness, syntactic properties and meaning according
to the definition of flat VVSL presented in this chapter. The latter (context
dependent) meaning, say [[B]]C , is just a subset of the set Form of formulae.
The signature corresponding to the basic module in the context concerned
is sig([[B]]C). This aspect of the meaning of basic modules is not defined
by a separate mapping.

Below basic modules are precisely described.

Basic module

module

types D t
1 . . . D t

nt
state Dv

1 . . . Dv
nv

inv E1 init E2 dyn ϕ

functions D f
1 . . . D f

nf
operations Do

1 . . . Do
no

end

is a basic module, where the definitions D t
1 , . . . ,D t

nt
introduce names for

types, Dv
1 , . . . ,Dv

nv
introduce names for state variables which can take val-

ues of these types, D f
1 , . . . ,D f

nf
introduce names for functions working on

values of these types, Do
1 , . . . ,Do

no
introduce names for operations which

may interrogate and modify the state variables. The types may be intro-
duced by definitions in which the types are recursively used. The functions
that are explicitly defined may also be introduced by definitions in which
the functions are recursively used. The logical expression E1 and E2 state
assumptions about what values the state variables can take in any state and
initially, respectively. Either of these conditions gives rise to a proof obliga-
tion for its preservation by the operations. Similarly, the temporal formula
ϕ states an assumption about what histories of values taken by the state
variables can occur in any computation. This condition also gives rise to a
proof obligation for its preservation by the (non-atomic) operations.

Structure:

module

types D t
1 . . . D t

nt
state Dv

1 . . . Dv
nv

inv E1 init E2 dyn ϕ

functions D f
1 . . . D f

nf
operations Do

1 . . . Do
no

end

Well-formedness in N :

names({[D t
1]}), . . . ,names({[D t

nt
]}) are disjoint sets,

{[Dv
1]}, . . . , {[Dv

nv
]} are disjoint sets,

{[D f
1]}, . . . , {[D f

nf
]} are disjoint sets,

{[Do
1]}, . . . , {[Do

no
]} are disjoint sets,

90 DEFINITION OF FLAT VVSL

D t
1 , . . . ,D t

nt
,Dv

1 , . . . ,Dv
nv

,D f
1 , . . . ,D f

nf
,Do

1 , . . . ,Do
no

are well-formed in
N ′,
E1,E2 are well-formed in 〈N ′, 1〉,
ϕ is well-formed in N ′,
where
N ′ = N ∪⋃nt

i=1{[D t
i]} ∪

⋃nv

i=1{[Dv
i]} ∪⋃nf

i=1{[D f
i]} ∪⋃no

i=1{[Do
i]}.

Names and subtype declarations:
{[module

types D t
1 . . . D t

nt
state Dv

1 . . . Dv
nv

inv E1 init E2 dyn ϕ

functions D f
1 . . . D f

nf
operations Do

1 . . . Do
no

end]} :=
⋃nt

i=1{[D t
i]} ∪

⋃nv

i=1{[Dv
i]} ∪⋃nf

i=1{[D f
i]} ∪⋃no

i=1{[Do
i]},

{[module

types D t
1 . . . D t

nt
state Dv

1 . . . Dv
nv

inv E1 init E2 dyn ϕ

functions D f
1 . . . D f

nf
operations Do

1 . . . Do
no

end]}free :=
⋃nt

i=1{w ∈ NSym | w ∈ {[D t
i]}, free occurs in D t

i }∪⋃nv

i=1{w ∈ NSym | w ∈ {[Dv
i]}, free occurs in Dv

i }∪⋃nf

i=1{w ∈ NSym | w ∈ {[D f
i]}, free occurs in D f

i }∪⋃no

i=1{w ∈ NSym | w ∈ {[Do
i]}, free occurs in Do

i }.
Meaning:

[[module

types D t
1 . . . D t

nt
state Dv

1 . . . Dv
nv

inv E1 init E2 dyn ϕ

functions D f
1 . . . D f

nf
operations Do

1 . . . Do
no

end]]C :=

axioms(B) ∪ {s0↓, Compax} ∪ {cnvaxC}∪⋃nt

i=1[[D
t
i]]

C ∪⋃nv

i=1[[D
v
i]]C ∪ µ(

⋃nf

i=1[[D
f
i]]C) ∪⋃no

i=1[[D
o
i]]C∪

{ϕ1, ϕ2, ϕ3},
where:
ϕ1 = ∃s: State(s0 = s ∧ [[E1]]C〈s〉,tt) ∧

∀s ′:State
([[E1]]C〈s′〉,tt →
∀s ′′: State(

∨

v∈C∩MVar

(¬ v(s ′) ' v(s ′′)) → [[E1]]C〈s′′〉,tt)),

ϕ2 = ∃s: State(s0 = s ∧ [[E2]]C〈s〉,tt),

ϕ3 = ∀c:Comp(
∧

k (stk (c)↓ → [[ϕ]]Cc,k ,tt)),
and
s, s ′, s ′′ are fresh state symbols, c is a fresh computation symbol.

THE DEFINITION SUBLANGUAGE 91

5.6 The definition sublanguage

The previous section dealt with the syntax and semantics of basic modules.
Basic modules are constructed mainly from definitions. This section deals
with the syntax and semantics of definitions. It begins by introducing the
different kinds of definitions in broad outline.

Overview

The following kinds of definitions are distinguished: type definitions, func-
tion definitions, state variable definitions and operation definitions.

Type definitions

A type is defined by a type definition of one of the following forms:

t = T where inv(x) 4 E
t = t1| · · · |tn
t = [t1| · · · |tn].

A definition of the first form defines the type as a subtype of a basic type
(boolean, natural, etc.) or constructed type (sequence type, set type, etc.)
constructed from basic types and/or other defined types. The invariant is a
restriction on the basic or constructed type that uniquely characterizes the
subtype. The invariant may be absent, in which case there is no restriction
on the type (i.e. it is equivalent to the invariant true). A definition of the
second or third form defines the type as the union of a number of defined
types.† For the last form there is an implicit union with a type whose only
element is a special nil value which is often used to model an ‘absent value’.
Recursive type definitions are allowed.

Example. Relations can be defined as finite sets of tuples with the same
attributes:

Relation = Tuple-set
where inv(r) 4
∀t1 ∈ Tuple, t2 ∈ Tuple · t1 ∈ r ∧ t2 ∈ r ⇒ dom t1 = dom t2.

Formulae for stating properties of tuples can be defined as the union of
formulae of several forms:

Selection wff = Eq | Less | Greater | Negation | Disjunction.

† It is characteristic for a type constructor that it has associated constructor functions
for generating values of the type. We take the view that inclusion functions are not
constructor functions and consequently that the union of types does not correspond
to a type constructor. Therefore the term ‘constructed type’ is not used for a union
of types.

92 DEFINITION OF FLAT VVSL

Function definitions

A function is explicitly specified by a function definition of the following
form:

f (x1: t1, . . . , xn : tn) tn+1

pre E
4 e

or it is implicitly specified by a function definition of the following form:

f (x1: t1, . . . , xn : tn) xn+1: tn+1

pre E1

post E2.

The ‘header’ introduces a name for the specified function and defines the
types of its arguments and result. The header also introduces names for
the argument values and result value to be used within the ‘body’. The
body consists of a pre-condition and either a defining expression or a post-
condition. The pre-condition defines the combinations of argument values
for which the function should yield a result value. A defining expression
always defines a specific result value from each of these combinations of
argument values, while a post-condition defines generally a range of ac-
ceptable result values (i.e. the result value is not uniquely characterized).
The pre-condition may be absent, in which case the function is total over
the defined argument types (i.e. it is equivalent to the pre-condition true).

Example. The product of two relations can be explicitly specified as fol-
lows:

product(r1:Relation, r2:Relation)Relation
pre r1 6= { } ∧ r2 6= { } ⇒ attrs(r1) ∩ attrs(r2) = { }
4 {merge(t1, t2) | t1 ∈ Tuple, t2 ∈ Tuple ; t1 ∈ r1 ∧ t2 ∈ r2}.

The function attrs:Relation → Attr set can be implicitly specified as fol-
lows:

attrs(r :Relation)as:Attr set
pre r 6= { }
post ∃t ∈ Tuple · t ∈ r ∧ dom t = as.

In flat VVSL, just as in VDM-SL, operation is a general name for im-
perative programs and meaningful parts thereof (e.g. procedures). Unlike
functions, operations may yield results which depend on a state and may
change that state. The states concerned have a fixed number of named
components, called state variables, attached to them. In all states, a value
is associated with each of these state variables. Operations change states
by modifying the value of state variables. Each state variable can only take
values of a fixed type. State variables correspond to programming variables

THE DEFINITION SUBLANGUAGE 93

of imperative programs. In VDM-SL, one composite type is designated as
the state space. The components of this composite type are treated as state
variables. The approach taken in VVSL differs, because it would otherwise
become needlessly hard to explain what it means when two or more mod-
ules have some state variables in common (particular hidden ones).

State variable definitions

A state variable is declared by a state variable definition of the following
form:

v : t .

It introduces a name for the state variable and defines the type from which
the state variable can take values. A state invariant and an initial condition,
of the form

inv E1

and

init E2,

respectively, can be associated with a collection of state variable definitions.
The state invariant is a restriction on what values the state variables can
take in any state. The initial condition is a restriction on what values the
state variables can take initially, i.e. before any modification by operations.

In VVSL, a dynamic constraint , of the form

dyn ϕ

can also be associated with a collection of state variable definitions. It is
a restriction on what successions of state changes can occur during the
execution of any operation in an interfering environment.

Example. If databases and database schemas have been defined, then
state variables that take at any point in time the current database value
and the current database schema value, respectively, can be declared as
follows:

curr dbschema :Db schema
curr database :Database.

Together these state variables constitute the changing state of a database
management system. If the appropriate functions on databases and data-
base schemas have been defined, then the condition that the current data-
base schema must always apply to the current database and the condition
that the current database schema and the current database must initially
be empty, can be described by a state invariant and an initial condition,

94 DEFINITION OF FLAT VVSL

respectively, as follows:

inv is valid instance(curr database, curr dbschema)
init curr dbschema = empty schema∧

curr database = empty database.

A simple example of the use of dynamic constraints was given in Section 2.1.
A more complex example of the use of dynamic constraints is given in
Chapter 13.

Operation definitions

An operation is implicitly specified by an operation definition of the fol-
lowing form:

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1

post E2

inter ϕ.

The header introduces a name for the specified operation and defines the
types of its arguments and results. The header also introduces names for the
argument values and result values to be used within the body. The body
consists of an external clause, a pre-condition, a post-condition and an
inter-condition. The external clause indicates which state variables may be
interrogated and/or modified by the operation. The pre-condition defines
the inputs, i.e. combinations of initial state and argument values, for which
the operation should terminate, and the post-condition defines the possi-
ble outputs, i.e. combinations of final state and result values, from each
of these inputs. Operations are potentially non-deterministic: the post-
condition may permit more than one output from the same input. The
pre-condition may be absent, in which case the operation should terminate
for all inputs (i.e. it is equivalent to the pre-condition true). In the post-
condition, one refers to the value of a state variable v in the initial state
by ↼−v and to its value in the final state by v .

An initial state may lead to a final state via some intermediate states.
However, one cannot refer to these intermediate states in the pre- and
post-conditions of operation definitions. This is not appropriate for oper-
ations which are intended to be sensitive to interference by concurrently
executed operations through shared state variables. For such operations,
called non-atomic operations, intermediate states are relevant to their ob-
servable effects. In VVSL, an inter-condition can be used to define the
possible successions of state changes that can be generated by the oper-
ation working interleaved with an interfering environment, distinguishing
between state changes effected by the operation itself, called internal steps,
and state changes effected by its interfering environment, called external

THE DEFINITION SUBLANGUAGE 95

steps. The inter-condition may be absent, in which case the operation is
atomic, i.e. there is at most one internal step and no external steps. This
is equivalent to the inter-condition ©©©true ⇒ (is-I ∧©©©¬©©©true).

Example. If database queries and their well-formedness and evaluation
have been defined, then an operation to add the tuples characterized by a
given query to a relation stored in the database can be defined as follows:

INSERT (rnm:Rel nm, q :Query)
ext rd curr dbschema:Db schema,

wr curr database:Database
pre is wf (mk-Union(mk-Ref (rnm), q), curr dbschema)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

r :Relation 4
eval(mk-Union(mk-Ref (rnm), q), dbsch, db),

db′:Database 4 update(db, rnm, r)
in

curr database
= if is valid instance(db′, dbsch) then db′ else db.

A simple example of the use of inter-conditions in specifying operations was
given in Section 2.1. A more complex example of the use of inter-conditions
is given in Chapter 13.

Free definitions

The definitions treated so far introduce defined names; the body defines
what is denoted by the name introduced. Definitions may also introduce
free names. In that case, the body does not define what is denoted by the
introduced name. So definition is not really the right term. It is mainly
used in situations where one wants to use a name which is supposed to be
defined elsewhere. For example, one might want to use Symbol as a name
of a type (of symbols) in the definitions of a type String and associated
functions, without making a particular choice of symbols.

Definitions introducing free names are called free definitions. A free type
definition is of the form t free, and a free state variable definition is of the
form v : t free. A free function or operation definition is obtained by adding
the keyword free at the end of the header. In a definition that introduces
the same name as a defined name, the pre-condition from the free definition
may be weakened and its post- and inter-condition may be strengthened .
In other words, the pre-, post- and inter-condition in a free definition must
be considered to be assumptions about a function or operation ‘not yet
defined’. In case of a free operation name, the external clause may be

96 DEFINITION OF FLAT VVSL

made more restrictive in the definition that introduces the same name as a
defined name. This means that some state variables may be removed from
the external clause and some write variables (indicated by the keyword wr)
may be changed to read variables (indicated by the keyword rd).

Example. This example is about typed relations. They are defined as
relations that are valid instances of a given relation schema. In other
words, typed relation is a generic concept with an instance for each relation
schema. The valid instances of a given relation schema can be viewed as
relations of the same type. If relation schemas and their valid instances
have been defined, then typed relations can be defined as follows:

Typed relation = Relation where inv(r) is valid instance(r , rsch)

where rsch:→ Rel schema is defined as follows:

rsch()Rel schema free

post true.

Syntax

Definitions are the terminal productions of <definition>. The different
kinds of definitions must be distinguishable. For that reason, the nonter-
minals <type-definition>, <variable-definition>, <function-definition> and
<operation-definition> are introduced.

<definition> ::=
<type-definition>
| <function-definition>
| <variable-definition>
| <operation-definition>

<type-definition> ::=
<type-name> = <type>
where inv (<value-name>) 4 <logical-expression>

| <type-name> = <type-union>
| <type-name> = [<type-union>]
| <type-name> free

<function-definition> ::=
<function-name> (<parameter-list>) <parameter>
<free-option>
pre <logical-expression> 4 <expression>

| <function-name> (<parameter-list>) <parameter>
<free-option>
pre <logical-expression> post <logical-expression>

THE DEFINITION SUBLANGUAGE 97

<variable-definition> ::=
<variable-name> : <type-name> <free-option>

<operation-definition> ::=
<operation-name> (<parameter-list>) <parameter-list>
<free-option>
ext <read-variable-list> <write-variable-list>
pre <logical-expression> post <logical-expression>
inter <temporal-formula>

<type-union> ::=
<type-name>
| <type-name> | <type-union>

<parameter-list> ::=
<empty>
| <nonempty-parameter-list>

<nonempty-parameter-list> ::=
<parameter>
| <parameter> , <nonempty-parameter-list>

<parameter> ::=
<type-name>
| <value-name> : <type-name>

<free-option> ::=
<empty>
| free

<read-variable-list> ::=
<empty>
| <nonempty-read-variable-list>

<nonempty-read-variable-list> ::=
<read-variable>
| <read-variable> , <non-empty-read-variable-list>

<read-variable> ::=
rd <variable-name> : <type-name>

<write-variable-list> ::=
<empty>
| <nonempty-write-variable-list>

98 DEFINITION OF FLAT VVSL

<nonempty-write-variable-list> ::=
<write-variable>
| <write-variable> , <nonempty-write-variable-list>

<write-variable> ::=
wr <variable-name> : <type-name>

inter <temporal-formula>

The production rules of <type> are presented in Section 5.7, the production
rules of <expression> and <logical-expression> in Section 5.8, and those of
<temporal-formula> in Section 5.9.
The set Definition of syntactically correct definition constructs is defined
by

Definition := {D | D is a terminal production of <definition>}.
Well-formedness. The well-formedness of syntactically correct definition
constructs is defined by a predicate

wf : Definition×NCxt .

wf (D ,N) indicates that D is well-formed in the name context N . Instead of
wf (D ,N), we write ‘D is well-formed in N ’. The well-formedness predicate
for definitions is defined in terms of the well-formedness for types, expres-
sions, logical expressions and temporal formulae (defined in Sections 5.7,
5.8 and 5.9).
Syntactic properties. The name context associated with definitions is
defined by a mapping

{[•]}: Definition → NCxt .

{[D]} consists of the names corresponding to the names introduced by the
definition D and, if D is a type definition, the subtype declarations cor-
responding to the subtype relationships introduced by the definition D .
Only type definitions that define a type in terms of an enumerated type
or a composite type introduce more than one name. These syntactic prop-
erties are defined in terms of the syntactic properties of types (defined in
Section 5.7).
Meaning. The meaning of definitions is defined by a mapping

[[•]]•: Definition×Cxt → P(EForm).

[[D]]C is the set of formulae corresponding to the definition D in the symbol
context C . [[D]]C is only defined if D is well-formed in C . The meaning of
definitions is defined in terms of the meaning of types, expressions, logical
expressions and temporal formulae (defined in Sections 5.7, 5.8 and 5.9).

The definitions of the different forms are now treated separately. Defi-
nitions introducing free names (by the occurrence of the optional keyword
free) are treated combined at the end.

THE DEFINITION SUBLANGUAGE 99

Type definition of subtype

A type definition t = T where inv(x) 4 E introduces the name t for a type.
It defines t as the subtype of the type T such that a value is an element of
type t iff it is an element of type T and evaluation of the logical expression
E yields true when value name x is assigned that value. The type T can
be a user-defined type, a basic type, or a sequence type, set type, map type
or composite type which is constructed from other user-defined or basic
types. The possibility to define t as a subtype of a union type is ruled out
syntactically.

In case T is not a user-defined type, there are pre-defined function names
associated with T . These function names are implicitly introduced and
defined.

Structure:

t = T where inv(x) 4 E

Well-formedness in N :

x is not defined as a state variable name in N ,

T is well-formed in N ,

E is well-formed in 〈N ∪ {[val x :T]}, 0〉.
Names and subtype declarations:

{[t = T where inv(x) 4 E]} := {[type t], [t ≤ T]} ∪ {[T]}.
Meaning:

[[t = T where inv(x) 4 E]]C := {ϕ1, ϕ2, ϕ3} ∪ [[T]]C ,

where:

ϕ1 = gentC

: I= ∀x ′:TC ([[E]]C∪{x
′}

〈〉,tt → gentC

(ı−1
TC→tC (x ′))),

ϕ2 = ∀y : tC (gentC

(y)),

ϕ3 = ∀z :TC (gentC

(ı−1
TC→tC (z)) → ıtC→TC (ı−1

TC→tC (z)) = z),

and

x ′ is a fresh value symbol such that ι(x ′) = x and τ(x ′) = 〈obj,TC 〉,
y is a fresh value symbol such that τ(y) = 〈obj, tC 〉,
z is a fresh value symbol such that τ(z) = 〈obj,TC 〉.

Type definition of union type

A type definition t = t1| · · · |tn introduces the name t for a type. It defines
t as the union of the user-defined and basic types t1, . . . , tn , i.e. a value is
an element of type t iff it is an element of one of the types t1, . . . , tn . This
means that each of the types t1, . . . , tn is a subtype of the type t . Each of
the types t1, . . . , tn can be a user-defined type or a basic type.

100 DEFINITION OF FLAT VVSL

There are pre-defined function names associated with each of the types
t1, . . . , tn that are basic types. These function names are implicitly intro-
duced and defined.

Structure:

t = t1| · · · |tn
Well-formedness in N :

t1, . . . , tn are defined as type names in N .

Names and subtype declarations:

{[t = t1| · · · |tn]} := {[type t], [t1 ≤ t], . . . , [tn ≤ t]} ∪ {[t1]} ∪ . . . ∪ {[tn]}.
Meaning:

[[t = t1| · · · |tn]]C := {ϕ1, ϕ2, ϕ3} ∪ [[t1]]C ∪ . . . ∪ [[tn]]C ,

where:

ϕ1 = gentC

: I=
n∧

i=1

(∀xi : tCi (gentC

(ıtC
i →tC (xi)))),

ϕ2 = ∀y : tC (gentC

(y)),

ϕ3 =
n∧

i=1

(∀xi : tCi (ı−1
tC→tC

i

(ıtC
i →tC (xi)) = xi)),

and

x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj, tCi 〉,
y is a fresh value symbol such that τ(y) = 〈obj, tC 〉.

Type definition of union type with nil

A type definition t = [t1| · · · |tn] introduces the name t for a type. It defines
t as the union of the user-defined and basic types t1, . . . , tn extended with
an ‘option’ value nil, i.e. a value is an element of type t iff it is an element
of one of the types t1, . . . , tn or it is the value nil. This means that each of
the types t1, . . . , tn is a subtype of the type t . Each of the types t1, . . . , tn
can be a user-defined type or a basic type.

There are pre-defined function names associated with each of the types
t1, . . . , tn that are basic types. These function names are implicitly intro-
duced and defined. nil is also implicitly introduced and defined.

Structure:

t = [t1| · · · |tn]

Well-formedness in N :

t1, . . . , tn are defined as type names in N .

THE DEFINITION SUBLANGUAGE 101

Names and subtype declarations:

{[t = [t1| · · · |tn]]} :=

{[type t], [t1 ≤ t], . . . , [tn ≤ t], [func nil:→ t]} ∪ {[t1]} ∪ . . . ∪ {[tn]}.
Meaning:

[[t = [t1| · · · |tn]]]C := {ϕ1, ϕ2, ϕ3} ∪ [[t1]]C ∪ . . . ∪ [[tn]]C ,

where:

ϕ1 = gentC

: I= gentC

(nil t
C

) ∧
n∧

i=1

(∀xi : tCi (gentC

(ıtC
i →tC (xi)))),

ϕ2 = ∀y : tC (gentC

(y)),

ϕ3 =
n∧

i=1

(∀xi : tCi (ı−1
tC→tC

i

(ıtC
i →tC (xi)) = xi)),

and

x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj, tCi 〉,
y is a fresh value symbol such that τ(y) = 〈obj, tC 〉.

Explicit function definition

An explicit function definition f (x1: t1, . . . , xn : tn) tn+1 pre E 4 e intro-
duces the name f for a function from argument types t1, . . . , tn to result
type tn+1. It defines f directly in terms of a defining expression e in which
the function being defined may be recursively used. If f is not recursively
used in inadmissible ways, then it defines f as the least defined (strict)
function such that, for all values x1, . . . , xn that are elements of the types
t1, . . . , tn , respectively, the value of that function for arguments x1, . . . , xn

is the value that is yielded by evaluation of the expression e when f denotes
that function.

The recursive use of f in e may be inadmissible in (set or map) compre-
hension, non-deterministic expressions of boolean type (B) used as logical
expressions, and equations containing non-deterministic expressions.

A non-deterministic expression is an expression in which a choice expres-
sion occurs (see Section 5.8 for choice expressions). Such expressions may
yield more than one value. In case the expression e can yield more than
one value for certain arguments x1, . . . , xn , the function is just undefined
for those arguments.

The logical expression E states an assumption about the function being
defined by the expression e as follows: for all values x1, . . . , xn that are
elements of the types t1, . . . , tn , respectively, if evaluation of the logical
expression E yields true, then the function being defined by the expression
e is defined for arguments x1, . . . , xn . This gives rise to a proof obligation

102 DEFINITION OF FLAT VVSL

for definedness.

Structure:
f (x1: t1, . . . , xn : tn) tn+1 pre E 4 e

Well-formedness in N :
x1, . . . , xn are distinct identifiers,
x1, . . . , xn are not defined as state variable names N ,
t1, . . . , tn+1 are defined as type names in N ,
E , e are well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn : tn]}, 0〉,
the minimal type of e in N is a subtype of tn+1.

Names and subtype declarations:
{[f (x1: t1, . . . , xn : tn) tn+1 pre E 4 e]} :=

{[func f : t1 × · · · × tn → tn+1]}.
Meaning:

[[f (x1: t1, . . . , xn : tn) tn+1 pre E 4 e]]C := {ϕ1, ϕ2},
where:
ϕ1 = ∀x ′1: tC1 , . . . , x ′n : tCn

([[E]]C∪{x
′
1,...,x ′n}

〈〉,tt → f C
t1×···×tn→tn+1

(x ′1, . . . , x
′
n)↓),

ϕ2 = f C
t1×···×tn→tn+1

:SI=
∀x ′1: tC1 , . . . , x ′n : tCn , y : tCn+1

([[e]]C∪{x
′
1,...,x ′n}

〈〉,y → f C
t1×···×tn→tn+1

(x ′1, . . . , x
′
n) = y),

and
x ′1, . . . , x

′
n are fresh value symbols such that for all i = 1, . . . ,n:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉,
y is a fresh value symbol such that τ(y) = 〈obj, tCn+1〉.

Implicit function definition

An implicit function definition f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2

introduces the name f for a function from argument types t1, . . . , tn to
result type tn+1. It defines f indirectly in terms of a pre-condition E1 and
a post-condition E2 that must be satisfied. More precisely, it defines f as a
function such that, for all values x1, . . . , xn+1 that are elements of the types
t1, . . . , tn+1, respectively:
• if evaluation of the logical expression E1 yields true, then the function

f is defined for x1, . . . , xn ;
• if evaluation of the logical expression E1 yields true and the value of

the function f for arguments x1, . . . , xn is xn+1, then evaluation of the
logical expression E2 yields true.

THE DEFINITION SUBLANGUAGE 103

Structure:

f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2

Well-formedness in N :

x1, . . . , xn+1 are distinct identifiers,
x1, . . . , xn+1 are not defined as state variable names N ,
t1, . . . , tn+1 are defined as type names in N ,
E1 is well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn : tn]}, 0〉,
E2 is well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn+1: tn+1]}, 0〉.

Names and subtype declarations:

{[f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2]} :=
{[func f : t1 × · · · × tn → tn+1]}.

Meaning:

[[f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2]]C := {ϕ1, ϕ2},
where:
ϕ1 = ∀x ′1: tC1 , . . . , x ′n : tCn

([[E1]]
C∪{x ′1,...,x ′n}
〈〉,tt → f C

t1×···×tn→tn+1
(x ′1, . . . , x

′
n)↓),

ϕ2 = ∀x ′1: tC1 , . . . , x ′n : tCn , x ′n+1: t
C
n+1

([[E1]]
C∪{x ′1,...,x ′n}
〈〉,tt ∧ f C

t1×···×tn→tn+1
(x ′1, . . . , x

′
n) = x ′n+1 →

[[E2]]
C∪{x ′1,...,x ′n ,x ′n+1}
〈〉,tt),

and
x ′1, . . . , x

′
n+1 are fresh value symbols such that for all i = 1, . . . ,n + 1:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉.

State variable definition

A state variable definition v : t introduces the name v for a state variable
of type t . It defines v as a state variable that can take values which are
elements of type t , but which can only be modified with appropriate mod-
ification rights.

Structure:

v : t
Well-formedness in N :

v is not defined as a state variable name in N − {[var v : t]},
t is defined as a type name in N .

Names and subtype declarations:

{[v : t]} := {[var v : t]}.

104 DEFINITION OF FLAT VVSL

Meaning:

[[v : t]]C := Varmod(vC
t).

Operation definition

An operation definition

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ

introduces the name op for an operation from argument types t1, . . . , tn to
result types t ′1, . . . , t

′
m . It defines op indirectly in terms of interrogation and

modification rights on state variables, a pre-condition E1, a post-condition
E2 and an inter-condition ϕ that must be satisfied. More precisely, it defines
op as an operation such that, for all values x1, . . . , xn , y1, . . . , ym that are
elements of the types t1, . . . , tn , t ′1, . . . , t

′
m , respectively:

• if c is a computation of the operation op for arguments x1, . . . , xn that
yields results y1, . . . , ym , then no step of c leaves all of the state variables
v1, . . . , vk , v ′1, . . . , v

′
l unmodified, but internal steps leave state variables

other than v ′1, . . . , v
′
l unmodified;

• if evaluation of the logical expression E1 yields true in some state s, then
the operation op has a terminating computation with initial state s for
the arguments x1, . . . , xn ;

• if evaluation of the logical expression E1 yields true in some state s, c
is a terminating computation with initial state s of the operation op for
arguments x1, . . . , xn that yields results y1, . . . , ym , and t is the final state
of computation c, then evaluation of the logical expression E2 yields true
in the states 〈s, t〉;

• if evaluation of the logical expression E1 yields true in some state s and
c is a computation with initial state s of the operation op for arguments
x1, . . . , xn that yields results y1, . . . , ym , then evaluation of the temporal
formula ϕ yields true at the starting-point of computation c.
In the case of atomic operations, the meaning of operation definitions

is equivalent to the much simpler one that is usually adopted for atomic
operations (based on the initial and final state of the computations, instead
of the complete computations).

Structure:

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ

THE DEFINITION SUBLANGUAGE 105

Well-formedness in N :

x1, . . . , xn , y1, . . . , ym are distinct identifiers,

x1, . . . , xn , y1, . . . , ym are not defined as state variable names in N ,

t1, . . . , tn , t ′1, . . . , t
′
m are defined as type names in N ,

{v1, . . . , vk} and {v ′1, . . . , v ′l } are disjoint sets,

NS is a subset of N ,

E1 is well-formed in 〈nonvars(N) ∪NA ∪NS , 1〉,
E2 is well-formed in 〈nonvars(N) ∪NA ∪NR ∪NS , 2〉,
ϕ is well-formed in nonvars(N) ∪NA ∪NR ∪NS ,

where:

NA = {[val x1: t1], . . . , [val xn : tn]},
NR = {[val y1: t ′1], . . . , [val ym : t ′m]},
NS = {[var v1: t ′′1], . . . , [var vk : t ′′k], [var v ′1: t

′′′
1], . . . , [var v ′l : t

′′′
l]},

Names and subtype declarations:

{[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]} :=
{[op op: t1 × · · · × tn ⇒ t ′1 × · · · × t ′m]}.

Meaning:

[[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]]C :=
{ϕ1, . . . , ϕ4},

where:

ϕ1 = ∀x ′1: tC1 , . . . , x ′n : tCn , c: Comp, y ′1: t
′C
1 , . . . , y ′m : t ′Cm

(opC
t1×···×tn⇒t′1×···×t′m

(x ′1, . . . , x
′
n , c, y ′1, . . . , y

′
m) →

Modcomp({v1
C
t′′1

, . . . , vkC
t′′
k
}, {v ′1C

t′′′1
, . . . , v ′l

C
t′′′
l
}, c)),

ϕ2 = ∀s: State, x ′1: t
C
1 , . . . , x ′n : tCn

([[E1]]
C∪{x ′1,...,x ′n}
〈s〉,tt →

∃c:Comp, y ′1: t
′C
1 , . . . , y ′m : t ′Cm

(st0(c) = s ∧ ¬(
∧

k (stk (c)↓)) ∧
opC

t1×···×tn⇒t′1×···×t′m
(x ′1, . . . , x

′
n , c, y ′1, . . . , y

′
m))),

106 DEFINITION OF FLAT VVSL

ϕ3 = ∀s: State, x ′1: t
C
1 , . . . , x ′n : tCn

([[E1]]
C∪{x ′1,...,x ′n}
〈s〉,tt →

∀c:Comp, y ′1: t
′C
1 , . . . , y ′m : t ′Cm

(st0(c) = s ∧ ¬(
∧

k (stk (c)↓)) ∧
opC

t1×···×tn⇒t′1×···×t′m
(x ′1, . . . , x

′
n , c, y ′1, . . . , y

′
m) →

∃t :State
(
∨

k (stk (c) = t ∧ ¬(stk+1(c)↓)) ∧
[[E2]]

C∪{x ′1,...,x ′n ,y′1,...,y′m}
〈s,t〉,tt))),

ϕ4 = ∀s: State, x ′1: t
C
1 , . . . , x ′n : tCn

([[E1]]
C∪{x ′1,...,x ′n}
〈s〉,tt →

∀c:Comp, y ′1: t
′C
1 , . . . , y ′m : t ′Cm

(st0(c) = s ∧
opC

t1×···×tn⇒t′1×···×t′m
(x ′1, . . . , x

′
n , c, y ′1, . . . , y

′
m) →

[[ϕ]]C∪{x
′
1,...,x ′n ,y′1,...,y′m}

c,0,tt)),
and
x ′1, . . . , x

′
m are fresh value symbols such that for all i = 1, . . . ,n:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉,
y ′1, . . . , y

′
m are fresh value symbols such that for all i = 1, . . . ,m:

ι(y ′i) = yi and τ(y ′i) = 〈obj, t ′Ci 〉,
s, t are fresh state symbols and c is a fresh computation symbol.

Definitions introducing free names

Definitions in which the optional keyword free occurs introduce free names.
Except for type definitions, their well-formedness, their syntactic properties
and their meaning in flat VVSL are the same as for the corresponding
definitions without the keyword free. Because of this, they are not treated
separately.

A definition in which the keyword free occurs introduces a free name
instead of a defined name. This means that the body of the definition
(empty in case of a free type name or a free state variable name) does not
define the type, function, state variable or operation denoted by the name,
but makes assumptions about it. This difference is not reflected by the
meaning described here. Indeed, it is only useful if basic modules can be
combined. Therefore, it is only reflected in the meaning of basic modules as
modularization constructs, by a special treatment of free names (described
in Chapter 8).

Structure:

t free

THE DEFINITION SUBLANGUAGE 107

Well-formedness in N :

True.
Names and subtype declarations:

{[t free]} := {[type t]}.
Meaning:

[[t free]]C := {}.

Structure:

f (x1: t1, . . . , xn : tn) xn+1: tn+1 free pre E1 post E2

Well-formedness in N :

f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2 is well-formed.
Names and subtype declarations:

{[f (x1: t1, . . . , xn : tn) xn+1: tn+1 free pre E1 post E2]} :=
{[f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2]}.

Meaning:

[[f (x1: t1, . . . , xn : tn) xn+1: tn+1 free pre E1 post E2]]C :=
[[f (x1: t1, . . . , xn : tn) xn+1: tn+1 pre E1 post E2]]C .

Structure:

v : t free

Well-formedness in N :

v : t is well-formed in N .
Names and subtype declarations:

{[v : t free]} := {[v : t]}.
Meaning:

[[v : t free]]C := [[v : t]]C .

Structure:

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m free

ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ

Well-formedness in N :

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m
ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t

′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ
is well-formed in N .

108 DEFINITION OF FLAT VVSL

Names and subtype declarations:
{[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m free

ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]} :=
{[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m

ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]}.
Meaning:

[[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m free

ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]]C :=
[[op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m

ext rd v1: t ′′1 , . . . , rd vk : t ′′k , wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E1 post E2 inter ϕ]]C .

5.7 The type sublanguage

The previous section dealt with the syntax and semantics of definitions,
including type definitions. Type definitions are constructed mainly from
types. This section deals with the syntax and semantics of types. It begins
by introducing types in broad outline.

Overview

In flat VVSL, one can build new types from basic types by type construc-
tion.

Basic types

The main basic types are the following:
• the boolean type B, whose elements are the truth values;
• the natural type N, whose elements are the natural numbers;
• the integer type Z, whose elements are the integers;
• the rational type Q, whose elements are the rational numbers.
More basic types can be introduced by enumeration of their elements which
is denoted by an enumerated type {a1, . . . , an}, where the ai are constants
denoting the values concerned. All enumerated types have a finite number
of elements. No operators are available on elements of an enumerated type.
Example. In a system which handles concurrent access to stored relations
by multiple transaction, it is useful to have access modes to distinguish
between read access, write access, etc. A corresponding basic type can be
expressed as follows:

{READ, WRITE, CREATE,DESTROY}.

THE TYPE SUBLANGUAGE 109

Type construction

The constructed types are the following:

• a sequence type t∗ for any basic or defined type t ; its elements are the
finite sequences of elements of type t ;

• a set type t-set for any basic or defined type t ; its elements are the finite
sets of elements of type t ;

• a map type t m−→ t ′ for any basic or defined types t , t ′; its elements
are the finite maps from elements of type t to elements of type t ′ (the
notation t m←→ t ′ is for one-to-one maps);

• a composite type compose c of s1: t1 . . . sn : tn for any user-definable name
c and any basic or defined types t1, . . . , tn ; its elements are the composite
values with n components, the i -th component of which is an element
of type ti (1 ≤ i ≤ n), which are generated with mk-c,‡ the unique
constructor function for generating elements of this type.

A composite type compose c of s1: t1 . . . sn : tn introduces the function names
si (1 ≤ i ≤ n), which are implicitly defined as the selector functions for
selecting the components of a value of the composite type (si for the i -th
component). The type constructor name c marks the composite type off
from other ones that do not differ in their component types.

Example. Databases can be defined as a subtype of the constructed type

Rel nm m−→ Relation.

Both queries that have the form of union queries and queries that have
the form of product queries are built from two queries. They can be distin-
guished by using the following types:

compose Union of q1:Query q2:Query ,

compose Product of q1:Query q2:Query .

Elements of the former type can only be constructed with the function
mk-Union and elements of the latter type can only be constructed with the
function mk-Product . The sub-queries can be selected by means of functions
q1 and q2.

The notation

t :: s1: t1 . . . sn : tn where inv(x) 4 E

is used as an abbreviation of

t = compose t of s1: t1 . . . sn : tn where inv(x) 4 E .

‡ mk-c is the name that is obtained by prefixing the string mk- to the type constructor
name denoted by the meta-variable c.

110 DEFINITION OF FLAT VVSL

Here the same name is used as a type name and as a type constructor
name. For example, the type definition

Union = compose Union of q1:Query q2:Query

may also be written:

Union :: q1:Query q2:Query .

The symbol :: is read as ‘is composed of’.

Syntax

Types are the terminal productions of <type>.

<type> ::=
B
| N
| Z
| Q
| { <atoms> }
| <type-name>∗

| <type-name> -set
| <type-name> m−→ <type-name>
| compose <type-constructor-name> of <components>
| <type-name>

<atoms> ::=
<function-name>
| <function-name> , <atoms>

<components> ::=
<component>
| <component> <components>

<component> ::=
<function-name> : <type-name>

The set Type of syntactically correct type constructs is defined by

Type := {T | T is a terminal production of <type>}.
Well-formedness. The well-formedness of syntactically correct type con-
structs is defined by a predicate

wf : Type×NCxt .

THE TYPE SUBLANGUAGE 111

wf (T ,N) indicates that T is well-formed in the name context N . Instead
of wf (T ,N), we write ‘T is well-formed in N ’.

Syntactic properties. The name context associated with types is defined
by a mapping

{[•]}: Type → NCxt .

{[T]} consists of the names corresponding to the names introduced by the
type T . Only enumerated types and composite types introduce names.

Meaning. The meaning of types is defined by a mapping

[[•]]•: Type×Cxt → P(Form).

[[T]]C is the set of formulae corresponding to the type T in the symbol
context C . [[T]]C is only defined if T is well-formed in C .

The types of the different forms are now treated separately.

Boolean type

B is a basic type with two elements, called boolean values or truth val-
ues. Except for the constant names true and false, there are no pre-defined
function names associated with B. However, expressions that have type B
can be used as operands of the logical connectives and quantifiers in log-
ical expressions. Moreover, logical expressions can be used everywhere as
expressions that have type B.

Structure:

B
Well-formedness in N :

True.
Names and subtype declarations:

{[B]} := { }.
Meaning:

[[B]]C := axioms(B).

Natural type

N is a basic type. The elements of N are the natural numbers. There are pre-
defined function names associated with N. The usual arithmetic operators
on natural numbers are available, such as + (addition), − (substraction)
and ≤ (less than or equal).

112 DEFINITION OF FLAT VVSL

Structure:
N

Well-formedness in N :
True.

Names and subtype declarations:
{[N]} := { }.

Meaning:
[[N]]C := axioms(N).

Integer type

Z is a basic type. The elements of Z are the integers. N is considered to
be a subtype of Z. There are pre-defined function names associated with
Z. The usual arithmetic operators on integers are available, including the
unary − (negation).

Structure:
Z

Well-formedness in N :
True.

Names and subtype declarations:
{[Z]} := { }.

Meaning:
[[Z]]C := axioms(Z).

Rational type

Q is a basic type. The elements of Q are the rational numbers. Z is consid-
ered to be a subtype of Q. There are pre-defined function names associated
with Q. The usual arithmetic operators are available, including the unary
−1 (reciprocal).

Structure:
Q

Well-formedness in N :
True.

Names and subtype declarations:
{[Q]} := { }.

Meaning:
[[Q]]C := axioms(Q).

THE TYPE SUBLANGUAGE 113

Enumerated type

{a1 , . . . , an} is a basic type with n elements. These elements are denoted
by the names a1, . . . , an . The set of these n values can be viewed as a
finite subset of some countably infinite set of atoms. One enumerated type
is considered to be a subtype of another one if each name occurring in
the former also occurs in the latter. There are no pre-defined function
names associated with the type {a1 , . . . , an}. The atom names a1, . . . , an

are considered to be user-defined. Expressions that have type {a1 , . . . , an}
can be used as operands of the equality operator in logical expressions.

Enumerated types are basic types. The set of all atoms does not corre-
spond to a type. The names ai denote the same atoms in whatever enu-
merated type they occur.

Structure:

{a1 , . . . , an}
Well-formedness in N :

a1, . . . , an are distinct identifiers.

Names and subtype declarations:

{[{a1 , . . . , an}]} :=
{[func a1:→ {a1 , . . . , an}], . . . , [func an :→ {a1 , . . . , an}]}.

Meaning:

[[{a1 , . . . , an}]]C := axioms(E({a1, . . . , an})).

Sequence type

t∗ is a constructed type. The elements of t∗ are the finite sequences of
elements of the basic or defined type t . There are pre-defined function
names associated with t∗. The usual operators on sequences are available,
such as hd (head), tl (tail), y (concatenation) and len (length). Indexing
a sequence L with index i is written L(i).

Structure:

t∗

Well-formedness in N :

t is defined as a type name in N .

Names and subtype declarations:

{[t∗]} := { }.
Meaning:

[[t∗]]C := axioms(L(tC)).

114 DEFINITION OF FLAT VVSL

Set type

t-set is a constructed type. The elements of t-set are the finite sets of ele-
ments of the basic or defined type t . There are pre-defined function names
associated with t-set. The usual operators on sets are available, such as ∪
(union), ∩ (intersection), ∈ (membership) and card (cardinality).

Structure:

t-set
Well-formedness in N :

t is defined as a type name in N .
Names and subtype declarations:

{[t-set]} := { }.
Meaning:

[[t-set]]C := axioms(F(tC)).

Map type

t m−→ t ′ is a constructed type. The elements of t m−→ t ′ are the finite
maps from elements of the basic or defined type t to elements of the basic
or defined type t ′. There are pre-defined function names associated with
t m−→ t ′. The map operators are perhaps not so wellknown, but are very
useful. Two maps whose domains are disjoint can be combined using the
operator ∪ (merge). One map can also be combined with another one (the
domains do not have to be disjoint) using the operator † (overwrite), in
which case the latter takes precedence over the former where there are
domain elements in common. The domain of a map can be restricted using
the operator C (domain restriction) or the operator −C (domain deletion).
In an expression of the form SCM, S is interpreted as a set of values which
are allowed in the restricted domain. In an expression of the form S −CM,
S is interpreted as a set of values which are not allowed in the restricted
domain. The domain and the range of a map can be obtained using the
operators dom and rng , respectively. Applying a map M to a value d is
written M(d).

Structure:

t m−→ t ′

Well-formedness in N :

t , t ′ are defined as type names in N .
Names and subtype declarations:

{[t m−→ t ′]} := { }.

THE TYPE SUBLANGUAGE 115

Meaning:

[[t m−→ t ′]]C := axioms(M(tC , t ′C)).

Composite type

compose c of s1: t1 . . . sn : tn is a constructed type. The elements of this type
are composite values with n components, the i -th component of which is an
element of the basic or defined type ti (for i = 1, . . . ,n). The type construc-
tor name c distinguishes this composite type from other ones that do not
differ in their component types. It determines the name of the unique con-
structor function for generating the elements of this type. This constructor
function name is considered to be user-defined. It is constructed from the
name c in a fixed manner, viz. by prefixing the string mk- to the string that
constitutes the identifier c. The selector function names s1, . . . , sn may be
absent, but if they are present then they are also considered to be user-
defined (si selects the i -th component). Selecting the i -th component of a
composite value C can also be written C(i).

Structure:

compose c of s1: t1 . . . sn : tn

Well-formedness in N :

t1, . . . , tn are defined as type names in N ,

[func s1: compose c of s1: t1 . . . sn : tn → t1],
...

[func sn : compose c of s1: t1 . . . sn : tn → tn] are distinct names.

Names and subtype declarations:

{[compose c of s1: t1 . . . sn : tn]} :=
{[func mk(c): t1 × · · · × tn → compose c of s1: t1 . . . sn : tn]}∪
{[func si : compose c of s1: t1 . . . sn : tn → ti] | 1 ≤ i ≤ n}.

Meaning:

[[compose c of s1: t1 . . . sn : tn]]C :=
axioms(Cc(t

C
1 , . . . , tCn)) ∪ {ϕi | 1 ≤ i ≤ n},

where:

ϕi = ∀y : Cc(t
C
1 , . . . , tCn)(siCcompose c of s1:t1 ... sn :tn→ti

(y) ' sel i(y)),

and

y is a fresh value symbol such that τ(y) = 〈obj, Cc(t
C
1 , . . . , tCn)〉.

116 DEFINITION OF FLAT VVSL

Type name

t is a user-defined type. The elements of a user-defined type are determined
by the type definition concerned.

Structure:
t

Well-formedness in N :
t is defined as a type name in N .

Names and subtype declarations:
{[t]} := { }.

Meaning:
[[t]]C := { }.

5.8 The expression sublanguage

Section 5.6 dealt with the syntax and semantics of definitions. The defin-
ing expressions and conditions occurring in definitions are expressions and
logical expressions, respectively. This section deals with the syntax and se-
mantics of expressions and logical expressions. It begins by introducing the
different kinds of expressions in broad outline.

Overview

In this overview, the notation used in defining expressions and conditions in
definitions, i.e. the expression sublanguage, is divided into general notation,
logical notation and special notation for sequences, sets and maps.

General notation

The general notation is what can be used to denote values of any kind. It
includes the following basic notation:

f (e1, . . . , en) for function application,
if E then e else e ′ for conditional evaluation,
let x : t 4 e in e ′ for local value definition.

Prefix notation (in case of unary function symbols), infix notation (in case
of binary function symbols) and sometimes even mixfix notation are freely
used for function application to enhance readability.

Example. Only the above-mentioned general notation is used in the fol-
lowing expression.

let db′:Database 4 update(db, rnm, r) in

if is valid instance(db′, dbsch) then db′ else db.

THE EXPRESSION SUBLANGUAGE 117

The intended meaning is the database resulting from updating the rela-
tion rnm in db to r , if this database is a valid instance of dbsch, and db
otherwise.

The above-mentioned general notation is wellknown. The following no-
tation is perhaps not so wellknown. It is for an arbitrary choice of values
which obey a selection condition: let x1: t1, · · · , xn : tn be s.t. E in e. For n = 1,
this is similar to a local value definition, but a range of acceptable values
instead of a specific value is defined.
Example. In the subexpression dom t of the following choice expression, t
stands for an arbitrary tuple from a relation r :

let t :Tuple be s.t. t ∈ r in dom t .

The intended meaning is the common attribute set of all tuples of r . Be-
cause all tuples in a relation have the same attributes, the choice of a tuple
does not matter. However, it is easy to write choice expressions that can
yield more than one value.

The following notation is for local definition and decomposition:

let mk-c(x1, . . . , xn)4 e in e ′.

The names x1, . . . , xn are introduced to refer in the expression e ′ to the
components of the composite value denoted by e. It is actually defined as
an abbreviation of

let x1: t1, . . . , xn : tn be s.t. mk-c(x1, . . . , xn) = e in e ′.

This notation shows that composite value can be decomposed without using
selector functions.
Example. If relation schemas have been defined as composite values with
a tuple structure and a set of keys as components and tuple structures have
been defined as finite maps from attributes to domains, then the domain of
attribute a according to relation schema rsch can be expressed as follows:

let mk-Rel schema(tstr , keys) 4 rsch in tstr(a).

The following notation is for case distinction, local definition and decom-
position:

cases e of

mk-t1(x11 , . . . , x1m1
) → e1

...
mk-tn(xn1 , . . . , xnmn

) → en
end.

If the type of e is ti , then its value is the value denoted by the expression ei
(in case there is more than one matching type, the expression correspond-
ing to the first one is selected). If ei is selected, the names xi1 , . . . , ximi

are

118 DEFINITION OF FLAT VVSL

introduced to be used in the expression ei to refer to the components of
the composite value denoted by e.
This notation can also be explained as an abbreviation. It involves the
general conditional notation in addition to the local definition and decom-
position notation above.

Example. The case distinction notation is used in the following expres-
sion, which might be the defining expression of a function sat which checks
whether tuple t has the property expressed by selection formula sf or not.

cases sf of

mk-Eq(a, ve) → t(a) = val(t , ve)
mk-Less(a, ve) → lt(t(a), val(t , ve))
mk-Greater(a, ve) → lt(val(t , ve), t(a))
mk-Negation(sf) → ¬ sat(t , sf)
mk-Disjunction(sf1, sf2) → sat(t , sf1) ∨ sat(t , sf2)

end.

Logical notation

Logical notation is what is used to express assertions. Logical notation is
basic to implicit specification of functions and operations in VVSL. The
logical expressions of the expression sublanguage constitute the logical no-
tation. Expressions in VVSL commonly involve applications of functions
that do not always yield a result, that is, partial functions. Such function
applications give rise to expressions that do not refer to objects in the in-
tended domain. These expressions are called non-denoting expressions or
undefined expressions.

To deal with non-denoting expressions, the intended domain is extended
with an object ⊥ (undefined) to which the non-denoting expressions refer.
Because the possibility of undefinedness includes logical expressions, the
definition of the logical connectives and quantifiers is also extended. This
is done, as in LPF (Cheng, 1986; Jones, 1990), by taking the definitions
obtained by extending the classical truth-conditions and falsity-conditions
with a clause yielding ⊥ for the other cases:

¬E is true if E is false,
is false if E is true,
is ⊥ otherwise,

E ∨ E ′ is true if E is true or E ′ is true,
is false if E is false and E ′ is false,
is ⊥ otherwise,

In Appendix E, this notation is precisely defined as an abbreviation.

THE EXPRESSION SUBLANGUAGE 119

∃x ∈ t · E is true if for some element c of type t , E is true

when x is interpreted as c,
is false if for each element c of type t , E is false

when x is interpreted as c,
is ⊥ otherwise.

This means that ⊥ is treated as a third truth value which is interpreted
as neither-true-nor-false. In the same vein, an equation t1 = t2 yields ⊥
exactly when t1 or t2 is non-denoting. In case only logical expressions are
involved that cannot be undefined, the logical connectives and quantifiers
are just the classical ones. The other logical connectives and quantifiers are
expressible by ¬ , ∨ and ∃ in the classical way.
Example. The following logical expression states that the merge of two
tuples is also a tuple if the attribute sets of the two tuples are disjoint.

∀t1 ∈ Tuple, t2 ∈ Tuple ·
dom t1 ∩ dom t2 = { } ⇒ ∃t ∈ Tuple · t = t1 ∪ t2.

t1 ∪ t2 is undefined if dom t1 ∩ dom t2 = { } is false. This does not cause
any problem because the truth value of a formula of the form A ⇒ B is
always true if either A is false or B is true (likewise it is always false if A
is true and B is false, and undefined otherwise).

Special notation

What remains is the special notation for sequences, sets and maps. The
notations

[e1, . . . , en]
{e1, . . . , en}
{e1 7→ e ′1, . . . , en 7→ e ′n}

are available to construct sequences, sets and maps, respectively, by enu-
meration of their elements (or pairs consisting of a domain element and a
corresponding range element for maps). The notations

{e | x1 ∈ t1, . . . , xn ∈ tn ; E}
{e 7→ e ′ | x1 ∈ t1, . . . , xn ∈ tn ; E}

are available to construct sets and maps, respectively, by comprehension,
i.e. by formation according to a property being characteristic of their ele-
ments (or pairs consisting of a domain element and a corresponding range
element for maps). It binds the value names x1, . . . , xn both in the ‘element’
expression(s) and the ‘characterizing’ logical expression. The implied quan-
tification of the value names from x1, . . . , xn that do not occur free in the
element expression(s) is existential quantification. The map comprehension
expressions must be written so as to generate only maps: only one range
element may be associated with each domain element.

120 DEFINITION OF FLAT VVSL

Example. The tuple with a single attribute a and associated value v can
be denoted by a very simple map enumeration:

{a 7→ v}.
The set comprehension notation is used in the following expression, which
is the defining expression of the function product of which the complete
function definition was given in Section 5.6.

{merge(t1, t2) | t1 ∈ Tuple, t2 ∈ Tuple ; t1 ∈ r1 ∧ t2 ∈ r2}.

Syntax

Expressions are the terminal productions of <expression>. Because logical
expressions must be distinguishable, the nonterminal <logical-expression>
is introduced as well. Logical expressions are the terminal productions of
<logical-expression>.

<expression> ::=
<function-name> (<expression-list>)
| if <logical-expression> then <expression> else <expression>
| let <value-binding> in <expression>
| let <value-description> in <expression>
| [<expression-list>]
| { <expression-list> }
| { <maplet-list> }
| { <expression> | <domain-bindings> ; <logical-expression> }
| { <maplet> | <domain-bindings> ; <logical-expression> }
| <variable-name>
| ↼−−−−−−−−−−−−<variable-name>
| <value-name>
| <number>
| <logical-expression>

<logical-expression> ::=
<expression>
| <expression> = <expression>
| ¬ <logical-expression>
| <logical-expression> ∨ <logical-expression>
| ∃ <domain-binding> · <logical-expression>

<value-binding> ::=
<value-name> : <type-name> 4 <expression>

THE EXPRESSION SUBLANGUAGE 121

<value-description> ::=
<selected-values> be s.t. <logical-expression>

<selected-values> ::=
<selected-value>
| <selected-value>,<selected-values>

<selected-value> ::=
<value-name> : <type-name>

<expression-list> ::=
<empty>
| <nonempty-expression-list>

<nonempty-expression-list> ::=
<expression>
| <expression> , <nonempty-expression-list>

<maplet-list> ::=
<empty>
| <nonempty-maplet-list>

<nonempty-maplet-list> ::=
<maplet>
| <maplet> , <nonempty-maplet-list>

<maplet> ::=
<expression> 7→ <expression>

<domain-bindings> ::=
<domain-binding>
| <domain-binding> , <domain-bindings>

<domain-binding> ::=
<value-name> ∈ <type-name>

The logical expressions produced according to the first production rule
of <logical-expression> are excluded from the production of expressions
according to the last production rule of <expression>.

122 DEFINITION OF FLAT VVSL

The sets Expression and LogicalExpr of syntactically correct expression con-
structs and logical expression constructs are defined by

Expression :=
{e | e is a terminal production of <expression>},

LogicalExpr :=
{E | E is a terminal production of <logical-expression>}.

An expression e is deterministic iff no subexpression of e is produced ac-
cording to the fourth production rule of <expression>.

Deterministic expressions are expressions of which it can be determined
syntactically that they cannot yield more than one value.

Well-formedness. The well-formedness of syntactically correct expres-
sion constructs and logical expression constructs, respectively, are defined
by predicates

wf : Expression×NCxt×N ,

wf : LogicalExpr×NCxt×N .

wf (e,N , k) indicates that the expression e is well-formed in the name con-
text N and k (k ∈ {0, 1, 2}) states to refer to: a contents expression v may
only be used if k ∈ {1, 2}, and an old contents expression ↼−v may only be
used if k ∈ {2}. wf (E ,N , k) is used similarly for the logical expression E .
Instead of wf (e,N , k) and wf (E ,N , k), we write ‘e is well-formed in 〈N , k〉’
and ‘E is well-formed in 〈N , k〉’, respectively. The well-formedness of ex-
pressions is defined in terms of the well-formedness of logical expressions
and vice versa.

Syntactic properties. The typing of expressions is described by means
of typing rules which inductively define a predicate

mtyping : Expression×Type×NCxt .

Instead of mtyping(e,T ,N), we write ‘N m̀ e ◦◦ T ’. It indicates that, in
the name context N , e has minimal type T . Instead of inductive rules of
the form

mtyping(e1,T1,N1) ∧ . . . ∧mtyping(en ,Tn ,Nn) ∧ ψ ⇒
mtyping(en+1,Tn+1,Nn+1),

rules of the form
N1 m̀ e1

◦◦ T1, . . . ,Nn m̀ en ◦◦ Tn

Nn+1 m̀ en+1
◦◦ Tn+1

if ψ

are used to define the predicate mtyping . The expressions e1, . . . , en are
immediate subexpressions of en+1 and ψ is an (optional) condition that is
not of the form N m̀ e ◦◦ T . These rules can also be viewed as type inference

THE EXPRESSION SUBLANGUAGE 123

rules that prescribe how to establish the minimal type of an expression from
the minimal types of its immediate subexpressions; in which case they read
as ‘from N1 m̀ e1

◦◦ T1, . . . ,Nn m̀ en ◦◦ Tn infer Nn+1 m̀ en+1
◦◦ Tn+1,

provided ψ’. There is exactly one rule for each form of expression given by
the production rules of <expression>.

Meaning. The meaning of expressions and logical expressions are defined
by mappings

[[•]]••,•: Expression×Cxt×MState∗ ×Term → Form,

[[•]]••,•: LogicalExpr×Cxt×MState∗ ×Term → Form .

[[e]]C~s,y expresses the fact that, in the symbol context C , the evaluation
of the expression e in state(s) ~s yields value y . [[E]]C~s,y is used similarly
for the logical expression E (which yields a truth value y). The meaning
of expressions is defined in terms of the meaning of logical expressions
and vice versa. [[e]]C~s,y , where ~s = 〈s1, . . . , sn〉, is only defined if n ≤ 2, e
is well-formed in 〈C ,n〉, and sort(y) = TC , for some type T such that
type(e,C) ≤C T or T ≤C type(e,C). Similarly, [[E]]C~s,y , is only defined if
n ≤ 2, E is well-formed in 〈C ,n〉 and sort(y) = B. For expressions, the
type of the yielded value need not be the expected type, but it must be
comparable with the expected type. In any situation where the type of the
yielded value is a subtype of the type that is expected, there is an implicit
conversion to that type. In the reverse case, there is an implicit conversion
to the subtype. This gives rise to a proof obligation for definedness of the
conversion.

The expressions and logical expressions of the different forms are now
treated separately.

Application expression

The evaluation of the application expression f (e1, . . . , en) can yield any
value that is the value of the function denoted by f for arguments x1, . . . , xn

which are values that can be yielded by evaluation of the expressions
e1, . . . , en , respectively. Generally, the function denoted by f depends on
the types of the argument expressions.

It is worth noticing here that expressions, logical expressions excluded,
in which choice expressions occur, may yield more than one value.

Structure:
f (e1, . . . , en)

Well-formedness in 〈N , k〉:
f is defined as a function name in N ,
e1, . . . , en are well-formed in 〈N , k〉,

124 DEFINITION OF FLAT VVSL

f (e1, . . . , en) is well-typed in N .

Typing:
N m̀ e1

◦◦ T1, . . . ,N m̀ en ◦◦ Tn

N m̀ f (e1, . . . , en) ◦◦ T
if mtypingN (f , 〈T1, . . . ,Tn〉,T).

Meaning:

Let C m̀ e1
◦◦ T1, . . . ,C m̀ en ◦◦ Tn ,

ftypesC (f , 〈T1, . . . ,Tn〉, 〈T ′
1, . . . ,T

′
n〉),

[func f :T ′
1 × · · · × T ′

n → T ′] ∈ C , sort(y) = S , then:

[[f (e1, . . . , en)]]C~s,y :=
∃x1:T ′C

1 , . . . , xn :T ′C
n

(
n∧

i=1

([[ei]]C~s,xi
) ∧ cnvC

T ′C→S (f C
T ′1×···×T ′n→T ′(x1, . . . , xn)) = y),

where

x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj,T ′C

i 〉.

Conditional expression

The evaluation of the conditional expression if E then e1 else e2 can yield:

• any value that can be yielded by evaluation of the expression e1, if
evaluation of the logical expression E yields true;

• any value that can be yielded by evaluation of the expression e2, if
evaluation of the logical expression E yields false;

• no value, otherwise.

It is worth noticing here again that logical expressions cannot yield more
than one value, even the ones in which choice expressions occur.

Structure:

if E then e1 else e2

Well-formedness in 〈N , k〉:
E , e1, e2 are well-formed in 〈N , k〉,
if E then e1 else e2 is well-typed in N .

Typing:
N m̀ E ◦◦ B,N m̀ e1

◦◦ T1,N m̀ e2
◦◦ T2

N m̀ if E then e1 else e2
◦◦ T

if lubN ({T1,T2},T).

Meaning:

[[if E then e1 else e2]]C~s,y := ([[E]]C~s,tt ∧ [[e1]]C~s,y) ∨ ([[E]]C~s,ff ∧ [[e2]]C~s,y).

THE EXPRESSION SUBLANGUAGE 125

Local definition expression

The evaluation of the local definition expression let x : t 4 e1 in e2 can
yield any value that can be yielded by evaluation of the expression e2 when
value name x is assigned a value that can be yielded by evaluation of the
expression e1.

Structure:
let x : t 4 e1 in e2

Well-formedness in 〈N , k〉:
x is not defined as a value or state variable name in N ,
t is defined as a type name in N ,
e1 is well-formed in 〈N , k〉 and e2 is well-formed in 〈N ∪{[val x : t]}, k〉,
let x : t 4 e1 in e2 is well-typed in N .

Typing:
N m̀ e1

◦◦ T1,N ′
m̀ e2

◦◦ T2

N m̀ let x : t 4 e1 in e2
◦◦ T2

if T1 ≤N t ,

where N ′ = N ∪ {[val x : t]}.
Meaning:

[[let x : t 4 e1 in e2]]C~s,y := ∃x ′: tC ([[e1]]C~s,x ′ ∧ [[e2]]
C∪{x ′}
~s,y),

where
x ′ is a fresh value symbol such that ι(x ′) = x and τ(x ′) = 〈obj, tC 〉.

Choice expression

The evaluation of the choice expression

let x1: t1, . . . , xn : tn be s.t. E in e

can yield any value that can be yielded by evaluation of the expression e
when value names x1, . . . , xn are assigned values for which evaluation of
the logical expression E yields true. The use of choice expressions leads
to expressions that can yield more than one value. In some situations this
does not make sense: for element expressions in set and map comprehension
and for expressions of boolean type used as logical expressions. In these
situations, it is guaranteed that the expression concerned does not yield
more than one value.

Structure:
let x1: t1, . . . , xn : tn be s.t. E in e

Well-formedness in 〈N , k〉:
x1, . . . , xn are distinct identifiers,

126 DEFINITION OF FLAT VVSL

x1, . . . , xn are not defined as value or state variable names in N ,
t1, . . . , tn are defined as type names in N ,
E , e are well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn : tn]}, k〉,
let x1: t1, . . . , xn : tn be s.t. E in e is well-typed in N .

Typing:
N ′

m̀ E ◦◦ B,N ′
m̀ e ◦◦ T

N m̀ let x1: t1, . . . , xn : tn be s.t. E in e ◦◦ T
,

where N ′ = N ∪ {[val x1: t1], . . . , [val xn : tn]}.
Meaning:

[[let x1: t1, . . . , xn : tn be s.t. E in e]]C~s,y :=

∃x ′1: tC1 , . . . , x ′n : tCn ([[E]]C∪{x
′
1,...,x ′n}

~s,tt ∧ [[e]]C∪{x
′
1,...,x ′n}

~s,y),
where
x ′1, . . . , x

′
n are fresh value symbols such that for all i = 1, . . . ,n:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉.

Sequence enumeration expression

The evaluation of the sequence enumeration expression [e1 , . . . , en] can
yield any value that is a sequence of values x1, . . . , xn that can be yielded
by evaluation of the expressions e1, . . . , en , respectively.

Structure:
[e1 , . . . , en]

Well-formedness in 〈N , k〉:
e1, . . . , en are well-formed in 〈N , k〉,
[e1 , . . . , en] is well-typed in N .

Typing:
N m̀ e1

◦◦ T1, . . . ,N m̀ en ◦◦ Tn

N m̀ [e1 , . . . , en] ◦◦ T ′

if for some T : lubN ({T1, . . . ,Tn},T), lowerN (T ∗) = T ′.
Meaning:

Let C m̀ e1
◦◦ T1, . . . ,C m̀ en ◦◦ Tn , lubC ({T1, . . . ,Tn},T),

sort(y) = S , then:

[[[e1 , . . . , en]]]C~s,y :=
∃x1:TC , . . . , xn :TC

(
n∧

i=1

([[ei]]C~s,xi
) ∧ cnvC

L(TC)→S (x1 ⊕ (· · · ⊕ (xn ⊕ 6©) · · ·)) = y),

where

THE EXPRESSION SUBLANGUAGE 127

x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj,TC 〉.

Set enumeration expression

The evaluation of the set enumeration expression {e1 , . . . , en} can yield
any value that is a set whose elements are values x1, . . . , xn that can be
yielded by evaluation of the expressions e1, . . . , en , respectively. The car-
dinality of the yielded set can be less than n, since there may be element
expressions yielding the same value. In case the element expressions can
yield more than one value, the cardinalities of the sets that can be yielded
are not necessarily the same.

Structure:
{e1 , . . . , en}

Well-formedness in 〈N , k〉:
e1, . . . , en are well-formed in 〈N , k〉,
{e1 , . . . , en} is well-typed in N .

Typing:
N m̀ e1

◦◦ T1, . . . ,N m̀ en ◦◦ Tn

N m̀ {e1 , . . . , en} ◦◦ T ′

if for some T : lubN ({T1, . . . ,Tn},T), lowerN (T-set) = T ′.
Meaning:

Let C m̀ e1
◦◦ T1, . . . ,C m̀ en ◦◦ Tn , lubC ({T1, . . . ,Tn},T),

sort(y) = S , then:

[[{e1 , . . . , en}]]C~s,y :=
∃x1:TC , . . . , xn :TC

(
n∧

i=1

([[ei]]C~s,xi
) ∧ cnvC

F(TC)→S (xn ⊕ (· · · ⊕ (x1 ⊕ 6©) · · ·)) = y),

where
x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj,TC 〉.

Map enumeration expression

The evaluation of the map enumeration expression {e1 7→ e ′1 , . . . , en 7→
e ′n} can yield any value that is a map whose domain elements are values
x1, . . . , xn that can be yielded by evaluation of the expressions e1, . . . , en ,
respectively, and which maps the domain elements as follows: xi maps to
x ′j , for the greatest j such that i ≤ j ≤ n and xi = xj , where x ′1, . . . , x

′
n

are values that can be yielded by evaluation of the expressions e ′1, . . . , e
′
n ,

128 DEFINITION OF FLAT VVSL

respectively. The cardinality of the domain of the yielded map can be less
than n, since there may be domain element expressions yielding the same
value. In case the domain element expressions can yield more than one
value, the cardinalities of the domains of the maps that can be yielded are
not necessarily the same.

Structure:

{e1 7→ e ′1 , . . . , en 7→ e ′n}
Well-formedness in 〈N , k〉:

e1, e ′1, . . . , en , e ′n are well-formed in 〈N , k〉,
{e1 7→ e ′1 , . . . , en 7→ e ′n} is well-typed in N .

Typing:
N m̀ e1

◦◦ T1,N m̀ e ′1
◦◦ T ′

1, . . . ,N m̀ en ◦◦ Tn ,N m̀ e ′n
◦◦ T ′

n

N m̀ {e1 7→ e ′1 , . . . , en 7→ e ′n} ◦◦ T ′′

if for some T ,T ′: lubN ({T1, . . . ,Tn},T), lubN ({T ′
1, . . . ,T

′
n},T ′),

lowerN (T m−→ T ′) = T ′′.

Meaning:

Let C m̀ e1
◦◦ T1,C m̀ e1

◦◦ T ′
1, . . . ,C m̀ en ◦◦ Tn ,C m̀ en ◦◦ T ′

n ,
lubC ({T1, . . . ,Tn},T), lubC ({T ′

1, . . . ,T
′
n},T ′),

sort(y) = S , then:

[[{e1 7→ e ′1 , . . . , en 7→ e ′n}]]C~s,y :=
∃x1:TC , x ′1:T

′C , . . . , xn :TC , x ′n :T ′C

(
n∧

i=1

([[ei]]C~s,xi
∧ [[e ′i]]

C
~s,x ′i

) ∧

cnvC
M(TC ,T ′C)→S ({xn 7→ x ′n}⊕ (· · · ⊕ ({x1 7→ x ′1}⊕ 6©) · · ·)) = y),

where

x1, . . . , xn and x ′1, . . . , x
′
n are fresh value symbols such that for all

i = 1, . . . ,n: τ(xi) = 〈obj,TC 〉 and τ(x ′i) = 〈obj,T ′C 〉.

Set comprehension expression

The evaluation of the set comprehension expression

{e | x1 ∈ t1 , . . . , xn ∈ tn ; E}
yields the set whose elements are the values that are yielded by evaluation
of the expression e under the different assignments of values to the value
names x1, . . . , xn for which evaluation of the logical expression E yields true.
Assignments for which the expression e can yield more than one value do
not contribute any element! In this way, it is guaranteed that (assuming

THE EXPRESSION SUBLANGUAGE 129

that e has type t)

{e | x1 ∈ t1 , . . . , xn ∈ tn ; E}
is semantically equivalent to

{x | x ∈ t ; ∃x1 ∈ t1, . . . , xn ∈ tn . E ∧ x = e}.
Structure:

{e | x1 ∈ t1 , . . . , xn ∈ tn ; E}
Well-formedness in 〈N , k〉:

x1, . . . , xn are distinct identifiers,
x1, . . . , xn are not defined as value or state variable names in N ,
t1, . . . , tn are defined as type names in N ,
e,E are well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn : tn]}, k〉,
{e | x1 ∈ t1 , . . . , xn ∈ tn ; E} is well-typed in N .

Typing:
N ′

m̀ E ◦◦ B,N ′
m̀ e ◦◦ T

N m̀ {e | x1 ∈ t1 , . . . , xn ∈ tn ; E} ◦◦ T ′ if lowerN (T-set) = T ′,

where N ′ = N ∪ {[val x1: t1], . . . , [val xn : tn]}.
Meaning:

Let C m̀ e ◦◦ T , sort(y) = S , then:
[[{e | x1 ∈ t1 , . . . , xn ∈ tn ; E}]]C~s,y :=

∃y ′: F(TC)
(∀x :TC

(∃x ′1: tC1 , . . . , x ′n : tCn
([[E]]C∪{x

′
1,...,x ′n}

~s,tt ∧ ∀x ′:TC ([[e]]C∪{x
′
1,...,x ′n}

~s,x ′ ↔ x = x ′)) ↔
x ∈ y ′ = tt) ∧ cnvC

F(TC)→S (y ′) = y),

where
x ′1, . . . , x

′
n are fresh value symbols such that for all i = 1, . . . ,n:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉,
x , x ′ are fresh value symbols such that τ(x) = τ(x ′) = 〈obj,TC 〉,
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, F(TC)〉.

Map comprehension expression

The evaluation of the map comprehension expression

{e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E}
yields the map whose domain elements are the values that are yielded by
evaluation of the expression e under the different assignments of values to
the value names x1, . . . , xn for which evaluation of the logical expression E

130 DEFINITION OF FLAT VVSL

yields true and which maps the domain elements as follows: the value that is
yielded by evaluation of the expression e under a certain assignment maps
to the value that is yielded by evaluation of the expression e ′ under the
same assignment. Assignments for which the expression e or the expression
e ′ can yield more than one value do not contribute any argument-value pair!
In this way, it is guaranteed that (assuming that e has type t and e ′ has
type t ′)

{e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E}
is semantically equivalent to

{x 7→ x ′ | x ∈ t , x ′ ∈ t ′; ∃x1 ∈ t1, . . . , xn ∈ tn . E ∧ x = e ∧ x ′ = e ′}.
The evaluation will yield no value, if there are two assignments for which
evaluation of E yields true, evaluation of e yields identical values and eval-
uation of e ′ yields different values.

Structure:

{e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E}
Well-formedness in 〈N , k〉:

x1, . . . , xn are distinct identifiers,
x1, . . . , xn are not defined as value or state variable names in N ,
t1, . . . , tn are defined as type names in N ,
e, e ′,E are well-formed in 〈N ∪ {[val x1: t1], . . . , [val xn : tn]}, k〉,
{e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E} is well-typed in N .

Typing:
N ′

m̀ E ◦◦ B,N ′
m̀ e ◦◦ T ,N ′

m̀ e ′ ◦◦ T ′

N m̀ {e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E} ◦◦ T ′′

if lowerN (T m−→ T ′) = T ′′,
where N ′ = N ∪ {[val x1: t1], . . . , [val xn : tn]}.

Meaning:

Let C m̀ e ◦◦ T ,C m̀ e ′ ◦◦ T ′, sort(y) = S , then:
[[{e 7→ e ′ | x1 ∈ t1 , . . . , xn ∈ tn ; E}]]C~s,y :=

∃y ′:M(TC ,T ′C)
(∀u:TC , v :T ′C

(∃x ′1: tC1 , . . . , x ′n : tCn
([[E]]C∪{x

′
1,...,x ′n}

~s,tt ∧
∀u ′:TC ([[e]]C∪{x

′
1,...,x ′n}

~s,u′ ↔ u = u ′) ∧
∀v ′:T ′C ([[e ′]]C∪{x

′
1,...,x ′n}

~s,v ′ ↔ v = v ′)) ↔
u ∈ dom y ′ = tt ∧ y ′(u) = v) ∧ cnvC

M(TC ,T ′C)→S (y ′) = y),

THE EXPRESSION SUBLANGUAGE 131

where
x ′1, . . . , x

′
n are fresh value symbols such that for all i = 1, . . . ,n:

ι(x ′i) = xi and τ(x ′i) = 〈obj, tCi 〉,
u, u ′ are fresh value symbols such that τ(u) = τ(u ′) = 〈obj,TC 〉,
v , v ′ are fresh value symbols such that τ(v) = τ(v ′) = 〈obj,T ′C 〉,
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, M(TC ,T ′C)〉.

Contents expression

The evaluation of the contents expression v yields the value taken by the
state variable v in the current state. Contents expressions can only be used
in initial conditions, state invariants, dynamic constraints, and the pre-,
post- and inter-conditions of operation definitions.

Structure:

v
Well-formedness in 〈N , k〉:

k > 0,
v is defined as a state variable name in N ,
v is well-typed in N .

Typing:

N m̀ v ◦◦ T
if mtypingN (v ,T).

Meaning:

Let [var v :T ′] ∈ C , ~s = 〈s1, . . . , sn〉, sort(y) = S , then:
[[v]]C~s,y := cnvC

T ′C→S (vC
T ′(sn)) = y .

Old contents expression

The evaluation of the old contents expression ↼−v yields the value taken by
the state variable v in the previous state. Old contents expressions can only
be used in the post-conditions of operation definitions.

Structure:
↼−v

Well-formedness in 〈N , k〉:
k > 1,
v is defined as a state variable name in N ,
↼−v is well-typed in N .

132 DEFINITION OF FLAT VVSL

Typing:

N m̀
↼−v ◦◦ T

if mtypingN (v ,T).

Meaning:

Let [var v :T ′] ∈ C , ~s = 〈s1, . . . , sn〉, sort(y) = S , then:

[[↼−v]]C~s,y := cnvC
T ′C→S (vC

T ′(s1)) = y .

Reference expression

The evaluation of the reference expression x yields the value assigned to
the value name x .

Structure:

x
Well-formedness in 〈N , k〉:

x is defined as a value name in N ,
x is well-typed in N .

Typing:

N m̀ x ◦◦ T
if mtypingN (x ,T).

Meaning:

Let [val x :T ′] ∈ C , sort(y) = S , then:
[[x]]C~s,y := cnvC

T ′C→S (xC
T ′) = y .

Numeral expression

The evaluation of the numeral expression n yields the natural number cor-
responding to the numeral n.

Structure:

n
Well-formedness in 〈N , k〉:

True.
Typing:

N m̀ n ◦◦ T
if lowerN (N) = T .

Meaning:

Let sort(y) = S , then:
[[n]]C~s,y := cnvC

N→S (succ(· · · succ︸ ︷︷ ︸
n times

(0) · · ·)) = y .

THE EXPRESSION SUBLANGUAGE 133

Logical expression

The evaluation of the logical expression E as an expression yields the value
that is yielded by evaluation of E as a logical expression.

Structure:

E

Well-formedness in 〈N , k〉:
E is well-formed in 〈N , k〉.

Typing:

N m̀ E ◦◦ T
if lowerN (B) = T .

Meaning:

Let sort(y) = S , then:

[[E]]C~s,y := ∃y ′: B([[E]]C~s,y′ ∧ cnvC
B→S (y ′) = y),

where

y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

Truth-valued expression

The evaluation of the truth-valued expression e, which is an expression of
type B, as a logical expression yields:

• the truth value that is yielded by the evaluation of e as an expression,
if the evaluation of e as an expression can only yield one value;

• no value, otherwise.

If the expression e can yield both true and false, then its evaluation as a
logical expression is undefined. In that case, the truth of e when interpreted
as a logical expression cannot be established.

Structure:

e

Well-formedness in 〈N , k〉:
e is well-formed in 〈N , k〉,
the minimal type of e in N is B.

Meaning:

[[e]]C~s,y := [[e]]C~s,y if e is deterministic
∀y ′: B([[e]]C~s,y′ ↔ y ′ = y) otherwise,

where

y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

134 DEFINITION OF FLAT VVSL

Equality expression

The evaluation of the equality expression e1 = e2 yields:
• true, if the evaluations of the expressions e1 and e2 can only yield iden-

tical values;

• false, if the evaluations of the expressions e1 and e2 can only yield dif-
ferent values;

• no value, otherwise.
Consequently, the evaluation cannot yield true if either e1 or e2 can yield
more than one value. If e1 and e2 can yield more than one common value,
then its evaluation is not even defined. In that case, the truth of e1 = e2 is
meaningless.

Structure:

e1 = e2

Well-formedness in 〈N , k〉:
e1, e2 are well-formed in 〈N , k〉,
e1 and e2 are type compatible in N .

Meaning:

Let C m̀ e1
◦◦ T1,C m̀ e2

◦◦ T2, lubC (T1,T2,T ′), raiseC (T ′) = T , then:
[[e1 = e2]]C~s,y :=

∃x1:TC , x2:TC

(([[e1]]C~s,x1
∧ [[e2]]C~s,x2

) ∧
((x1 = x2 ∧ y = tt) ∨ (x1 6= x2 ∧ y = ff)))

if e1 and e2 are deterministic
∀y ′: B
(∃x1:TC , x2:TC

(([[e1]]C~s,x1
∧ [[e2]]C~s,x2

) ∧
((x1 = x2 ∧ y ′ = tt) ∨ (x1 6= x2 ∧ y ′ = ff))) ↔ y ′ = y)

otherwise,
where
x1, x2 are fresh value symbols such that for i = 1, 2: τ(xi) = 〈obj,TC 〉,
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

Negation expression

The evaluation of the negation expression ¬E yields:
• true, if evaluation of the logical expression E yields false;

• false, if evaluation of the logical expression E yields true;

• no value, otherwise.

THE EXPRESSION SUBLANGUAGE 135

Structure:

¬E
Well-formedness in 〈N , k〉:

E is well-formed in 〈N , k〉.
Meaning:

[[¬E]]C~s,y := ([[E]]C~s,tt ∧ y = ff) ∨ ([[E]]C~s,ff ∧ y = tt).

Disjunction expression

The evaluation of the disjunction expression E1 ∨ E2 yields:
• true, if evaluation of the logical expression E1 yields true or evaluation

of the logical expression E2 yields true;
• false, if evaluation of the logical expression E1 yields false and evaluation

of the logical expression E2 yields false;
• no value, otherwise.
Structure:

E1 ∨ E2

Well-formedness in 〈N , k〉:
E1,E2 are well-formed in 〈N , k〉.

Meaning:

[[E1 ∨ E2]]C~s,y :=
(([[E1]]C~s,tt ∨ [[E2]]C~s,tt) ∧ y = tt) ∨ (([[E1]]C~s,ff ∧ [[E2]]C~s,ff) ∧ y = ff).

Exists expression

The evaluation of the exists expression ∃ x ∈ t · E yields:
• true, if evaluation of the logical expressions E yields true under some

assignment of a value to the value name x ;
• false, if evaluation of the logical expressions E yields false under each

assignment of a value to the value name x ;
• no value, otherwise.
Structure:

∃ x ∈ t · E
Well-formedness in 〈N , k〉:

x is not defined as a value or state variable name in N ,
t is defined as a type name in N ,
E is well-formed in 〈N ∪ {[val x : t]}, k〉.

136 DEFINITION OF FLAT VVSL

Meaning:
[[∃ x ∈ t · E]]C~s,y :=

(∃x ′: tC ([[E]]C∪{x
′}

~s,tt) ∧ y = tt) ∨ (∀x ′: tC ([[E]]C∪{x
′}

~s,ff) ∧ y = ff),
where
x ′ is a fresh value symbol such that ι(x ′) = x and τ(x ′) = 〈obj, tC 〉.

5.9 The temporal formula sublanguage

Section 5.6 dealt with the syntax and semantics of definitions, which in-
cludes operation definitions. Definitions of operations which are sensitive
to interference by concurrently executed operations through shared state
variables contain a temporal formula. This section deals with the syntax
and semantics of temporal formulae. It begins by introducing temporal
formulae in broad outline.

Overview

The temporal notation extends the logical notation of VVSL. In the tem-
poral notation, the usual temporal connectives are available, such as the
monadic connectives ©©© (next) and ©©−© (previous) and the dyadic connec-
tives U (until) and S (since), in addition to the logical connectives. The
temporal formulae characterize successions of state changes, distinguishing
between internal state changes and external state changes. There are also
two built-in nullary transition predicates, is-I and is-E, to indicate this. ©©©
and ©©−© may also be used to construct temporal terms which refer to values
in future or past states.
Example. In a system which handles concurrent access to stored relations
by multiple transaction, it is useful to have an operation for accessing a sub-
set of one of the stored relations for reading it. The operation will normally
produce a relation and a status as results and change the state. If it ter-
minates, it yields GRANTED as status iff the appropriate access is granted
to the transaction concerned. The operation is non-atomic. During execu-
tion, the following occurs if the read access requested by the transaction
concerned is not liable for deadlock in the initial state:
1. Eventually the read access (acc) requested by the transaction concerned

(tnm) will not conflict with the granted and waiting accesses of other
transactions (according to curr acctable and curr dbschema). The next
state is the final state (¬©©©true) and is reached by an internal step which
changes the state by adding the requested access to the granted accesses
of the transaction. GRANTED will be the status.

2. Until then all steps were external, except the initial step (¬©©−©true) which
only changes (if it is not also the final step) the current state by adding
the requested access to the waiting accesses of the transaction.

THE TEMPORAL FORMULA SUBLANGUAGE 137

In the inter-condition for the operation, this corresponds to the follow-
ing temporal formula (the second argument of the temporal connective U
corresponds to 1 and the first one corresponds to 2):

((¬©©−©true ⇒
is-I∧
©©©(curr acctable = add to waits(©©−©curr acctable, tnm, acc)))∧

(©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema)∧
is-I∧
©©©(curr acctable = add to grants(©©−©curr acctable, tnm, acc)∧

st = GRANTED ∧ ¬©©©true))

Syntax

Temporal formulae and temporal terms are the terminal productions of
<temporal-formula> and <temporal-term>, respectively.

<temporal-formula> ::=
is-I

| is-E
| <temporal-term>
| <temporal-term> = <temporal-term>
| <temporal-formula> C <temporal-formula>
| ©©© <temporal-formula>
| <temporal-formula> U <temporal-formula>
| ©©−© <temporal-formula>
| <temporal-formula> S <temporal-formula>
| ¬ <temporal-formula>
| <temporal-formula> ∨ <temporal-formula>
| ∃ <domain-binding> · <temporal-formula>
| let <temporal-value-binding> in <temporal-formula>

<temporal-term> ::=
<function-name> (<temporal-term-list>)
| ©©© <temporal-term>
| ©©−© <temporal-term>
| <expression>

<temporal-value-binding> ::=
<value-name> : <type-name> 4 <temporal-term>

138 DEFINITION OF FLAT VVSL

<temporal-term-list> ::=
<empty>
| <nonempty-temporal-term-list>

<nonempty-temporal-term-list> ::=
<temporal-term>
| <temporal-term> , <nonempty-temporal-term-list>

The temporal terms that are produced according to the second and
third production rule of <temporal-term> are excluded from the pro-
duction of temporal formulae according to the third production rule of
<temporal-formula>.
The production rules of <expression> are presented in Section 5.8.

The sets TFormula and TTerm of syntactically correct temporal formula
constructs and temporal term constructs are defined by

TFormula :=
{ϕ | ϕ is a terminal production of <temporal-formula>},

TTerm := {τ | τ is a terminal production of <temporal-term>}.
Well-formedness. The well-formedness of syntactically correct temporal
formula constructs and temporal term constructs, respectively, are defined
by predicates

wf : TFormula×NCxt,

wf : TTerm×NCxt .

wf (ϕ,N) indicates that ϕ is well-formed in the name context N . wf (τ,N)
is used similarly for the temporal term τ . Instead of wf (ϕ,N) and wf (τ,N),
we write ‘ϕ is well-formed in N ’ and ‘τ is well-formed in N ’, respectively.
The well-formedness of temporal formulae is defined in terms of the well-
formedness of temporal terms which in turn is defined in terms of the
well-formedness of expressions (defined in Section 5.8).

Syntactic properties. The typing of temporal terms is also described by
means of typing rules. They inductively define a predicate

mtyping : TTerm×Type×NCxt .

Instead of mtyping(τ,T ,N), we write N m̀ τ ◦◦ T . It indicates that, in the
name context N , τ has minimal type T . The inductive rules used to define
this predicate are written in a notation which conforms to the view of these
rules as type inference rules. This notation is explained in Section 5.8. There
is exactly one rule for each form of temporal term given by the production
rules of <temporal-term>.

THE TEMPORAL FORMULA SUBLANGUAGE 139

Meaning. The meaning of temporal formulae and temporal terms are de-
fined by mappings

[[•]]••,•,•:TFormula×Cxt×MComp×N × Term → Form,

[[•]]••,•,•:TTerm×Cxt×MComp×N × Term → Form .

[[ϕ]]Cc,k ,y expresses the fact that, in the symbol context C , the evaluation of
the temporal formula ϕ at point k in computation c yields truth value y .
[[τ]]Cc,k ,y is used similarly for the temporal term τ . The meaning of temporal
formulae is defined in terms of the meaning of temporal terms which in turn
is defined in terms of the meaning of expressions. [[ϕ]]Cc,k ,y is only defined if
ϕ is well-formed in C and sort(y) = B. Similarly, [[τ]]Cc,k ,y is only defined
if τ is well-formed in C and sort(y) = TC , for some type T such that
type(τ,C) ≤C T or T ≤C type(τ,C). For temporal terms, the type of
the yielded value need not be the expected type. In any situation where
the type of the yielded value is a subtype of the type that is expected,
there is an implicit conversion to that type. In the reverse case, there is an
implicit conversion to the subtype. This gives rise to a proof obligation for
definedness of the conversion.

The temporal formulae and temporal terms of the different forms are
now treated separately.

Internal temporal formula

The evaluation of the internal temporal formula is-I yields true if there
is an internal step from the current point in the computation, and false
otherwise.

Structure:
is-I

Well-formedness in N :
True.

Meaning:
[[is-I]]Cc,k ,y := intk (c) ↔ y = tt .

External temporal formula

The evaluation of the external temporal formula is-E yields true if there
is an external step from the current point in the computation, and false
otherwise.

Structure:
is-E

140 DEFINITION OF FLAT VVSL

Well-formedness in N :

True.
Meaning:

[[is-E]]Cc,k ,y := extk (c) ↔ y = tt .

Truth-valued temporal term

The evaluation of the truth-valued temporal term τ , which is a temporal
term of type B, as a temporal formula yields:
• the truth value that is yielded by the evaluation of τ as a temporal term,

if the evaluation of τ as a temporal term can only yield one value;
• no value, otherwise.
If the temporal term τ can yield both true and false, then its evaluation as a
temporal formula is undefined. In that case, the truth of τ when interpreted
as a temporal formula cannot be established.

Structure:

τ

Well-formedness in N :

τ is well-formed in N ,
the minimal type of τ in N is B.

Meaning:

[[τ]]C~s,y := ∀y ′: B([[τ]]Cc,k ,y′ ↔ y ′ = y)
where
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

Equality temporal formula

The evaluation of the equality temporal formula τ1 = τ2 yields:
• true, if the evaluations of the temporal terms τ1 and τ2 can only yield

identical values;
• false, if the evaluations of the temporal terms τ1 and τ2 can only yield

different values;
• no value, otherwise.
Consequently, the evaluation cannot yield true if either τ1 or τ2 can yield
more than one value. If τ1 and τ2 can yield more than one common value,
then its evaluation is not even defined. In that case, the truth of τ1 = τ2 is
meaningless.

THE TEMPORAL FORMULA SUBLANGUAGE 141

Structure:
τ1 = τ2

Well-formedness in N :
τ1, τ2 are well-formed in N ,
τ1 and τ2 are type compatible in N .

Meaning:

Let C m̀ τ1
◦◦ T1,C m̀ τ2

◦◦ T2, lubC (T1,T2,T ′), raiseC (T ′) = T , then:
[[τ1 = τ2]]Cc,k ,y :=

∀y ′: B
(∃x1:TC , x2:TC

(([[τ1]]Cc,k ,x1
∧ [[τ2]]Cc,k ,x2

) ∧
((x1 = x2 ∧ y ′ = tt) ∨ (x1 6= x2 ∧ y ′ = ff))) ↔ y ′ = y),

where
x1, x2 are fresh value symbols such that for i = 1, 2: τ(xi) = 〈obj,TC 〉,
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

Chop temporal formula

The evaluation of the chop temporal formula ϕ1 C ϕ2 yields:
• true, if it is possible to divide the computation at some future point

into two subcomputations such that evaluation of ϕ1 yields true at the
current point in the first subcomputation and the evaluation of ϕ2 yields
true at the first point in the second subcomputation;

• true, if the computation is infinite and evaluation of ϕ1 yields true at
the current point in the computation;

• false, otherwise.
So the evaluation of ϕ1 C ϕ2 always yields one of the truth values, even
when evaluation of ϕ1 can yield no value at the current point in any prefix
of the computation.

Structure:
ϕ1 C ϕ2

Well-formedness in N :
ϕ1, ϕ2 are well-formed in N .

Meaning:
[[ϕ1 C ϕ2]]Cc,k ,y :=

∃c1:Comp ∃c2:Comp
(
∨

n(Prefixn(c, c1) ∧ Suffixn(c, c2)) ∧ [[ϕ1]]Cc1,k ,tt ∧ [[ϕ2]]Cc2,0,tt) ∨∧
n(stn(c)↓) ∧ [[ϕ1]]Cc,k ,tt ↔

y = tt ,

142 DEFINITION OF FLAT VVSL

where

c1, c2 are fresh computation symbols.

Next temporal formula

The evaluation of the next temporal formula ©©© ϕ yields:

• true, if there is a next point in the computation and evaluation of the
temporal formula ϕ yields true at that point;

• false, otherwise.

So the evaluation of ©©© ϕ always yields one of the truth values, even when
evaluation of ϕ can yield no value at the next point.

Structure:

©©© ϕ

Well-formedness in N :

ϕ is well-formed in N .

Meaning:

[[©©© ϕ]]Cc,k ,y := stk+1(c)↓ ∧ [[ϕ]]Cc,k+1,tt ↔ y = tt .

Until temporal formula

The evaluation of the until temporal formula ϕ1 U ϕ2 yields:

• true, if evaluation of the temporal formula ϕ2 yields true at the current
or some future point in the computation and evaluation of the temporal
formula ϕ1 yields true at all points until that one;

• false, otherwise.

So the evaluation of ϕ1 U ϕ2 always yields one of the truth values, even
when evaluation of ϕ2 can yield no value at the current and any future
point.

Structure:

ϕ1 U ϕ2

Well-formedness in N :

ϕ1, ϕ2 are well-formed in N .

Meaning:

[[ϕ1 U ϕ2]]Cc,k ,y :=

∨
n(stk+n(c)↓ ∧ [[ϕ2]]Cc,k+n,tt ∧

n−1∧
m=0

([[ϕ1]]Cc,k+m,tt)) ↔ y = tt .

THE TEMPORAL FORMULA SUBLANGUAGE 143

Previous temporal formula

The evaluation of the previous temporal formula ©©−© ϕ yields:
• true, if there is a previous point in the computation and evaluation of

the temporal formula ϕ yields true at that point;

• false otherwise.
So the evaluation of ©©−© ϕ always yields one of the truth values, even when
evaluation of ϕ can yield no value at the previous point.

Structure:

©©−© ϕ

Well-formedness in N :

ϕ is well-formed in N .
Meaning:

[[©©−© ϕ]]Cc,k ,y := [[ϕ]]Cc,k-1,tt ↔ y = tt if k > 0
y = ff otherwise.

Since temporal formula

The evaluation of the since temporal formula ϕ1 S ϕ2 yields:
• true, if evaluation of the temporal formula ϕ2 yields true at the current

or some past point in the computation and evaluation of the temporal
formula ϕ1 yields true at all points since that one;

• false otherwise.
So the evaluation of ϕ1 S ϕ2 always yields one of the truth values, even
when evaluation of ϕ2 can yield no value at the current and any past point.

Structure:

ϕ1 S ϕ2

Well-formedness in N :

ϕ1, ϕ2 are well-formed in N .
Meaning:

[[ϕ1 S ϕ2]]Cc,k ,y :=
k∨

l=0

([[ϕ2]]Cc,k−l,tt ∧
l−1∧
m=0

([[ϕ1]]Cc,k−m,tt)) ↔ y = tt .

Negation temporal formula

The evaluation of the negation temporal formula ¬ϕ yields:
• true, if evaluation of the temporal formula ϕ yields false;

144 DEFINITION OF FLAT VVSL

• false, if evaluation of the temporal formula ϕ yields true;
• no value, otherwise.
Structure:

¬ϕ

Well-formedness in N :

ϕ is well-formed in N .
Meaning:

[[¬ϕ]]Cc,k ,y := ([[ϕ]]Cc,k ,tt ∧ y = ff) ∨ ([[ϕ]]Cc,k ,ff ∧ y = tt).

Disjunction temporal formula

The evaluation of the disjunction temporal formula ϕ1 ∨ ϕ2 yields:
• true, if evaluation of the temporal formula ϕ1 yields true or evaluation

of the temporal formula ϕ2 yields true;
• false, if evaluation of the temporal formula ϕ1 yields false and evaluation

of the temporal formula ϕ2 yields false;
• no value, otherwise.
Structure:

ϕ1 ∨ ϕ2

Well-formedness in N :

ϕ1, ϕ2 are well-formed in N .
Meaning:

[[ϕ1 ∨ ϕ2]]Cc,k ,y :=
(([[ϕ1]]Cc,k ,tt ∨ [[ϕ2]]Cc,k ,tt) ∧ y = tt) ∨
(([[ϕ1]]Cc,k ,ff ∧ [[ϕ2]]Cc,k ,ff) ∧ y = ff).

Exists temporal formula

The evaluation of the exists temporal formula ∃ x ∈ t · ϕ yields:
• true, if evaluation of the temporal formula ϕ yields true under some

assignment of a value to the value name x ;
• false, if evaluation of the temporal formula ϕ yields false under each

assignment of a value to the value name x ;
• no value, otherwise.
Structure:

∃ x ∈ t · ϕ

Well-formedness in N :

x is not defined as a value or state variable name in N ,

THE TEMPORAL FORMULA SUBLANGUAGE 145

t is defined as a type name in N ,

ϕ is well-formed in N ∪ {[val x : t]}.
Meaning:

[[∃ x ∈ t · ϕ]]Cc,k ,y :=

(∃x ′: tC ([[ϕ]]C∪{x
′}

c,k ,tt) ∧ y = tt) ∨ (∀x ′: tC ([[ϕ]]C∪{x
′}

c,k ,ff) ∧ y = ff),

where

x ′ is a fresh value symbols such that ι(x ′) = x and τ(x ′) = 〈obj, tC 〉.

Local definition temporal formula

The evaluation of the local definition temporal formula let x : t 4 τ in ϕ
yields the truth value that is yielded by evaluation of the temporal formula
ϕ when value name x is assigned a value that can be yielded by evaluation
of the temporal term τ .

Structure:

let x : t 4 τ in ϕ

Well-formedness in N :

x is not defined as a value or state variable name in N ,

t is defined as a type name in N ,

τ is well-formed in N and ϕ is well-formed in N ∪ {[val x : t]},
the minimal type of τ in N is a subtype of t .

Meaning:

[[let x : t 4 τ in ϕ]]Cc,k ,y := ∃x ′: tC ([[τ]]Cc,k ,x ′ ∧ [[ϕ]]C∪{x
′}

c,k ,y),

where

x ′ is a fresh value symbol such that ι(x ′) = x and τ(x ′) = 〈obj, tC 〉.

Application temporal term

The evaluation of the application temporal term f (τ1, . . . , τn) can yield any
value that is the value of the function denoted by f for arguments x1, . . . , xn

which are values that can be yielded by evaluation of the temporal terms
τ1, . . . , τn , respectively. Generally, the function denoted by f depends on
the types of the argument expressions.

Structure:

f (τ1, . . . , τn)

Well-formedness in N :

f is defined as a function name in N ,

146 DEFINITION OF FLAT VVSL

τ1, . . . , τn are well-formed in N ,
f (τ1, . . . , τn) is well-typed in N .

Typing:
N m̀ τ1

◦◦ T1, . . . ,N m̀ τn
◦◦ Tn

N m̀ f (τ1, . . . , τn) ◦◦ T
if mtypingN (f , 〈T1, . . . ,Tn〉,T).

Meaning:
Let C m̀ τ1

◦◦ T1, . . . ,C m̀ τn
◦◦ Tn ,

ftypesC (f , 〈T1, . . . ,Tn〉, 〈T ′
1, . . . ,T

′
n〉),

[func f :T ′
1 × · · · × T ′

n → T ′] ∈ C , sort(y) = S , then:

[[f (τ1, . . . , τn)]]Cc,k ,y :=
∃x1:T ′C

1 , . . . , xn :T ′C
n

(
n∧

i=1

([[τi]]Cc,k ,xi
) ∧ cnvC

T ′C→S (f C
T ′1×···×T ′n→T ′(x1, . . . , xn)) = y),

where
x1, . . . , xn are fresh value symbols such that for all i = 1, . . . ,n:
τ(xi) = 〈obj,T ′C

i 〉,
y ′ is a fresh value symbol such that τ(y ′) = 〈obj, B〉.

Next temporal term

The evaluation of the next temporal term ©©© τ can yield any value that can
be yielded by evaluation of the temporal term τ at the next point in the
computation. In case there is no next point, evaluation can yield no value.

Structure:
©©©τ

Well-formedness in N :
τ is well-formed in N .

Typing:
N m̀ τ ◦◦ T

N m̀ ©©©τ ◦◦ T
.

Meaning:
[[©©© τ]]Cc,k ,y := stk+1(c)↓ ∧ [[τ]]Cc,k+1,y .

Previous temporal term

The evaluation of the previous temporal term ©©−© τ can yield any value that
can be yielded by evaluation of the temporal term τ at the previous point
in the computation. In case there is no previous point, evaluation can yield
no value.

THE TEMPORAL FORMULA SUBLANGUAGE 147

Structure:

©©−©τ

Well-formedness in N :

τ is well-formed in N .
Typing:

N m̀ τ ◦◦ T
N m̀ ©©−©τ ◦◦ T

.

Meaning:

[[©©−© τ]]Cc,k ,y := [[τ]]Cc,k-1,y if k > 0
⊥ otherwise.

Current temporal term

The evaluation of the value temporal term e can yield any value that can
be yielded by evaluation of the expression e in the state at the current
point in the computation.

Structure:

e
Well-formedness in N :

e is well-formed in 〈N , 1〉.
Typing:

N m̀ e ◦◦ T
N m̀ e ◦◦ T

.

Meaning:

[[e]]Cc,k ,y := ∃s: State(stk (c) = s ∧ [[e]]C〈s〉,y).

6

Foundations of the
Structuring Language

In Chapter 5, the logic MPLω was used as the basis for a semantics of flat
VVSL. DA (Description Algebra) and λπ-calculus are used in Chapter 8
as the basis for a semantics of the structuring sublanguage of VVSL. The
aim of this chapter is to introduce DA and λπ-calculus. DA is a general
algebraic model of modular specification (based on MPLω). It has some
features which are not commonly found in models proposed for modular
algebraic specification. These special features make it suitable as the under-
lying model for modular state-based specifications. λπ-calculus is a variant
of classical lambda calculus with parameter restrictions and a conditional
β-rule. DA and λπ-calculus were first presented by Jonkers (1989a) and
Feijs (1989), respectively.

The first section gives an overview of DA, discusses its suitability as
a semantic basis for the modularization constructs of VVSL and glances
at the way in which it treats name clashes. In subsequent sections, the
algebra DA is defined, algebraic laws that hold for DA are presented and an
abstract meaning of descriptions (the objects of interest in DA) is defined.
This presentation of DA is the result of a substantial rewrite of the one
in (Jonkers, 1989a). Properties, that are relevant to the use of DA for an
interpretation of VVSL, are also presented. For the proofs, the reader is
referred to (Jonkers, 1989a).

Thereafter, DA extended with parameters (a kind of dummy description),
an implementation relation for descriptions and renaming of renamings
are presented. All this is relevant to the case where descriptions may be
parametrized. DA extended with parameters was treated as part of DA in
the preliminary version of DA presented in (Feijs, Jonkers, Koymans and
Renardel de Lavalette, 1987).

The next section gives an overview of λπ-calculus and discusses its suit-
ability as a semantic basis for the parametrization constructs of VVSL. In
subsequent sections, λπ-calculus is defined, a model of λπ-calculus is pre-
sented, and reduction for λπ-calculus is formulated. This presentation of

150 FOUNDATIONS OF THE STRUCTURING LANGUAGE

λπ-calculus is for the greater part the result of a major rewrite of the one in
(Feijs, 1989). It streamlines and expands the treatment there. Properties,
that are relevant to the use of λπ-calculus for an interpretation of VVSL,
are also presented. For the proofs, the reader is referred to (Feijs, 1989).

6.1 Introduction to DA

This section gives an idea of what DA is and connects this with its role in a
semantics of VVSL. Subsequent sections go into details of DA. How DA and
more abstract models of modular specifications are related, is analysed in
Section 9.1 by means of an extension of DA which has additional abstraction
operations on descriptions. In one of those models, specification modules
correspond essentially to MPLω theories. However, theories are presented
as special kinds of descriptions, called abstract descriptions, to ease the
analysis of the connections.

Overview of DA

In DA, the objects of interest are descriptions. A description consists of an
externally visible signature, an internal signature, a set of formulae and an
origin partition. It is essentially a presentation of a logical theory extended
with an encapsulating signature and a component for dealing with name
clashes in the composition of descriptions. MPLω, the logic that was intro-
duced in Chapter 3, is used as the underlying logic of DA. As an abstract
meaning, an MPLω theory can be attached to each description. Descrip-
tions can be adapted and combined by means of operations for renaming ,
importing , exporting and unifying . The basic modularization concepts of
decomposition and information hiding are supported by importing and ex-
porting, respectively. Renaming provides for control of name clashes in the
composition of modules. Unifying is a special operation for dealing with
name clashes.

Suitability of DA

VVSL is a language for model-oriented, state-based specification. Effective
separation of concerns often motivates the hiding of state variables from a
module. For the adequacy of the modularization mechanism provided by
VVSL for the modular structuring of specifications of many existing soft-
ware systems (where a suitable modular structuring of the specification
concerned requires that the same state variables are accessed by opera-
tions from several modules), it is indispensable that it permits two or more
modules to have hidden state variables in common. This requires a model
of specification modules which is more concrete than most models pro-
posed for modular property-oriented, algebraic specifications, such as the

INTRODUCTION TO DA 151

ones presented in (Bergstra, Heering and Klint, 1990; Sannella and Tar-
lecki, 1985; Wirsing and Broy, 1989). Appropriately concrete models, e.g.
the model presented in (Bergstra, 1986) and the presentation model from
(Wirsing, 1986), usually treat name clashes in a way which still inhibits
modules from having hidden state variables in common. DA makes it pos-
sible for modules to have hidden state variables in common. This is largely
due to the way in which it treats name clashes. Nevertheless, many alge-
braic laws holding in the more generally accepted models also hold for DA.
These laws include most laws of Module Algebra (Bergstra, Heering and
Klint, 1990).

Connections with MA

DA is an algebra that is meant to be a model of modular specification
suitable for state-based specifications. Module Algebra (MA) is an axiom
system with algebraic axioms that hold in most models of modular speci-
fication proposed for algebraic specifications.

The operations on descriptions that have a counterpart in MA are: taking
the visible signature, renaming, importing and exporting. The operation
of MA for converting a signature to a module without axioms (T) has
no counterpart in DA. Its addition to DA would be a minor enrichment.
Unifying has no counterpart in MA. Its addition to MA would be a major
extension.

Most axioms of MA concerning the common operations hold for DA (see
Section 6.4). The axiom (E4) of MA, which postulates restricted distri-
bution of exporting over importing, holds even unconditionally for DA.
Only the axioms (R5) and (R6) of MA, which express that renamings are
supposed to be of a special kind, do not hold for DA.

Name clashes in the composition of descriptions

A description can be viewed as a description of a system component which
consists of named parts – modelled by sorts, functions and predicates. The
presence of the name of a part in the encapsulating signature of the de-
scription indicates that the part concerned is an external part of the system
component.

If the names given to parts are used to refer to them in descriptions, then
there is a problem with name clashes in the composition of descriptions by
means of importing, since there is no way to tell whether parts denoted by
the same name are intended to be identical. Any solution to this problem
has to make some assumptions. Commonly it is assumed that external parts
denoted by the same name are identical and internal parts are never iden-
tical. By these assumptions visible names (i.e. names of external parts) are
allowed to clash, while clashes of hidden names (i.e. names of internal parts)

152 FOUNDATIONS OF THE STRUCTURING LANGUAGE

with other names are avoided by automatic renamings. As far as hidden
names are concerned, this solution seems the only one which is consistent
with the intention of encapsulation. However, it creates a new problem. In
state-based specification, we are dealing with a state space where certain
names denote variable parts of that state space. These state variables (as
they are called in VVSL) should not be duplicated by automatic renam-
ings. Duplication would make it impossible for two descriptions (and hence
modules) to have hidden state variables in common.

The root of the above-mentioned problems is that the information of the
identity of the definition that introduces a name has been lost where the
name is used. Therefore the solution is to endow each name with an origin
representing the identity of the definition that introduces the name. The
use of combinations of a name and an origin rather than names as sym-
bols of MPLω in descriptions solves the problem with name clashes in the
composition of descriptions. In general, origins of names cannot simply be
viewed as pointers to their definitions. This is mainly due to parametri-
zation. Origin constants, origin variables, which can later be instantiated
with fixed origins, and compound origins are needed. If, within a descrip-
tion, the origins of visible symbols with the same name can be unified
(simultaneously for all such collections of origins), then the description is
called origin consistent. For an origin consistent description, abstraction
from the origins associated with the visible names is possible.

Note that the requirement of origin consistency does not take hidden
names into account. Since the hidden names of a description may not be
used outside that description, there exists no identification problem for
hidden names. However, by endowing each hidden name with an appropri-
ate origin, undesirable automatic renamings are no longer necessary and
descriptions may have hidden state variables in common.

The next four sections describe DA precisely. The first of these sections
introduces the notion of origin and describes the kind of symbols used in
descriptions.

6.2 Symbols and origins

A description is essentially a presentation of an MPLω theory extended
with an encapsulating signature and a component for dealing with name
clashes in the composition of descriptions. In the definition of MPLω, only a
few assumptions about symbols were made. The kind of symbols which are
used in descriptions are presented below. As explained above, the symbols
concerned contain origins.

We assume three disjoint countably infinite sets OCon, OVar and Ident
of origin constants, origin variables and identifiers, respectively.

SYMBOLS AND ORIGINS 153

Origins

Name clashes may occur in the composition of modules. In order to solve
this name clash problem in a satisfactory way, the origin of each occurrence
of a name should be available.
Definition. The set Orig of origins is inductively defined by

c ∈ OCon ⇒ c ∈ Orig,
x ∈ OVar ⇒ x ∈ Orig,
a1, . . . , an ∈ Orig ⇒ 〈a1, . . . , an〉 ∈ Orig .

A partition of Orig divides the set of all origins into disjoint non-empty
sets of origins. This is used to indicate which origins are considered equal,
i.e. must be unifiable.
Definition. OPar, the set of all origin partitions, is defined by

OPar := {π | π is a partition of Orig}.
For π1, π2 ∈ OPar, π1 ≤ π2, π1 is a refinement of π2, is defined by

π1 ≤ π2 :⇔ ∀A1 ∈ π1 (∃A2 ∈ π2 (A1 ⊆ A2)).

〈OPar,≤〉 is a complete lattice. We write π⊥ for the bottom of this lattice.

Definition. For P ⊆ OPar,
∑

P , the sum of the elements of P , and
∏

P ,
the product of the elements of P , are defined by

∑
P := the least upper bound of P with respect to ≤,∏
P := the greatest lower bound of P with respect to ≤ .

We write π1 + π2, where π1, π2 ∈ OPar, for
∑{π1, π2}.∑

and
∏

are needed to define the importing operation of DA and the
unifying operation of DA, respectively.

Symbols

Symbols are built from identifiers, origins and symbol types. The types of
symbols are in turn built from indicators for the different kinds of types
(sort, obj, func and pred) and sort symbols.

Definition. The sets Sort of sort symbols, Obj of object symbols, Func of
function symbols and Pred of predicate symbols are defined by

Sort := {〈i , a, sort〉 | i ∈ Ident, a ∈ Orig},
Obj := {〈i , a, 〈obj,S 〉〉 | i ∈ Ident, a ∈ Orig,S ∈ Sort},
Func := { 〈i , a, 〈func,S1, . . . ,Sn+1〉〉 |

i ∈ Ident, a ∈ Orig,S1, . . . ,Sn+1 ∈ Sort},
Pred := { 〈i , a, 〈pred,S1, . . . ,Sn〉〉 |

i ∈ Ident, a ∈ Orig,S1, . . . ,Sn ∈ Sort}.
Object symbols serve as variable symbols in MPLω.

154 FOUNDATIONS OF THE STRUCTURING LANGUAGE

Definition. The set SType of symbol types is inductively defined by

sort ∈ SType,
S ∈ Sort ⇒ 〈obj,S 〉 ∈ SType,
S1, . . . ,Sn+1 ∈ Sort ⇒ 〈func,S1, . . . ,Sn+1〉 ∈ SType,
S1, . . . ,Sn ∈ Sort ⇒ 〈pred,S1, . . . ,Sn〉 ∈ SType .

We write t(S1, . . . ,Sn) to indicate that t is a symbol type in which the sort
symbols S1, . . . ,Sn occur (in that order).
Definition. The set Sym of symbols is defined by

Sym := {〈i , a, t〉 | i ∈ Ident, a ∈ Orig, t ∈ SType}.
We write ι(w), ω(w) and τ(w), where w = 〈i , a, t〉 is a symbol, for i , a and
t , respectively.
Note that Sym = Sort∪Obj∪Func∪Pred. Symbols from Sym are inter-
preted as symbols in MPLω according to the following rules:
• each S = 〈i , a, sort〉 is a sort symbol in MPLω,
• each x = 〈i , a, 〈obj,S 〉〉 is a variable symbol of sort S in MPLω,
• each f = 〈i , a, 〈func,S1, . . . ,Sn+1〉〉 is a function symbol f :S1 × · · · × Sn

→ Sn+1 in MPLω,
• each P = 〈i , a, 〈pred,S1, . . . ,Sn〉〉 is a predicate symbol P :S1 × · · · × Sn

in MPLω.
If Sort, Func and Pred are used as sets of sort symbols, function symbols

and predicate symbols, respectively, signatures are defined as follows.
Definition. A symbol signature Σ is a subset of Sort∪Func∪Pred such
that

∀w ∈ Σ (w = 〈i , a, t(S1, . . . ,Sn)〉 ⇒ S1, . . . ,Sn ∈ Σ).

SSig, the set of all symbol signatures, is defined by

SSig := {Σ | Σ is a symbol signature }.
If symbol signatures are used as signatures, the language of a given signa-
ture is defined as follows.
Definition. For Σ ∈ SSig, L(Σ), the language of Σ , is the set of MPLω

formulae defined by

L(Σ) := {ϕ | ϕ is a formula of MPLω(Σ)}.
For a set of formulae Φ from the language of Σ , the theory presented by
Φ consists of all formulae that Φ entails according to the proof system of
MPLω(Σ).
Definition. For Σ ∈ SSig and a set of formulae Φ ⊆ L(Σ), Th(Σ ,Φ), the
theory of Φ, is the set of MPLω formulae defined by

Th(Σ ,Φ) := {ϕ ∈ L(Σ) | Φ ` ϕ}.

DOMAINS AND OPERATIONS OF DA 155

The notion of symbol defined above as well as the related notions de-
fined in this section are basic to DA. The domains and operations of DA
presented in the next section require understanding of these notions.

6.3 Domains and operations of DA

DA has four domains: a domain of names, a domain of renamings, a do-
main of signatures and a domain of descriptions. These domains and the
operations of DA on them are introduced in this section.

Names

Symbols are considered to have the same name if they are the same except
for the origins occurring in them. This means roughly that, for function
and predicate symbols, their type is considered to be a part of the name.
Symbols with the same name are called name equivalent.
Definition. The name equivalence relation≡ on Sym is inductively defined
by

S1 ≡ S ′1, . . . ,Sn ≡ S ′n ⇒ 〈i , a, t(S1, . . . ,Sn)〉 ≡ 〈i , a ′, t(S ′1, . . . ,S ′n)〉.
A name is an equivalence class of the name equivalence relation ≡ on Sym.
We write w , where w ∈ Sym, for the name with representative w . We write
W , where W ⊆ Sym, for the set of names {w | w ∈ W }.
The names of DA are very similar to the typed names of VVSL. All rep-
resentatives of a name are symbols with the same identifier and the same
kind of type. Their types need not be the same, but the corresponding sort
symbols in their types are representatives of the same name. The set of all
names is one of the domains of DA.
Definition. Nam, the set of all sort, function and predicate names, is de-
fined by

Nam := {w | w ∈ Sort∪Func∪Pred}.
For a set of symbols W , there is a corresponding origin partition indicat-

ing that the origins of symbols in W with the same name are considered
equal.
Definition. For a set of symbols W , πω(W), the origin partition of W ,
is defined by

πω(W) :=∏{π ∈ OPar |
∀w1,w2 ∈ W (w1 = w2 ⇒ ∃A ∈ π (ω(w1) ∈ A, ω(w2) ∈ A))}.

So πω is the most refined origin partition such that symbols with the same
name are in the same element of the partition. It is used to define the
unifying operation on descriptions.

156 FOUNDATIONS OF THE STRUCTURING LANGUAGE

Next, renamings and related operations are introduced. This includes an
operation for the renaming of names. Thereafter, signatures and related
operations are introduced. This includes an operation for deleting names
from signatures.

Renamings

A renaming is a total mapping from symbols to symbols that maps symbols
with the same name to symbols with the same name, leaves the origins of
symbols unaffected and changes the types of symbols consistently.
Definition. A renaming is a mapping ρ: Sym → Sym such that

w ≡ w ′ ⇒ ρ(w) ≡ ρ(w ′),
ω(ρ(w)) = ω(w),
τ(w) = t(S1, . . . ,Sn) ⇒ τ(ρ(w)) = t(ρ(S1), . . . , ρ(Sn)).

The set of all renamings is another domain of DA.
Definition. Ren, the set of all renamings, is defined by

Ren := {ρ: Sym → Sym | ρ is a renaming }.
It is assumed that renamings are extended to MPLω formulae in the usual
homomorphic way. Renaming of a MPLω formula may involve renaming of
variable symbols (not necessarily bound) occurring in the formula. How-
ever, in DA a renaming can only be applied (by means of renaming oper-
ations) such that renamed variable symbols are only affected in the usual
way, viz. their sorts are changed according to the renaming. So renaming
does not really lead to a kind of α-conversion.

The set of all names of symbols that are changed by a renaming is consid-
ered to be the domain of the renaming. The range of a renaming is viewed
likewise.
Definition. For a renaming ρ, dom(ρ) and rng(ρ), the domain and range
of ρ, are defined by

dom(ρ) := {w ∈ Sym | ρ(w) 6= w},
rng(ρ) := {ρ(w) ∈ Sym | ρ(w) 6= w}.

Injectivity of renamings is defined with respect to a given set of names.
Definition. For a renaming ρ and a set of names N , inj (ρ,N), ρ is injective
on N , is defined by

inj (ρ,N) :⇔
∀w1,w2 ∈ Sym (w1,w2 ∈ N ⇒ (ρ(w1) = ρ(w2) ⇒ w1 = w2)).

We write inj (ρ,W), where ρ ∈ Ren and W ⊆ Sym, instead of inj (ρ,W).
The operations of DA include a renaming operation on names. Renaming

on names amounts to application of a renaming to a representative of a

DOMAINS AND OPERATIONS OF DA 157

name. It follows immediately from the definition of renamings that the
particular choice of representative is irrelevant.
Definition. The renaming operation •:Ren×Nam → Nam on names is
defined by

ρ • w := ρ(w) (w ∈ Nam).

The operations of DA also include a composition operation on renamings.
It is the usual functional composition.
Definition. The composition operation ◦:Ren×Ren → Ren on renamings
is defined by

(ρ1 ◦ ρ2)(w) := ρ1(ρ2(w)).

Neither operation is used for providing the modularization constructs of
VVSL with a semantics. They are not left out because they may be needed
for the modularization constructs of other specification languages. The ex-
clusion of such operations in this chapter could be mistaken for a lack of
generality.

Next, signatures and related operations are introduced. This includes
an operation for the renaming of signatures. Thereafter, descriptions and
related operations are introduced. This includes an operation for the re-
naming of descriptions.

Signatures

Name signatures result from forgetting about the origins in symbol signa-
tures. The set of all name signatures is still another domain of DA.
Definition. Sig, the set of all name signatures, is defined by

Sig := {Σ | Σ ∈ SSig}.
The operations of DA include four operations on name signatures: re-

naming, union, intersection and deletion. Renaming on name signatures
amounts to application of a renaming to representatives of the names in a
name signature.
Definition. The renaming operation •: Ren×Sig → Sig on name signa-
tures is defined by

ρ • Σ := ρ(Σ) (Σ ∈ Sig).

Union and intersection of signatures is just set union and set intersection.
Definition. The union operation +: Sig×Sig → Sig and the intersection
operation 2: Sig×Sig → Sig on name signatures are defined by

Σ1 + Σ2 := Σ1 ∪ Σ2,

Σ1 2 Σ2 := Σ1 ∩ Σ2.

158 FOUNDATIONS OF THE STRUCTURING LANGUAGE

Deletion of names from signatures is not just a simple case of set difference.
Definition. The deletion operation ∆:Nam×Sig → Sig on name signa-
tures is defined by

u ∆ Σ :=
⋃{Σ ′ ∈ Sig | Σ ′ ⊆ Σ ∧ u /∈ Σ ′}.

The deletion operation is not used for providing the modularization con-
structs of VVSL with a semantics.

Next descriptions and related operations are introduced. This includes
operations for taking the signature of descriptions and for restricting the
signature of descriptions.

Descriptions

A description can be viewed as a presentation of an MPLω theory, together
with an encapsulating signature for supporting the concept of information
hiding and an origin partition indicating which origins of the symbols used
in the description are considered equal. The set of all descriptions is the
primary domain of DA.
Definition. Des, the set of all descriptions, is defined by

Des :=
{〈Σ,Γ,Φ, π〉 | Σ ∈ SSig,Γ ∈ SSig,Σ ⊆ Γ,Φ ⊆ L(Γ), π ∈ OPar}.

We write ΣX , ΓX , ΦX and πX , where X = 〈Σ,Γ,Φ, π〉 is a description, for
Σ ,Γ, Φ and π, respectively.

The operations of DA include six operations on descriptions: taking the
signature, renaming, importing, exporting, unifying and an auxiliary oper-
ation ‘π’. Taking the signature of a description yields the name signature
that consists precisely of the visible names of the description.
Definition. The signature operation Σ: Des → Sig on descriptions is de-
fined by

Σ(X) := ΣX .

The names of symbols in a description can be changed by applying a re-
naming to the description.
Definition. The renaming operation •: Ren×Des → Des on descriptions
is defined by

ρ • X := 〈ρ(ΣX), ρ(ΓX), ρ(ΦX), πX 〉.
Two descriptions can be combined into a new one by means of importing.
Definition. The importing operation +: Des×Des → Des on descriptions
is defined by

X1 + X2 := 〈ΣX1 ∪ΣX2 ,ΓX1 ∪ΓX2 ,ΦX1 ∪ΦX2 , πX1 + πX2〉.

DOMAINS AND OPERATIONS OF DA 159

The visible signature of a description can be restricted by means of export-
ing.

Definition. The exporting operation 2: Sig×Des → Des on descriptions
is defined by

Σ 2 X := 〈{w ∈ ΣX | w ∈ Σ},ΓX ,ΦX , πX 〉.

Unifying enforces the origins of symbols in the externally visible signature
of a description with the same name to be considered equal.

Definition. The unifying operation µ: Des → Des on descriptions is de-
fined by

µ(X) := 〈ΣX ,ΓX ,ΦX , πX +πω(ΣX)〉.

The unifying operation is not used for providing the modularization con-
structs of VVSL with a semantics. However, it plays an important part in
attaching, as an abstract meaning, an MPLω theory to each description.
The following operation is an auxiliary operation. It throws away everything
but the origin partition of a description. This operation is mainly used in
formulating algebraic laws relating renaming and exporting to unifying.

Definition. The operation π:Des → Des on descriptions is defined by

π(X) := 〈{ }, { }, { }, πX 〉.

Refinement (≤) on origin partitions can be extended to descriptions in
a natural way.

Definition. For X1,X2 ∈ Des, X1 ≤ X2, is defined by

X1 ≤ X2 :⇔ ΣX1 ⊆ ΣX2 ∧ΓX1 ⊆ ΓX2 ∧ΦX1 ⊆ ΦX2 ∧πX1 ≤ πX2 .

〈Des,≤〉 is a complete lattice.

Definition. For X ⊆ Des,
∑X , the sum of the elements of X , is defined

by
∑X := the least upperbound of X with respect to ≤.

Obviously, importing can be uniquely characterized by means of
∑

:

X1 + X2 =
∑{X1,X2}.

The next section recounts the domains and operations of DA and presents
a number of algebraic laws that hold for DA.

160 FOUNDATIONS OF THE STRUCTURING LANGUAGE

6.4 Description Algebra

Description Algebra is the heterogeneous algebra consisting of the following
domains, constants and operations:

Domains: Nam
Ren
Sig
Des

Constants: u : Nam (u ∈ Nam)
ρ : Ren (ρ ∈ Ren)
Σ : Sig (Σ ∈ Sig)
X : Des (X ∈ Des)

Operations: • : Ren×Nam → Nam
◦ : Ren×Ren → Ren

• : Ren× Sig → Sig
+ : Sig×Sig → Sig
2 : Sig×Sig → Sig
∆ : Nam× Sig → Sig

Σ : Des → Sig
• : Ren×Des → Des
+ : Des×Des → Des
2 : Sig×Des → Des
µ : Des → Des
π : Des → Des .

For each domain of DA, all elements of the domain are taken as constants.
No special symbols are introduced to denote these constants. They are
considered to be symbols themselves.

The symbols introduced above to denote the domains, constants and
operations of DA constitute the signature of DA. The terms of DA, i.e. the
terms used to denote elements of the domains of DA, are constructed from
the constant and operation symbols in the usual way.

The following theorem presents a number of algebraic laws that hold for
DA. The laws followed by ∗∗ are also axioms of MA (Bergstra, Heering
and Klint, 1990). The laws followed by ∗ are similar to axioms of MA. The
remaining laws are laws concerning the unifying operation of DA and the
auxiliary operation ‘π’, neither of which has a counterpart in MA.

Theorem. The following algebraic laws are satisfied by Description Alge-

DESCRIPTION ALGEBRA 161

bra:

Σ(ρ • X) = ρ • Σ(X) (S1) ∗∗
Σ(X1 + X2) = Σ(X1) + Σ(X2) (S2) ∗∗
Σ(Σ 2 X) = Σ 2 Σ(X) (S3) ∗∗
Σ(µ(X)) = Σ(X) (S4)
Σ(π(X)) = { } (S5)

ρ1 • (ρ2 • X) = (ρ1 ◦ ρ2) • X (R1) ∗
ρ • (X1 + X2) = (ρ • X1) + (ρ • X2) (R2) ∗∗
ρ • (Σ 2 X) = (ρ • Σ) 2 (ρ • X) (R3) ∗∗
ρ • µ(X) = (ρ • X) + π(µ(X)) (R4)
ρ • π(X) = π(X) (R5)

X + (Σ 2 X) = X (I1′) ∗∗
X1 + X2 = X2 + X1 (I2) ∗∗
(X1 + X2) + X3 = X1 + (X2 + X3) (I3) ∗∗
X + µ(X) = µ(X) (I4)
X + π(X) = X (I5)
X + π(µ(X)) = µ(X) (I6)

Σ(X) 2 X = X (E1) ∗∗
Σ 2 (X1 + X2) = (Σ 2 X1) + (Σ 2 X2) (E2) ∗
Σ1 2 (Σ2 2 X) = (Σ1 2 Σ2) 2 X (E3) ∗∗
Σ 2 µ(X) = µ(Σ 2 X) + π(µ(X)) (E4)
Σ 2 π(X) = π(X) (E5)

µ(ρ • µ(X)) = µ(ρ • X) (M1)
µ(µ(X1) + X2) = µ(X1 + X2) (M2)
µ(Σ 2 µ(X)) = Σ 2 µ(X) (M3)
µ(µ(X)) = µ(X) (M4)
µ(π(X)) = π(X) (M5)

π(ρ • X) = π(X) (P1)
π(X1 + X2) = π(X1) + π(X2) (P2)
π(Σ 2 X) = π(X) (P3)
π(π(X)) = π(X) (P4).

Proof: Straightforward from the definitions of the operations. 2

The law numbering is in accordance with the one used in (Jonkers, 1989a).
Law (I1) from that paper, X + X = X (the idempotent law for +), is a
special case of law (I1′).

It is shown in the next section how a logical theory in which names
are used as symbols can be attached to each description. In Section 6.6, an
implementation relation on descriptions is defined in terms of their theories.

162 FOUNDATIONS OF THE STRUCTURING LANGUAGE

6.5 Abstract meaning of descriptions

As an abstract meaning, an MPLω theory in which names are used as
symbols of MPLω can be attached to each origin consistent description.

Informally, a description is origin consistent if the sets of origins of visible
symbols with the same name are simultaneously unifiable. This is the case
if there exists an instantiation of origin variables that identifies all origins
in each of the elements of the corresponding partition. In this section,
first instantiation of origin variables and simultaneous unifiability are made
precise by defining origin substitution and unification for origin partitions.
Next, origin consistency of a description and the abstract meaning of an
origin consistent description are defined. Last, it is shown how a theory can
also be attached to each non-origin-consistent description.

Origin substitutions

The origin variables occurring in an origin can be instantiated by applying
an origin substitution to the origin.

Definition. For an origin a, the set OV (a) ⊆ OVar, the set of origin
variables occurring in a, is inductively defined by

OV (c) = { },
OV (x) = {x},
OV (〈a1, . . . , an〉) = OV (a1) ∪ . . . ∪OV (an).

This is extended to origin sets, origin partitions and symbols as follows:
For A ⊆ Orig, the set OV (A) ⊆ OVar is defined by

OV (A) :=
⋃

a∈A OV (a).

For π ⊆ OPar, the set OV (π) ⊆ OVar is defined by

OV (π) :=
⋃{OV (A) | A ∈ π, cardA 6= 1}.

For w ∈ Sym, the set OV (w) ⊆ OVar is defined by

OV (〈i , a, t(S1, . . . ,Sn)〉) := OV (a) ∪OV (S1) ∪ . . . ∪OV (Sn).

For W ⊆ Sym, the set OV (W) ⊆ OVar is defined by

OV (W) :=
⋃

w∈W OV (w).

Definition. OSub, the set of all origin substitutions, is defined by

OSub := {α | α: OVar → Orig}.
This is extended to origins, origin partitions and symbols as follows:

ABSTRACT MEANING OF DESCRIPTIONS 163

Each origin substitution α is extended to a mapping α: Orig → Orig by the
following rules:

α(c) = c,
α(x) = α(x),
α(〈a1, . . . , an〉) = 〈α(a1), . . . , α(an)〉.

Each origin substitution α is extended to a mapping α: OPar → OPar by
the following rule:

α(π) =
∏{π′ ∈ OPar | ∀A ∈ π (∃A′ ∈ π′ (α(A) ⊆ A′))}.

Each origin substitution α is extended to a mapping α:Sym → Sym by the
following rule:

α(〈i , a, t(S1, . . . ,Sn)〉) = 〈i , α(a), t(α(S1), . . . , α(Sn))〉.
Renamings permute with origin substitutions.
Fact. For all w ∈ Sym, α ∈ OSub, ρ ∈ Ren:

α(ρ(w)) = ρ(α(w)).

Proof: See (Jonkers, 1989a, Lemma 3.2.2). 2

It is assumed that origin substitutions on symbols are extended to MPLω

formulae in the usual homomorphic way. Furthermore, they are extended
to descriptions.
Definition. Each origin substitution α is extended to a mapping α:Des
→ Des by the following rule:

α(X) = 〈α(ΣX), α(ΓX), α(ΦX), α(πX)〉.
The set of all origin variables that are changed by an origin substitution

(from OSub) is considered to be its domain.
Definition. For an origin substitution α ∈ OSub, dom(α), the domain of
α, is defined by

dom(α) := {x ∈ OVar | α(x) 6= x}.

Unification for origin partitions

The origin partition of a description declares certain origins to be equal
(usually the origins of symbols in the externally visible signature with the
same name). The elements of the origin partition, i.e. sets of origins declared
to be equal, should be simultaneously unifiable. This unification for origin
partitions is made precise below.
Definition. For π ∈ OPar, UP (π), the set of all P-unifiers of π, is the set
of origin substitutions defined by

UP (π) := {α ∈ OSub | ∀A ∈ π (∃a ∈ Orig (α(A) = {a}))}.

164 FOUNDATIONS OF THE STRUCTURING LANGUAGE

π is called P-unifiable iff

UP (π) 6= { }.
P-unifiable origin partitions have a most general P-unifier.

Definition. For α1, α2 ∈ OSub, α1 ≤ α2, α1 is an instantiation of α2, is
defined by

α1 ≤ α2 :⇔ ∃β ∈ OSub (∀x ∈ OVar (α1(x) = β(α2(x)))).

Fact. If π ∈ OPar is P-unifiable, then UP (π) has a maximum with respect
to ≤.
Proof: See (Jonkers, 1989a, Theorem 2.4.7). 2

Definition. For a P-unifiable origin partition π, µπ, the most general P-
unifier of π, is the maximum of UP (π) with respect to ≤.

It is assumed that µπ(x) = x for all x ∈ OVar−OV (π).
Because of the extensions defined for origin substitutions, the most gen-

eral unifier of an origin partition can be applied to symbols and formulae.
This is used below to define the most general unifier of descriptions.

Origin independent meaning of descriptions

First, origin consistency is defined by extending P-unifiability to descrip-
tions. Thereafter, the notion of a most general unifier is extended corre-
spondingly (for origin consistent descriptions).

Definition. For X ∈ Des, UD(X), the set of all unifiers of X , is the set of
origin substitutions defined by

UD(X) := UP (πµ(X)).

X is called origin consistent iff

UD(X) 6= { }.
Definition. For an origin consistent description X , µX , the most general
unifier of X , is defined by

µX := µπµ(X) .

A theory can be attached to each origin consistent description X as
follows. First of all, apply µX , i.e. the most general unifier of the description,
to its components. Thus, symbols from the externally visible signature with
the same name will be actually identified. Secondly, take the theory of
the set of formulae µX (ΦX) (which are from the language of the internal
signature µX (ΓX)) and restrict this theory to the language of the externally
visible signature µX (ΣX). Thus, a theory will be obtained which is the set
of all the visible consequences of the axioms µX (ΦX).

ABSTRACT MEANING OF DESCRIPTIONS 165

Definition. For an origin consistent description X , ThS (X), the symbol
theory of X , is defined by

ThS (X) := L(µX (ΣX)) ∩ Th(µX (ΓX), µX (ΦX)).

For an origin consistent description there is a one-to-one correspondence
between the visible names and the visible symbols. Hence abstraction from
the origins of the visible symbols is possible. It requires names to be inter-
preted as symbols in MPLω.

Names are interpreted as symbols in MPLω according to the following
rules:
• each S = 〈i , a, sort〉 is a sort symbol in MPLω,
• each x = 〈i , a, 〈obj,S 〉〉 is a variable symbol of sort S in MPLω,
• each f = 〈i , a, 〈func,S1, . . . ,Sn+1〉〉 is a function symbol f :S1 × · · · × Sn

→ Sn+1 in MPLω,
• each P = 〈i , a, 〈pred,S1, . . . ,Sn〉〉 is a predicate symbol P :S1 × · · · × Sn

in MPLω.
If name signatures are used as signatures, the language of a given name
signature is defined as follows.
Definition. For Σ ∈ Sig, L(Σ), the language of Σ , is the set of MPLω

formulae defined by

L(Σ) := {ϕ | ϕ is a formula of MPLω(Σ)}.
For a set of formulae Φ from the language of Σ , the theory presented by
Φ consists of all formulae that Φ entails according to the proof system of
MPLω(Σ).
Definition. For Σ ∈ Sig and a set of formulae Φ ⊆ L(Σ), Th(Σ ,Φ), the
theory of Φ, is the set of MPLω formulae defined by

Th(Σ ,Φ) := {ϕ ∈ L(Σ) | Φ ` ϕ}.
Definition. If Σ ∈ SSig, then the formulae from L(Σ) are called symbol
formulae. If Σ ∈ Sig, then the formulae from L(Σ) are called name for-
mulae. We write ϕ, where ϕ is a symbol formula, for the name formula
obtained by replacing the occurrences of symbols w in ϕ by their name w
and we write Φ, where Φ is a set of symbol formulae, for the set of name
formulae {ϕ | ϕ ∈ Φ}. For an origin consistent description X , Th(X), the
theory of X , is defined by

Th(X) := ThS (X).

Non-origin-consistent descriptions

In Section 6.6, a notion of implementation for descriptions is introduced.
It is defined in terms of theories of descriptions. Because the implementa-
tion relation on descriptions should be reflexive, the theory of an arbitrary

166 FOUNDATIONS OF THE STRUCTURING LANGUAGE

description should be defined. The definition of the theory of a non-origin-
consistent description is suggested by a characterization of the theory of
an origin consistent description.
Fact. If X is an origin consistent description, then

Th(X) =
⋃{Th(X ′) | X ′ ≤ X , X ′ origin consistent}.

Proof: See (Jonkers, 1989a, Lemma 3.6.5). 2

Definition. For a non-origin-consistent description X , Th(X) is defined
by

Th(X) :=
⋃{Th(X ′) | X ′ ≤ X , X ′ origin consistent}.

As mentioned before, the theory of a non-origin-consistent description is
defined for technical reasons. It is not intended to give an abstract meaning
to non-origin-consistent descriptions. It seems more appropriate to consider
non-origin-consistent descriptions meaningless.

How descriptions and their theories are related is further analysed in
Chapter 9. In the next section, additions to DA are treated which are
relevant to the case where descriptions may be parametrized. This includes
an implementation relation on descriptions which is described in terms of
their theories.

6.6 DA with parameters

Additional domains and operations

λπ-calculus (described in Sections 6.7 to 6.13) is the basis for the semantics
of the parametrization constructs of VVSL. λπ-calculus supports descrip-
tions which are parametrized over entire descriptions (rather than over
names, signatures, etc.). However, when a parametrized description is in-
stantiated for a given description, the origins of certain visible symbols
of the latter should be substituted for the corresponding origin variables
in the parametrized description. This is achieved by the origin substitu-
tion operation α defined in this section. This operation requires a dummy
description, called a parameter. Only the externally visible signature of a
parameter is relevant. The origin of any symbol from this signature is either
an origin variable or contains no origin variables. Besides there are no two
symbols with the same origin variable as their origins.
Definition. A parameter signature is a signature Σ ∈ SSig such that

∀w ∈ Σ (ω(w) ∈ OVar ∨ OV (w) = { }),
∀w ,w ′ ∈ Σ (ω(w) ∈ OVar∧ω(w) = ω(w ′) ⇒ w = w ′).

Par, the set of parameters, is defined by

Par := {〈Σ,Σ, { }, π⊥〉 | Σ is a parameter signature}.

DA WITH PARAMETERS 167

For P ∈ Par, P is called origin unique iff

∀w ,w ′ ∈ ΣP (ω(w) ∈ OVar∧w ≡ w ′ ⇒ ω(w) = ω(w ′)).

The operations on parameters include the trivial embedding from pa-
rameters to descriptions as an auxiliary operation. This operation is used
in formulating an algebraic law concerning origin substitution. It is also
used in defining the other operations on parameters.

Definition. The embedding operation δ: Par → Des on parameters is de-
fined by

δ(P) := P .

So embedding is the inclusion function from Par to Des. When a param-
etrized description is instantiated for a given description, the origins of
certain visible symbols of the latter can be substituted for the correspond-
ing origin variables in the parametrized description by means of origin
substitution.

Definition. The origin substitution operation α:Par×Des×Des → Des is
defined by

α(P ,X1,X2) :=∑{β(X2) | β ∈ OSub∧dom(β) ⊆ OV (ΣX ′) ∧ β(ΣX ′) ⊆ ΣX1},
where X ′ = Σ(X1) 2 δ(P).

∑X is the least upper bound of X in the complete lattice 〈Des,≤〉 (see
Section 6.3).

Roughly speaking, α(P ,X1,X2) replaces everywhere in the description X2

the origin variables of the parameter P by the corresponding origins of the
description X1. Because symbols of X1 with the same name may have dif-
ferent origins (even in the case that X1 is origin consistent), there may be
several corresponding origins. Therefore, the actual definition of origin sub-
stitution is more involved. The origin substitution takes place such that the
‘origin non-uniqueness’ which prevails in X1 is inherited by the result. The
names of symbols in a parameter can be changed by applying a renaming.

Definition. The renaming operation •: Ren×Par → Par on parameters is
defined by

ρ • P := ρ • δ(P).

168 FOUNDATIONS OF THE STRUCTURING LANGUAGE

Description Algebra with Parameters (DAα) is the heterogeneous algebra,
which is obtained from DA (Section 6.4) by the following additions:

Domains: Par

Constants: P : Par (P ∈ Par)

Operations: • : Ren×Par → Par
α : Par×Des×Des → Des
δ : Par → Des .

The following theorem presents a number of algebraic laws concerning
the substitution operation that hold for DA with parameters. These laws
have no counterpart in MA.

Theorem. The following algebraic laws are satisfied by Description Alge-
bra with Parameters:

Σ(α(P ,X1,X2)) = Σ(X2) (S6)
α(P ,X1, ρ • X2) = ρ • α(P ,X1,X2) (R6)
α(P ,X1,X2 + X3) = α(P ,X1,X2) + α(P ,X1,X3) (A2)
α(P ,X1,Σ 2 X2) = Σ 2 α(P ,X1,X2) (E6)
α(P , δ(P),X) = X (A1).

Proof: Straightforward from the definitions of the operations. 2

The (seemingly strange) law numbering is in accordance with the one used
in (Feijs, Jonkers, Koymans and Renardel de Lavalette, 1987), where the
laws given in Section 6.4 are presented together with the ones given above.

Renaming of renamings

A last operation that is defined on renamings is a partial operation which
is not part of DAα. It is a renaming operation on renamings. A renaming of
a renaming only exists under a renameability condition given below. This
operation is needed for the generalization of renaming to parametrized
descriptions in Chapter 7.

Definition. For ρ1, ρ2 ∈ Ren, ρ2 is called renameable by ρ1 iff

∀w ,w ′ ∈ Sym (ρ1(w) ≡ ρ1(w ′) ⇒ ρ1(ρ2(w)) ≡ ρ1(ρ2(w ′))).

DA WITH PARAMETERS 169

Definition. The partial operation ·:Ren×Ren → Ren is inductively de-
fined by

if ρ2 is renameable by ρ1, then:
w ∈ ρ1(Sym) ∧ w = ρ1(w ′) ⇒ (ρ1 · ρ2)(w) = ρ1(ρ2(w ′)),
w /∈ ρ1(Sym) ⇒

ι((ρ1 · ρ2)(w)) = ι(w)∧
ω((ρ1 · ρ2)(w)) = ω(w)∧
(τ(w) = t(S1, . . . ,Sn) ⇒

τ((ρ1 · ρ2)(w)) = t((ρ1 · ρ2)(S1), . . . , (ρ1 · ρ2)(Sn))).

Implementation relations

In the case that Description Algebra is used to provide the modularization
constructs of a particular specification language with a semantics, a subal-
gebra of DAα is usually needed. Therefore, a notion of an implementation
relation is presented, which is defined with respect to the domains of a
subalgebra of DAα. It is defined in terms of theories of descriptions.

Definition. Let N ⊆ Nam, R ⊆ Ren, S ⊆ Sig, D ⊆ Des, and P ⊆ Par be
the domains of a subalgebra of DAα. Then for X1,X2 ∈ D , X1 v X2, X1 is
an implementation of X2, is defined by

X1 v X2 :⇔ Σ(X1) ⊇ Σ(X2) ∧ Th(X1) ⊇ Th(X2).

The relation v on D is called the implementation relation of the subalgebra
of DAα.

The relation v is a pre-order and the operation Σ is monotonic with respect
to v (and ⊇).

Fact. For every subalgebra D, its implementation relation v has the fol-
lowing properties:

X v X ,
X1 v X2 ∧X2 v X3 ⇒ X1 v X3,
X1 v X2 ⇒ Σ(X1) ⊇ Σ(X2).

Proof: Straightforward from the definitions of the implementation relation
and the operation Σ. 2

The auxiliary operation π is also monotonic with respect to the relation v.
Monotonicity does not generally hold for the other operations. Restriction
to origin consistent descriptions is sufficient for monotonicity of 2 and µ.
Further restrictions are required for the operations •, + and α.

Des has 〈{ }, { }, { }, π⊥〉 as maximal element with respect to the im-
plementation relation of DAα itself. For an arbitrary subalgebra of DAα,
it does not generally hold that its domain of descriptions has a maximal
element with respect to its implementation relation.

170 FOUNDATIONS OF THE STRUCTURING LANGUAGE

Here ends the presentation of DA. The remainder of this chapter is con-
cerned with λπ-calculus.

6.7 Introduction to λπ-calculus

This section gives an idea of what λπ-calculus is and connects this with
its role in a semantics of VVSL. Subsequent sections go into details of
λπ-calculus.

Overview of λπ-calculus

In λπ-calculus, lambda terms have unique types. Types are interpreted
as non-empty domains of values or functions. The types are used to ex-
clude the formation of problematic lambda terms, like terms expressing
self-application of a function.

Lambda abstractions have parameter restrictions in λπ-calculus. More
precisely, instead of lambda terms of the form (λx .M), there are lambda
terms of the form (λx v L.M) (where both L and M are lambda terms).
Herein L is called a parameter restriction. The intended meaning is the
function that maps x to M , provided that x and L are in the relation v,
and is undefined otherwise. This is reflected in the rule (π) of λπ-calculus,
which is a conditional version of the rule (β) of classical lambda calculus.

λπ-calculus is put ‘on top’ of an algebraic system with pre-order, i.e.
a heterogeneous algebra together with a pre-order on one of its domains,
such as DA together with the implementation relation on the domain of
descriptions.

Suitability of λπ-calculus

For the adequacy of the parametrization mechanism provided by VVSL for
practical applications, it is highly desirable that it permits requirements
to be put on the actual parameters to which parametrized modules may
be applied. This is supported by the parameter restriction feature of λπ-
calculus. Moreover, it does so without imposing essential deviations from
classical typed lambda calculus. Reduction for λπ-calculus resembles re-
duction for classical typed lambda calculus. The Church-Rosser property
is not invalidated by addition of parameter restrictions and the strong nor-
malization property is inherited from typed lambda calculus. This means
that reduction of lambda terms always leads in finitely many steps to a
unique normal form (up to renaming of bound variables).

ALGEBRAIC SYSTEMS FOR λπ-CALCULUS 171

Connections with other approaches to parametrization

λπ-calculus is a variant of typed lambda calculus with parameter restric-
tion.

A lambda calculus based approach is used to provide for a parametriza-
tion mechanism in various existing languages for structured specifications,
e.g. ASL (Wirsing, 1986). The parametrization mechanism of ASL is also
based on a variant of typed lambda calculus with parameter restriction.
Because the parameters of parametrized modules are not limited to mod-
ules, parameter restriction is not treated as uniformly as in λπ-calculus.
A lambda calculus based approach to parametrization is also pursued in
theoretical work presented by Sannella and Tarlecki (1988), but only a very
simple kind of parameter restriction is envisaged, viz. parameter signature
restrictions.

In (Burstall and Goguen, 1980) an approach to parametrization is used
for Clear, where parametrized modules are viewed as morphisms in the
category of ‘based theories’. However, the definition of application given
by Sannella (1984) seems close to a set-theoretic construction that models
a variant of β-conversion. A category-theoretic approach to parametrization
is also used for ACT ONE (Ehrig, Feys and Hansen, 1983).

The next five sections describe λπ-calculus precisely. The first of these
sections introduces the systems on top of which λπ-calculus can be put.

6.8 Algebraic systems for λπ-calculus

There is an instance of λπ-calculus for every algebraic system with pre-
order. DA together with the implementation relation on the domain of de-
scriptions introduced in Section 6.6 is an algebraic system with pre-order.
An algebraic system with pre-order is roughly a heterogeneous algebra
together with a pre-order on one of its domains. The algebra may be het-
erogeneous, which means that it may have ‘secondary domains’ (such as
domains of signatures, renamings, etc. in the case of DA). For a given alge-
braic system with pre-order, say A, the terms of the λπ-calculus are called
the terms of λπ for A or the terms of λπ[A]. The corresponding rules are
analogously called the rules of λπ[A].

Definition. A heterogeneous algebra A is a triple

〈〈Aκ〉κ∈K , 〈Cc〉c∈Γ , 〈Ff 〉f∈Ω 〉,
where

1. K , Γ and Ω are disjoint index sets;

2. for every κ ∈ K : Aκ is a non-empty set, called a domain of A;

3. for every c ∈ Γ : Cc is an element of Aκ, for some κ ∈ K , called a
constant of A;

172 FOUNDATIONS OF THE STRUCTURING LANGUAGE

4. for every f ∈ Ω : Ff is a total function Ff :Aκ1 × · · · ×Aκn → Aκn+1 , for
some κ1, . . . , κn+1 ∈ K (n ≥ 0), called an operation of A.

An algebraic system with pre-order A is a quadruple

〈〈Aκ〉κ∈K , 〈Cc〉c∈Γ , 〈Ff 〉f∈Ω ,R〉,
where
1. 〈〈Aκ〉κ∈K , 〈Cc〉c∈Γ , 〈Ff 〉f∈Ω 〉 is a heterogeneous algebra with 0 ∈ K ;
2. 〈A0,R〉 is a pre-ordered class with a maximal element.
The pre-ordered domain A0 is called the domain of interest of A. The other
domains are called secondary domains. We write κA for Aκ (κ ∈ K), cA

for Cc (c ∈ Γ), f A for Ff (f ∈ Ω), and RA for R. We also write KA, ΓA

and ΩA, for K , Γ and Ω , respectively. However, these notations are used
without superscripts when it is clear from context or unimportant which
algebraic system is meant.
Thus, a heterogeneous algebra and a pre-order on one of its domains induce
an algebraic system with pre-order in a trivial way if the domain has a
maximal element with respect to the pre-order. In Chapter 7, MDA, a
subalgebra of DA, is introduced. MDA together with the restriction of the
implementation relation associated with DA to the restricted domain of
descriptions induces an algebraic system with pre-order. A generalization of
the instance of λπ-calculus for this algebraic system with pre-order is used
to provide the modularization and parametrization constructs of VVSL
with a semantics in Chapter 8.

The restriction above to a single domain of interest is not fundamental,
but generalization leads to loss of uniformity in the treatment of parameter
restriction in λπ-calculus.

We have to distinguish between the elements of the domains of an alge-
braic system with pre-order and the terms denoting them. For the sake of
simplicity, the index sets are considered to be sets of symbols.
Definition. The signature of an algebraic system with pre-order A, writ-
ten Sig(A), is defined by

Sig(A) := 〈KA,ΓA,ΩA,v〉.
The κ ∈ KA are basic types or sort symbols, the c ∈ ΓA are constant
symbols, the f ∈ ΩA are function symbols and v is a predicate symbol
(denoting RA). We write c: κ to indicate that cA ∈ κA. We write f :κ1 ×
· · · × κn → κn+1 to indicate that f A: κ1

A × · · · × κn
A → κn+1

A.
Conventionally, we use the same notation for the constant symbols and the
elements of domains. Because terms can contain symbols only, this cannot
cause any confusion.

We assume a set LVAR0 of variable symbols standing for arbitrary ele-
ments of the domain of interest 0A. Furthermore, it is assumed that Γ ∪Ω
and LVAR0 are two disjoint sets.

TYPED VARIABLE SYMBOLS FOR λπ[A] 173

Given Sig(A) and LVAR0, terms denoting elements of the domains κA

can be constructed as usual (for secondary domains, only closed terms can
be constructed). These terms are not formally defined here. They coincide
with the flat terms which are defined as terms of λπ[A] of a special kind in
Section 6.10. It is assumed that evaluation of terms is defined as usual.

From terms L and M denoting elements of the same domain κA (κ ∈
K), atomic formulae of the form L = M can be constructed and from
terms L and M denoting elements of the domain of interest 0A, atomic
formulae of the form L v M can be constructed. Non-atomic formulae
can be constructed from atomic formulae as usual. These formulae are
not formally defined here. The atomic formulae coincide with the flat-term
formulae which are defined as formulae constructed from terms of λπ[A]
in Section 6.10. It is assumed that validity of formulae is defined as usual
(with = corresponding to real equality and v corresponding to RA).

The next section introduces two notions of type and gives the assump-
tions which are made about variable symbols for λπ-calculus.

6.9 Typed variable symbols for λπ[A]

The terms of λπ[A] are constructed with constant and function symbols
from Sig(A) and lambda variable symbols. The formation rules for the
terms of λπ[A] take the types of constituent terms into account. The types
concerned are basic types and higher types.

Definition. HType, the set of higher types, is inductively defined by

1. 0 is a higher type;

2. if σ, τ are higher types, then (σ → τ) is a higher type.

Type[A], the set of types for A, is defined by

Type[A] := KA ∪ HType .

The elements of KA were already called basic types. The type 0, which is
both a basic type and a higher type, is called the ground type of the higher
types. We write (σ1, . . . , σn → τ) for (σ1 → (· · · → (σn → τ) · · ·)).

We assume a set LVAR of lambda variable symbols. Every x ∈ LVAR has
a type τ (τ ∈ HType). It is assumed that LVAR0 is the set of all lambda
variable symbols of type 0. Furthermore, it is assumed that Γ ∪ Ω and
LVAR are two disjoint sets. In Sections 6.10 to 6.12, we write x ≡ y , where
x and y are lambda variable symbols, to indicate that x and y are identical
lambda variable symbols.

The terms and rules of λπ[A] are defined in Sections 6.10 and 6.11,
respectively.

174 FOUNDATIONS OF THE STRUCTURING LANGUAGE

6.10 Terms of λπ[A]

The terms of λπ[A] are also called lambda terms. They are constructed
according to the formation rules which are given below.
Definition. The lambda terms of λπ[A], denoted by Λ[A], are inductively
defined by the following formation rules:
1. variable symbols of type τ are lambda terms of type τ , for any τ ∈ HType;

2. if c ∈ Γ , c: κ, then c is a lambda term of type κ;

3. if f ∈ Ω , f : κ1 × · · · × κn → κn+1, and L1, . . . ,Ln are a lambda term
of type κ1, . . . , κn , respectively, then f (L1, . . . ,Ln) is a lambda term of
type κn+1;

4. if L and M are lambda terms of types (σ → τ) and σ, respectively, then
(LM) is a lambda term of type τ ;

5. if L and M are lambda terms of types σ and τ , respectively, and x is a
variable symbol of type σ that does not occur in L, then (λx v L.M) is
a lambda term of type (σ → τ).

α-congruent lambda terms are identified – this obviates the need to build
renaming of bound variables into the calculus. We write ltype(L), where L
is a lambda term, for the type of L.

We shall henceforth use (with or without subscripts):
κ to stand for an arbitrary basic type from KA,
c to stand for an arbitrary constant symbol from ΓA,
f to stand for an arbitrary function symbol from ΩA,
σ and τ to stand for arbitrary types for A,
x , y and z to stand for arbitrary lambda variable symbols (of appropriate
type),
L, M and N to stand for arbitrary lambda terms of λπ[A].

The next thing is to define free variables of lambda terms and substitu-
tion.

Free variables

Informally, a variable x occurs free in a lambda term if it occurs outside a
subterm of the form λx v M .N .
Definition. The free variables of lambda terms are given by a function
free, which is inductively defined by

free(x) = {x},
free(c) = { },
free(f (L1, . . . ,Ln)) = free(L1) ∪ . . . ∪ free(Ln),
free(LM) = free(L) ∪ free(M),
free(λx v L.M) = free(L) ∪ (free(M)− {x}).

TERMS OF λπ[A] 175

So free(L) is the set of variable symbols occurring free in lambda term L.
A variable symbol x is called free in L if x ∈ free(L). A term L of λπ[A] is
a closed term iff free(L) = { }.

The notion of a free occurrence of a variable in a lambda term is used in
connection with substitution and derivations.

Substitution

Substitution is basic for derivations in λπ-calculus.
Definition. Let y be a variable symbol and let M be a lambda term of the
same type. Then [y :=M] is called a substitution. A substitution [y :=M]
denotes a function on lambda terms that is inductively defined by

[y :=M]x = M if x ≡ y ,
x if x 6≡ y ,

[y :=M]c = c,
[y :=M]f (L1, . . . ,Lm) = f ([y :=M]L1, . . . , [y :=M]Lm),
[y :=M](L1L2) = (([y :=M]L1)([y :=M]L2)),
[y :=M](λx v L1.L2) =
(λx v L1.L2) if x ≡ y ,
(λz v [y :=M]L1.[y :=M]([x := z]L2)) if x 6≡ y and x free in M

(z not in L1,L2 or M),
(λx v [y :=M]L1.[y :=M]L2) otherwise.

So [y :=M]L is the result of the replacement of the lambda term M for the
free occurrences of the variable symbol y in L, avoiding free variables in M
becoming bound by means of renaming bound variables.

The derivation system presented in the next section requires understand-
ing of the substitution of a variable.

Flat terms

Flat terms are defined below. They are exactly the terms of λπ[A] that can
be evaluated in A.
Definition. A flat term is a lambda term L of a basic type that contains
only subterms of basic types. We write LA, where L is a closed flat term,
for the evaluation of L in A.
Obviously, flat terms can be interpreted in A: they are terms denoting
elements of the domains κA (κ ∈ K). In Section 6.8, it was assumed that
their evaluation in A is defined as usual.

The formulae of λπ[A] defined in the next section include formulae which
are constructed from flat terms.
Definition. A flat-term formula is an expression of the form L v M or
L = M where L and M are flat terms. We write A |= ϕ, where ϕ is a closed

176 FOUNDATIONS OF THE STRUCTURING LANGUAGE

flat-term formula, to indicate that ϕ is valid in A.
Obviously, flat-term formulae can also be interpreted in A: = corresponds
to real equality and v corresponds to RA. In Section 6.8, it was assumed
that their validity in A is defined as usual.

In λπ[A], closed flat-term formulae valid in A can always be derived, as
is expressed by the rule (|=2) of the derivation system presented in the next
section.

6.11 Rules of λπ[A]

λπ[A] is formulated as a derivation system for statements of the form Γ ` ϕ,
where
• ϕ is a formula of the form L = M or L v M , where L and M are lambda

terms of the same type;
• Γ is a finite set of assumptions, each of the form [ϕ′], where ϕ′ is a

formula of one of the above-mentioned forms.
These statements are called sequents. Intuitively, a sequent Γ ` ϕ indicates
that the formulae in the set of assumptions Γ entail the formula ϕ. Sequents
are derived by means of the derivation rules given below. They make it
possible to compare not only terms that can be interpreted in A, but also
to compare (in a syntactic way) terms that can only be interpreted in
extensions of A with function domains. First the definitions are given which
concern the formulae of λπ[A] and the sequents that may be derived.

Formulae are constructed from lambda terms according to the formation
rules which are given below.
Definition. The formulae of λπ[A] are defined by the following formation
rules:
1. if L and M are lambda terms of the same type σ and σ is a higher type,

then L v M is a formula;
2. if L and M are lambda terms of the same type σ, then L = M is a

formula.
free is extended to formulae by the following rules:

free(L1 v L2) = free(L1) ∪ free(L2),
free(L1 = L2) = free(L1) ∪ free(L2).

A variable symbol x is called free in ϕ if x ∈ free(ϕ). A formula ϕ of λπ[A]
is a closed formula iff free(ϕ) = { }.
Each substitution [y :=M] is extended to formulae by the following rules:

[y :=M](L1 v L2) = [y :=M]L1 v [y :=M]L2,
[y :=M](L1 = L2) = [y :=M]L1 = [y :=M]L2.

The derivation system of λπ[A] is a derivation system for sequents in
Gentzen-style.

RULES OF λπ[A] 177

Definition. An assumption is an expression of the form [ϕ], where ϕ is
a formula. A context is a finite set of assumptions. Instead of Γ ∪ {[ϕ]}
we write Γ , [ϕ]. We write x /∈ Γ to indicate that x is not free in ϕ for all
[ϕ] ∈ Γ . A sequent is an expression of the form Γ ` ϕ, where Γ is a context
and ϕ is a formula.

We shall henceforth use (with or without subscript):

ϕ and ϕ′ to stand for arbitrary formulae,
Γ and Γ ′ to stand for arbitrary contexts.

Furthermore, for f : κ1 × · · · × κn → 0 and i (1 ≤ i ≤ n) such that κi = 0,
we shall use f (. . . ,Mi , . . .) to stand, in rule (|=1), for an arbitrary lambda
term of the form

f (L1, . . . ,Li−1,Mi ,Li+1, . . . ,Ln).

In the rule (|=1), we write ‘A |= f monotonic’ for validity, in A, of the
formula

n∧

i=1

ϕi → f (x1, . . . , xn) v f (y1, . . . , yn),

where ϕi is xi v yi if κi = 0 and ϕi is xi = yi otherwise, assuming that
f : κ1 × · · · × κn → 0.

Definition. The derivation system of λπ[A] is defined by the following
derivation rules:

(|=1)
Γ ` Li v Mi

Γ ` f (. . . ,Li , . . .) v f (. . . ,Mi , . . .)
if A |= f monotonic

(|=2) Γ ` ϕ
if A |= ϕ (ϕ closed)

(cxt)
Γ , [ϕ] ` ϕ

(refl=)
Γ ` L = L

(subst)
Γ ` [y :=L]ϕ Γ ` L = M

Γ ` [y :=M]ϕ

(refl)
Γ ` L v L

(trans)
Γ ` L1 v L2 Γ ` L2 v L3

Γ ` L1 v L3

178 FOUNDATIONS OF THE STRUCTURING LANGUAGE

(appl)
Γ ` L1 v L2

Γ ` (L1M) v (L2M)

(λI1)
Γ , [x v L] ` M1 v M2

Γ ` (λx v L.M1) v (λx v L.M2)
if x /∈ Γ

(λI2)
Γ ` L1 v L2

Γ ` (λx v L2.M) v (λx v L1.M)

(λI3)
Γ , [x v L] ` M1 = M2

Γ ` (λx v L.M1) = (λx v L.M2)
if x /∈ Γ

(π)
Γ ` L2 v L1

Γ ` (λx v L1.M)L2 = [x :=L2]M

Definition. A sequent Γ ` ϕ is derivable if it is the conclusion of an
instance of one of the derivation rules, all premises (none, for the cases
of (|=2), (cxt), (refl=) and (refl)) are derivable, and all side-conditions are
satisfied (for the cases of (|=1), (|=2), (λI1) and (λI3)). We write λπ[A]:Γ `
ϕ (and sometimes just Γ ` ϕ) to indicate that Γ ` ϕ is derivable.

The rule (|=1) is a monotonicity rule for the monotonic functions of the
algebraic system with pre-order A. Thus, for each monotonic function of
A, its monotonicity can be used in the calculus. The rule (|=2) expresses
that closed flat-term formulae (i.e. closed atomic formulae which have been
constructed from terms of A) valid in A can be derived in any context.
The rule (cxt) expresses that assumptions from a context can be derived
in that context.

The rules (refl=) and (subst) are the usual rules for =. The rules (refl)
and (trans) are a reflexivity rule and a transitivity rule for the pre-order
v.

Each lambda term of the form (λx v L.M) can be viewed as a function
with a restriction on its argument: the argument must be an ‘implemen-
tation’ of L. The rule (appl) expresses that application is monotonic with
respect to v in its first argument. This rule reflects the intuition that if
one function implements another function then for any argument the re-
sult of the one function implements the result of the other function. The
rules (λI1) and (λI2) express that abstraction is monotonic with respect
to v in its second argument and anti-monotonic in its first argument. The
rule (λI3) expresses that abstraction is monotonic with respect to = in its
second argument. Because an assumption [x v L] is discharged, this rule
is not redundant. The rule (λI1) reflects the intuition that for two func-
tions with the same argument restriction, the one function implements the
other function if for every acceptable argument the result of the one func-
tion implements the result of the other function. The rule (λI2) reflects the

MODEL CONSTRUCTION FOR λπ[A] 179

intuition that for two functions with the same function body and with com-
parable argument restrictions, the function with the ‘weakest’ restriction
implements the other function. The rule (λI3) reflects the intuition that for
two functions with the same argument restriction, the one function equals
the other function if for every acceptable argument the result of the one
function equals the result of the other function. The rule (π) is a condi-
tional version of the rule (β) of classical lambda calculus. The ‘condition’
reflects the intuition that the result of a function is undefined for every
argument that does not meet the argument restriction.

The types of terms should not be confused with the parameter restric-
tions associated with lambda abstractions. Types are used in the definition
of lambda terms; their purpose being to exclude meaningless lambda terms.
On the other hand, parameter restrictions play a role in the calculus. Their
purpose is to restrict the applicability of the rule (β) of classical lambda
calculus.

The model presented in the next section can be viewed as a justification
of the derivation rules given above.

6.12 Model construction for λπ[A]

By constructing the model A+, the intuition, that a lambda term of the
form (λx v L.M) denotes a function, can be made precise.

The model A+ is obtained below as an extension of the underlying alge-
braic system with pre-order A (A = 〈〈Aκ〉κ∈K , 〈Cc〉c∈Γ , 〈Ff 〉f∈Ω ,R〉, see
Section 6.8). The model A+ has, in addition to domains A+

κ for the basic
types κ (including the higher type 0) that are just the domains κA of A,
function domains A+

σ→τ = A+
σ → A+

τ for the higher types σ → τ . The
model A+ has also, in addition to the pre-order v0 on A+

0 that is just the
pre-order R on the domain A0, pre-orders vσ→τ on A+

σ→τ for the higher
types σ → τ . Every pre-order vτ is defined such that A+

τ contains a maxi-
mal element ∗τ with respect to vτ . This element corresponds to the terms
of type τ that cannot be contracted due to the premise of the rule (π), i.e.
the ‘undefined’ terms. Besides, the model A+ has the constants cA and
operations f A of A (which are related to the domains A+

κ for the basic
types κ only).

Definition. The model A+ is defined by

A+ := 〈〈A+
σ 〉σ∈Type[A], 〈Cc〉c∈Γ , 〈Ff 〉f∈Ω , 〈vτ 〉τ∈HType〉,

where A+
σ and vτ ⊆ A+

τ ×A+
τ are defined by

A+
κ := Aκ for κ ∈ K ,

A+
σ→τ := A+

σ → A+
τ for σ, τ ∈ HType,

180 FOUNDATIONS OF THE STRUCTURING LANGUAGE

a v0 b :⇔ aRb,
f vσ→τ g :⇔ ∀x ∈ A+

σ (f (x) vτ g(x)) for σ, τ ∈ HType .

We write ∗τ for the maximal element of A+
τ with respect to vτ . The sub-

scripts of v and ∗ are dropped when it is clear from context which type is
meant.

The restriction on A that the pre-ordered class 〈A0,R〉 must have a
maximal element may be relaxed. When there is no maximal element, we
can always add ∗0 as a fresh element, and define A+

0 := A0 ∪ {∗0} and
a v0 b :⇔ aRb ∨ b = ∗0. This would not work properly if rule (|=2) was
not restricted to closed formulae, because for formulae with free variables
generally validity in A does not coincide with validity in what is obtained
by adding a fresh element to A0.

The interpretation of terms of λπ[A] in the model A+ is given below
with respect to an assignment in this model.
Definition. An assignment in the model A+ is mapping η:LVAR →⋃{A+

τ | τ ∈ HType} such that η(x) ∈ A+
τ if x is a variable of type τ .

For every assignment η, variable symbol x of type τ and element a ∈ A+
τ ,

we write η(x → a) for the assignment η′ such that η′(y) = η(y) if y 6≡ x
and η′(x) = a.

The interpretation of lambda terms in the model A+ is given by a func-
tion mapping lambda term L of type σ and assignment η to the element
of A+

σ that is the value of L in A+ under assignment η. Similarly, the
interpretation of formulae is given by a function mapping formula ϕ and
assignment η to the truth value of ϕ in A+ under assignment η. We write
[[L]]A

+

η and [[ϕ]]A
+

η for these interpretations. The superscripts are omitted
when it is clear from the context which model is meant.
Definition. The interpretation functions for terms and formulae are in-
ductively defined by

[[x]]η = η(x),
[[c]]η = c,
[[f (L1, . . . ,Ln)]]η = f ([[L1]]η, . . . , [[Ln]]η)
[[(LM)]]η = [[L]]η([[M]]η),
[[(λx v L.M)]]η =
the unique f :A+

ltype(L) → A+
ltype(M) such that for all a ∈ A+

ltype(L):
f (a) = [[M]]η(x→a) if a v [[L]]η,

∗ltype(M) otherwise,
[[(L v M)]]η = T if [[L]]η v [[M]]η,

F otherwise,
[[(L = M)]]η = T if [[L]]η = [[M]]η,

F otherwise.

We write A+ |= ϕ[η] for [[ϕ]]η = T.

REDUCTION FOR λπ-CALCULUS 181

Theorem. λπ-calculus has the following soundness property:

if λπ[A]:Γ ` ϕ, then for all assignments η:
A+ |= ϕ′[η] for all [ϕ′] ∈ Γ ⇒ A+ |= ϕ[η].

Proof: This soundness property is proved for the case that there are no
secondary domains in (Feijs, 1989, Theorem 3.5.3). That proof extends
directly to the general case. 2

In the next section, it is shown how terms of λπ-calculus can be reduced.

6.13 Reduction for λπ-calculus

In λπ-calculus, terms can be reduced with respect to a context in a mean-
ing preserving way to a form not containing subterms of the form (λx v
L1.M)L2, where L1 and L2 are such that L2 v L1 in that context. Such
subterms are contracted corresponding to the rule (π).

Reduction for λπ-calculus is similar to reduction for classical lambda
calculus. The main difference is that it is defined with respect to a context
Γ . As indicated above, not every lambda term of the form (λx v L1.M)L2

can be contracted. Whether this is the case, depends upon the context.
One-step reduction is tantamount to contraction of a subterm. Reduction
is the reflexive and transitive closure of one-step reduction.

Definition. The one-step reduction relation → and the reduction relation
→→ on lambda terms are inductively defined by

Γ ` L2 v L1 ⇒ Γ ` (λx v L1.M)L2 → [x :=L2]M ,
Γ ` Mi → Ni ⇒ Γ ` f (L1, . . . ,Mi , . . . ,Ln) →

f (L1, . . . ,Ni , . . . ,Ln),
Γ ` M → N ⇒ Γ ` (LM) → (LN),
Γ ` M → N ⇒ Γ ` (ML) → (NL),
Γ ` M → N ⇒ Γ ` (λx v M .L) → (λx v N .L),
Γ , [x v L] ` M → N , x /∈ Γ ⇒ Γ ` (λx v L.M) → (λx v L.N),

Γ ` M → N ⇒ Γ ` M →→ N ,
Γ ` M →→ M ,
Γ ` L →→ M ,Γ ` M →→ N ⇒ Γ ` L →→ N .

One-step reduction and reduction convert lambda terms without changing
their meaning.

Fact.

Γ ` M → N ⇒ Γ ` M = N ,

Γ ` M →→ N ⇒ Γ ` M = N .

Proof: By induction over the definition of → and the definition of →→,
respectively. 2

182 FOUNDATIONS OF THE STRUCTURING LANGUAGE

The following two theorems present the properties of reduction for λπ-
calculus which guarantee that reduction always leads in finitely many steps
to a unique fully reduced form.
Theorem. λπ-calculus has the diamond property, i.e.:
if Γ ` L →→ M1 and Γ ` L →→ M2,
then Γ ` M1 →→ N and Γ ` M2 →→ N for some lambda term N from
Λ[A].
Proof: As for the case that there are no secondary domains, see (Feijs,
1989, Theorem 3.8.1). 2

The diamond property is also known as the Church-Rosser property and
confluence.
Definition. For a lambda term M from Λ[A], an infinite reduction path
of M is an infinite sequence Γ ` M → L0 → L1 → · · · such that

Γ ` M → L0 and for every i ∈ N , Γ ` Li → Li+1.

M is called strongly normalizing , written SN(M), iff there does not exist
an infinite reduction path of M .

Theorem. In λπ-calculus every term is strongly normalizing:
SN(M), for all lambda terms M from Λ[A].
Proof: As for the case that there are no secondary domains, see (Feijs,
1989, Theorem 3.9.7). 2

In the proof given in (Feijs, 1989), the strong normalization property for
λπ-calculus follows from the strong normalization property for λβ-calculus.
λβ-calculus for A, λβ[A], is the calculus with the terms and rules of λπ[A]
except that the rule (π) has been replaced by the rule (β):

(β)
Γ ` (λx v L1.M)L2 = [x :=L2]M

.

Reduction for λβ[A] is likewise obtained by replacing the first rule of the
inductive definition of → by the following unconditional rule:

Γ ` (λx v L1.M)L2 → [x :=L2]M .

Reduction for λβ[A] will be referred to as unconditional reduction and
reduction for λπ[A] will be referred to as conditional reduction. λβ-calculus
has the diamond property as well. The proof for λπ-calculus reduces directly
to λβ-calculus.

It follows immediately from the previous two theorems that reduction
always leads in finitely many steps to a unique normal form.
Definition. A lambda term M from Λ[A] is a normal form (with respect
to conditional reduction) iff there exists no lambda term N from Λ[A]
with M → N (where → is the one-step reduction relation of conditional
reduction).

REDUCTION FOR λπ-CALCULUS 183

Fact. In λπ-calculus, every term reduces to a unique normal form.
Proof: A direct consequence of the diamond property and the strong nor-
malization property. 2

We write redπ(M), where M is a lambda term from Λ[A], for the unique
normal form to which M reduces using conditional reduction.

Normal form with respect to unconditional reduction is defined as for
conditional reduction, but with → referring to the one-step reduction re-
lation of unconditional reduction. Obviously in λβ-calculus, every term
reduces to a unique normal form as well. We write redβ(M), where M is a
lambda term from Λ[A], for the unique normal form to which M reduces
using unconditional reduction.

7

Specialization and
Generalization for VVSL

In Chapter 6 DA and λπ-calculus were introduced. The semantics of the
structuring language presented in Chapter 8 describes the meaning of con-
structs in the structuring language in terms of terms from λπ++[M], which
is roughly an instance of λπ-calculus for a subalgebra of DA extended with
higher-order generalizations of the operations of this algebra. The relevant
subalgebra of DA, MDA,∗ the relevant instance of λπ-calculus, λπ[M], and
the relevant higher-order generalizations thereof are all presented in this
chapter.

The mathematical framework for the semantics of specification languages
presented in Chapters 3 and 6 usually needs specialization and sometimes
generalization to fit a particular specification language. This chapter shows
the specialization and generalization needed for VVSL.

First, MDA (Module Description Algebra) is presented. This includes
a precise description of the specific symbols and signatures used for the
semantics of flat VVSL, the language for writing the building blocks of
modularly structured VVSL specifications. Thereafter, λπ[M] (module de-
scription calculus) and λπ++[M] (extended module description calculus)
are presented. λπ[M] is obtained by putting λπ-calculus on top of MDA.
λπ++[M] is obtained by extending λπ[M] with higher-order generaliza-
tions of renaming, importing and exporting. Finally, the semantic domains
for the interpretation of the structuring sublanguage of VVSL are defined.
The main semantic domain consists of the terms of λπ++[M]. The material
on MDA, which is presented in Section 7.1, makes more precise what was
treated informally in Section 4.1.

∗ Strictly speaking, MDA is a reduct of a subalgebra of DAα (DA extended with pa-
rameters, see Section 6.6).

186 SPECIALIZATION AND GENERALIZATION FOR VVSL

7.1 MDA and MSA

For the semantics of VVSL, there are restrictions on the ways in which
symbols may be built from identifiers, origins and symbol types. Not all
symbols from Sym can be used. Amongst the symbols used in the seman-
tics of VVSL, symbols corresponding to user-defined names, symbols corre-
sponding to pre-defined names, symbols corresponding to constructed types
and special symbols (not corresponding to either user-defined names, pre-
defined names or constructed types) must be distinguished. This leads to
VVSL specific restrictions on symbols, symbol signatures and renamings.

One of the special symbols is a special sort symbol for the state space. It
allows, for example, function symbols which correspond to names of state
variables. Amongst the special symbols are also function symbols which are
used for implicit conversion from subtype to type and vice versa.

Module symbols, signatures and renamings

The VVSL specific kinds of symbols, symbol signatures and renamings are
now defined.

We assume three disjoint countably infinite subsets of Ident: the set
UIdent of user-defined names, the set PIdent of pre-defined names and the
set CIdent of constructed type names. In other words, we assume that we
can distinguish identifiers usable as user-defined names, identifiers usable
as pre-defined names and identifiers usable as names of constructed types.

Symbols corresponding to user-defined or pre-defined names are symbols
with an identifier that is a user-defined or pre-defined name. Other symbols
cannot be referred to by name, but symbols corresponding to constructed
types can be referred to by type.

Definition. The sets NIdent of user-defined and pre-defined names, and
MIdent extending NIdent with constructed type names are defined by

NIdent := UIdent∪PIdent,
MIdent := NIdent∪CIdent .

Having introduced NIdent and MIdent, the symbols corresponding to
types (including user-defined or pre-defined type names as well as con-
structed types) and the symbols corresponding to user-defined or pre-
defined function names can be introduced.

Definition. The sets MType of type symbols and MFunc of proper function
symbols are defined by

MType := {〈i , a, sort〉 | i ∈ MIdent, a ∈ Orig},
MFunc := { 〈i , a, 〈func,S1, . . . ,Sn+1〉〉 |

i ∈ NIdent, a ∈ Orig,S1, . . . ,Sn+1 ∈ MType}.

MDA AND MSA 187

The indication proper is used to distinguish function symbols that corre-
spond to user-defined or pre-defined names of functions.

Sort symbols for the state space and the computation space allow func-
tion symbols and predicate symbols which correspond to names of state
variables and operations. The identifiers of the sort symbols for the state
space and the computation space as well as various associated function and
predicate symbols are not a user-defined, pre-defined or constructed type
name.

Definition. State and Comp are special sort symbols, called state sort
symbol and computation sort symbol , respectively, such that

ι(State) /∈ MIdent, ω(State) = 〈〉, τ(State) = sort,
ι(Comp) /∈ MIdent, ω(Comp) = 〈〉, τ(Comp) = sort,
State 6≡ Comp .

s0 is a special constant symbol, called initial state symbol , such that

ι(s0) /∈ MIdent, ω(s0) = 〈〉, τ(s0) = 〈func,State〉.
stn , intn and extn (for all n < ω) are special function and predicate symbols,
called state selection function symbols, internal transition predicate symbols
and external transition predicate symbols, respectively, such that

ι(stn) /∈ MIdent, ω(stn) = 〈〉, τ(stn) = 〈func, Comp,State〉,
ι(intn) /∈ MIdent, ω(intn) = 〈〉, τ(intn) = 〈pred, Comp〉,
ι(extn) /∈ MIdent, ω(extn) = 〈〉, τ(extn) = 〈pred, Comp〉,
for all m < ω: intn 6≡ extm ,
for all m < ω: n 6= m ⇒ stn 6≡ stm , intn 6≡ intm , extn 6≡ extm .

ΣComp, the set of basic symbols associated with the state space and the
computation space, is defined by

ΣComp := {State, Comp} ∪ {s0} ∪⋃{{stn , intn , extn} | n < ω}.
Having introduced sort symbols for the state space and the computation

space, the symbols corresponding to user-defined names of state variables
and operations can also be introduced.

Definition. The sets MVar of state variable symbols and MOp of operation
symbols are defined by

MVar := { 〈i , a, 〈func, State,S 〉〉 |
i ∈ UIdent, a ∈ Orig,S ∈ MType},

MOp := { 〈i , a, 〈pred,S1, . . . ,Sn , Comp,S ′1, . . . ,S
′
m〉〉 |

i ∈ UIdent, a ∈ Orig,S1, . . . ,Sn ,S ′1, . . . ,S
′
m ∈ MType}.

Variable symbols ranging over all values of a type (for every type), vari-
able symbols ranging over all states and variable symbols ranging over all
computations are also needed.

188 SPECIALIZATION AND GENERALIZATION FOR VVSL

Definition. The sets MVal of value symbols, MState of state symbols and
MComp of computation symbols are defined by

MVal := {〈i , a, 〈obj,S 〉〉 | i ∈ Ident, a ∈ Orig,S ∈ MType},
MState := {〈i , 〈〉, 〈obj, State〉〉 | i ∈ Ident},
MComp := {〈i , 〈〉, 〈obj, Comp〉〉 | i ∈ Ident}.

The write variables specified for an operation, indicate that the operation
leaves all state variables other than the ones mentioned as write variables
unmodified. This yields an instance of the frame problem. It has to be
made explicit, what exactly is left unmodified. Because this may expand
by module composition, it is convenient to have modification predicate
symbols for every collection of write variables.
Definition. modl (for all l ∈ Orig∗) are special symbols, called modifica-
tion predicate symbols, such that

ι(modl) /∈ MIdent, ω(modl) = l , τ(modl) = 〈pred, State,State〉,
for all l ′ ∈ Orig∗: l 6= l ′ ⇒ modl 6≡ modl′ .

The set of modification predicate symbols Mod is defined by

Mod := {modl | l ∈ Orig∗}.
Any value belonging to a type can be generated in a certain way. This

gives an induction principle for the type, which has also to be made explicit.
Hence, it is necessary to have generation predicate symbols for every type.
Definition. genS (for all S ∈ MType) are special symbols, called generation
predicate symbols, such that

ι(genS) /∈ MIdent, ω(genS) = ω(S), τ(genS) = 〈pred,S 〉,
for all S ′ ∈ MType: ι(genS) = ι(genS ′).

The set of generation predicate symbols Gen is defined by

Gen := {genS | S ∈ MType}.
A number of pairs of conversion function symbols is associated with the

basic types Z and Q, every basic type that is an enumerated type, and
every defined type. They are special function symbols which are used for
implicit conversion from subtype to type and vice versa.
Definition. ıS→S ′ and ı−1

S ′→S (for S ,S ′ ∈ MType) are special symbols,
called conversion function symbols, such that

ι(ıS→S ′) /∈ MIdent, ω(ıS→S ′) = 〈ω(S), ω(S ′)〉, τ(ıS→S ′) = 〈func,S ,S ′〉,
ι(ı−1

S ′→S) /∈ MIdent, ω(ı−1
S ′→S) = 〈ω(S), ω(S ′)〉, τ(ı−1

S ′→S) = 〈func,S ′,S 〉,
for all T ,T ′ ∈ MType: ι(ıS→S ′) = ι(ıT→T ′), ι(ı−1

S ′→S) = ι(ı−1
T ′→T),

for all T ,T ′ ∈ MType: ι(ıS→S ′) 6= ι(ı−1
T ′→T).

The set of conversion function symbols Conv is defined by

Conv :=
⋃{{ıS→S ′ , ı

−1
S ′→S} | S ,S ′ ∈ MType}.

MDA AND MSA 189

Having introduced all symbols that may be used for the semantics of
VVSL, the VVSL specific kinds of symbols, symbol signatures and renam-
ings can be defined.

Definition. The set MSym of module symbols is defined by

MSym := MType∪MFunc∪MVar∪MOp∪
ΣComp ∪Mod∪Gen∪Conv∪MVal∪MState∪MComp .

Each non-empty symbol signature used in the semantics of VVSL contains
the following module symbols: the symbols associated with the basic type
B, the basic symbols associated with the state space and the computation
space and the modification predicate symbols.

Definition. A module symbol signature is a signature Σ ∈ SSig such that

Σ 6= { } ⇒ {B, tt , ff } ∪ ΣComp ∪Mod ⊆ Σ ⊆ MSym .

B, tt , ff are used to denote the symbols which are associated with the ba-
sic type B, i.e. the type denoting the set of boolean values (see also Ap-
pendix D). The least non-empty module symbol signature Σ∗ is defined by

Σ∗ := {B, tt , ff } ∪ ΣComp ∪Mod .

The set MSSig of all module symbol signatures is defined by

MSSig := {Σ | Σ is a module symbol signature }.
Σ∗ is included in every non-empty module symbol signature. Note that
the modification predicate symbols modl are in every non-empty module
symbol signature. Because the externally visible signature of a module de-
scription must be a module symbol signature (see next subsection), these
modification predicate symbols are always among the visible ones. This
prevents an anomaly in the composition of descriptions, since, irrespective
of their visibility, properties about modification rights from the descriptions
concerned generally give rise to new visible consequences.

Definition. A module renaming is a renaming ρ ∈ Ren such that

ρ(State) = State,
ρ(Comp) = Comp,
ρ(s0) = s0,
ρ(stn) = stn ,
ρ(intn) = intn ,
ρ(extn) = extn ,
ρ(modl) = modl ,

ρ(genS) = genρ(S),
ρ(ıS→S ′) = ıρ(S)→ρ(S ′),

ρ(ı−1
S→S ′) = ı−1

ρ(S)→ρ(S ′),

ρ(MType) ⊆ MType,
ρ(MFunc) ⊆ MFunc,
ρ(MVar) ⊆ MVar,
ρ(MOp) ⊆ MOp,

ρ(B) = B,
ρ(tt) = tt ,
ρ(ff) = ff .

So each renaming used in the semantics of VVSL maps symbols from Σ∗
to themselves.

190 SPECIALIZATION AND GENERALIZATION FOR VVSL

Domains of MDA

Having introduced module symbols, module symbol signatures and module
renamings, the domains of MDA can be introduced.

Definition. MNam, the set of all user-defined names for types, functions,
state variables and operations, is defined by

MNam :=
{w ∈ Nam | w ∈ MType∪MFunc∪MVar∪MOp, ι(w) ∈ UIdent}.

MRen, the set of all module renamings, is defined by

MRen := {ρ ∈ Ren | ρ is a module renaming}.

MSig, the set of all module name signatures, is defined by

MSig := {Σ ∈ Sig | Σ ∈ MSSig}.

MDes, the set of all module descriptions, is defined by

MDes := {X ∈ Des | ΣX ∈ MSSig,ΓX ∈ MSSig}.

MPar, the set of all module parameters, is defined by

MPar := {P ∈ Par | δ(P) ∈ MDes}.

Note that the empty symbol signature is also a module symbol signature.
Thus, a set MDes is obtained, which is also closed under the auxiliary
operation π.

The specialization MDA

The sets MNam, MRen, MSig, MDes and MPar are subsets of Nam, Ren,
Sig, Des and Par, respectively, and they are closed under the operations
of DAα. So they determine a subalgebra of DAα in a trivial way: MNam,
MRen, MSig, MDes and MPar are its domains and the operations of DAα

restricted to these domains are its operations. This subalgebra still includes
one domain and several operations that are not needed for the meaning of
the modularization constructs in VVSL.

Definition. Let MDA′ be the subalgebra of DAα with domains MNam,
MRen, MSig, MDes and MPar. MDA (Module Description Algebra) is the
reduct of MDA′ that is obtained by removing the domain MNam and the
operations • on names, ◦ on renamings, ∆ on signatures, µ and π on
descriptions, and δ on parameters.

MDA AND MSA 191

MDA consists of the following domains, constants and operations:

Domains: MRen
MSig
MDes
MPar

Constants: ρ : MRen (ρ ∈ MRen)
Σ : MSig (Σ ∈ MSig)
X : MDes (X ∈ MDes)
P : MPar (P ∈ MPar)

Operations: • : MRen×MSig → MSig
+ : MSig×MSig → MSig
2 : MSig×MSig → MSig

Σ : MDes → MSig
• : MRen×MDes → MDes
+ : MDes×MDes → MDes
2 : MSig×MDes → MDes

• : MRen×MPar → MPar
α : MPar×MDes×MDes → MDes .

The symbols introduced above to denote the domains, constants and op-
erations of MDA constitute the signature of MDA. The terms of MDA, i.e.
the terms used to denote elements of the domains of MDA are constructed
from the constant and operation symbols in the usual way.

According to the definition of the implementation relation for subalge-
bras of DAα in Section 6.6, the implementation relation of MDA′ (the
subalgebra of DAα that was used in the definition of MDA) is the restric-
tion of the implementation relation of DAα to MDes. This relation is a
pre-order on MDes. 〈{ }, { }, { }, π⊥〉 is a maximal element with respect to
this pre-order. MDA together with this implementation relation make up
an algebraic system with pre-order which is put on top of λπ-calculus in
Section 7.2.

The specialization MSA

It is useful to define a particular reduct of MDA, which covers only the
syntactic aspects of modules, viz. their signatures. In Chapter 8, a general-
ized instance of λπ-calculus for this reduct (together with an appropriate
pre-order) is used, among other things, to describe the well-formedness of
constructs in the structuring language.

192 SPECIALIZATION AND GENERALIZATION FOR VVSL

Definition. MSA (Module Signature Algebra) is the reduct of MDA, that
is obtained by removing the domains MDes and MPar and every operation
having MDes or MPar as one of its argument domains or its result domain.
MSA consists of the following domains, constants and operations:

Domains: MRen
MSig

Constants: ρ : MRen (ρ ∈ MRen)
Σ : MSig (Σ ∈ MSig)

Operations: • : MRen×MSig → MSig
+ : MSig×MSig → MSig
2 : MSig×MSig → MSig .

The symbols introduced above to denote the domains, constants and
operations of MSA constitute the signature of MSA. The terms of MSA, i.e.
the terms used to denote elements of the domains of MSA are constructed
from the constant and operation symbols in the usual way.

The inverse of the set inclusion relation on P(MSym), ⊇, restricted to
MSig is a pre-order on MSig. { } is a maximal element with respect to this
pre-order. ⊇ can be viewed as a simplified version of the implementation
relation. MSA together with ⊇ make up another algebraic system with
pre-order which is put on top of λπ-calculus in Section 7.2.

7.2 Instantiating λπ-calculus

In order to provide the structuring sublanguage of VVSL with a seman-
tics, λπ-calculus is put on top of a specific algebraic system with pre-order,
viz. the one induced by MDA and the implementation relation v on mod-
ule descriptions (see Section 7.1). The λπ-calculus obtained in this way is
denoted by λπ[M]. In VVSL, all constituent modules of modularization
constructs may be parametrized modules. This necessitates generalizations
of renaming, importing and exporting which can be applied to description
terms of higher types other than the ground type 0. λπ[M] extended with
these generalizations is denoted by λπ++[M]. Both calculi are defined in
this section.

It is useful to put λπ-calculus also on top of the algebraic system with
pre-order that is induced by MSA and its associated pre-order ⊇ on module
name signatures (see Section 7.1). The λπ-calculus obtained in this way,
denoted by λπ[S], covers only the syntactic aspects of modules. For λπ[S],
generalizations of renaming, union and intersection which can be applied
to signature terms of higher types other than 0, are likewise needed. The
resulting calculus is denoted by λπ++[S]. These calculi are also defined in
this section. The generalized calculus is mainly used to describe the well-

INSTANTIATING λπ-CALCULUS 193

formedness of constructs in the structuring language.

The instantiation λπ[M]

λπ[M] is the λπ-calculus with MDA together with its implementation re-
lation as underlying algebraic system with pre-order.

Definition. The algebraic system with pre-order M is the algebraic sys-
tem with pre-order induced by MDA and the restriction of the implemen-
tation relation of DAα to MDes. 0 is identified with MDes.

λπ[M] (Module Description Calculus) is the instance of λπ-calculus for M.
So MRen, MSig, MDes and MPar are the basic types of λπ[M].

The constant symbols and function symbols from Sig(M), i.e. the signa-
ture of MDA introduced in Section 7.1, are used as constant symbols and
function symbols for the terms of λπ[M]. Because constants are consid-
ered to be symbols themselves, this implies that the collection of constant
symbols contains all elements of each of the domains of M.

The binary function symbols •, + and 2 are used in infix notation.

The generalization λπ++[M]

Λ[M] contains only terms of the forms

ρ • L, L1 + L2,Σ 2 L and α(P ,L1,L2),

where L, L1 and L2 are lambda terms from Λ[M] of higher type 0. Using
the intuition that terms of the form (λx v L.M) denote functions, this
means that renaming, importing, exporting and origin substitution are not
generalized to (higher-order) functions on module descriptions. The gener-
alizations are straightforward except for renaming, but unfortunately none
of them can be treated as an abbreviation. They must all be treated as ex-
tensions. The intention is that, with the introduction of the extensions, re-
naming, importing, exporting and origin substitution become interchange-
able with application. For generalized renaming, this means that it has to
yield functions which when applied to renamed arguments deliver results
as if renaming has been applied to the value of the original function for
the original arguments. Unlike with the other operations, renaming does
not have the suitable properties to make this derivable by a simple addi-
tional rule. The rule concerned has to be very explicit about how terms
with generalized renamings are to be ‘unfolded’. Following the definition
of the unfold operation, this unfolding will be explained. Origin substitu-
tion yields the module description provided as third argument except that
the origins of symbols may be different. The sole purpose of the module
description provided as second argument is to provide for the origins to be
substituted for certain origin variables in the third argument. Therefore,

194 SPECIALIZATION AND GENERALIZATION FOR VVSL

the above-mentioned interchangeability only applies to the third argument
of generalized origin substitution.

Below, λπ[M] is extended with the generalizations of renaming, import-
ing, exporting and origin substitution.† The resulting calculus is denoted
by λπ++[M].

In the construction of the terms of λπ++[M], the following additional
(higher-order) function symbols are used:

for every σ ∈ HType, the symbol •σ;
for every σ, τ ∈ HType, the symbol +(σ,τ);
for every σ ∈ HType, the symbol 2σ;
for every σ, τ ∈ HType, the symbol α(σ,τ).

The symbols •, +, 2 and α are identified with •0, +(0,0), 20 and α(0,0),
respectively. These additional symbols are used without superscripts when
this causes no ambiguity.

Definition. The lambda terms of λπ++[M] , denoted by Λ++[M], are
inductively defined by the formation rules for the terms of λπ[M] and the
following additional formation rules:

6. if ρ is a lambda term of the basic type MRen and L is a lambda term of
higher type σ, then (ρ •σ L) is a lambda term of higher type σ;

7. if L1 and L2 are lambda terms of higher types σ = σ1, . . . , σn → 0 and
τ = τ1, . . . , τm → 0, respectively, then (L1 +(σ,τ) L2) is a lambda term
of higher type σ1, . . . , σn , τ1, . . . , τm → 0;

8. if Σ is a lambda term of the basic type MSig and L is a lambda term of
higher type σ, then (Σ 2σ L) is a lambda term of higher type σ;

9. if P is a lambda term of the basic type MPar, and L1 and L2 are lambda
terms of higher types σ and τ , respectively, then α(σ,τ)(P ,L1,L2) is a
lambda term of higher type τ .

We shall henceforth use (with or without subscripts):

ρ to stand for an arbitrary lambda term of the basic type MRen,
Σ to stand for an arbitrary lambda term of the basic type MSig,
P to stand for an arbitrary lambda term of the basic type MPar,
L, M and N to stand for arbitrary lambda terms of higher type (which
includes the basic type MDes).

In the rule (+1), we write M 0
1 to indicate that M1 must have higher type

0.

Definition. The derivation system of λπ++[M] is defined by the deriva-

† In (Feijs, Jonkers, Koymans and Renardel de Lavalette, 1987, Section 4.4), class
calculus, a λπ-calculus closely connected to λπ[M], is extended with similar
generalizations.

INSTANTIATING λπ-CALCULUS 195

tion rules of λπ[M] and the following additional rules:

(•)
Γ ` L = unfold(L) Γ ` Σ = unfold(Σ)

(+1) Γ ` M 0
1 + (λx v L.M2) = λx v L.(M1 + M2)

if x /∈ M1

(+2) Γ ` (λx v L.M1) + M2 = λx v L.(M1 + M2)
if x /∈ M2

(2)
Γ ` Σ 2 (λx v L.M) = λx v L.(Σ 2 M)

(α1) Γ ` α(P , λx v L.M1,M2) = α(P , [x :=L]M1,M2)

(α2) Γ ` α(P ,M1, λx v L.M2) = λx v α(P ,M1,L). α(P ,M1,M2)

The operation unfold (on lambda terms of a higher type or the basic type
MSig) and an auxiliary operation expand are simultaneously and induc-
tively defined by

unfold(x) = x ,
unfold(c) = c,
unfold(LM) = unfold(L)unfold(M),
unfold(λx v L.M) = λx v unfold(L).unfold(M),
unfold(ρ • L) = expand(ρ, unfold(L), { }),
unfold(L1 + L2) = unfold(L1) + unfold(L2),
unfold(Σ 2 L) = unfold(Σ) 2 unfold(L),
unfold(α(P ,L1,L2) = α(P , unfold(L1), unfold(L2)),
unfold(ρ • Σ) = expand(ρ, unfold(Σ), { }),
unfold(Σ1 + Σ2) = unfold(Σ1) + unfold(Σ2),
unfold(Σ1 2 Σ2) = unfold(Σ1) 2 unfold(Σ2),
unfold(Σ(L)) = Σ(unfold(L)),

expand(ρ, x ,V) = x if x ∈ V ,
ρ • x otherwise,

expand(ρ, c,V) = ρ • c,
expand(ρ,LM ,V) = expand(ρ,L,V)expand(ρ,M ,V),
expand(ρ, λx v L.M ,V) = λx v expand(ρ,L,V).expand(ρ,M ,V ∪ {x}),
expand(ρ, ρ1 • L,V) = (ρ · ρ1) • expand(ρ,L,V),
expand(ρ,L1 + L2,V) = expand(ρ,L1,V) + expand(ρ,L2,V),
expand(ρ,Σ 2 L,V) = expand(ρ,Σ ,V) 2 expand(ρ,L,V),
expand(ρ, α(P ,L1,L2,V) = α(ρ • P , expand(ρ,L1,V), expand(ρ,L2,V)),

196 SPECIALIZATION AND GENERALIZATION FOR VVSL

expand(ρ, ρ1 • Σ ,V) = (ρ · ρ1) • expand(ρ,Σ ,V),
expand(ρ,Σ1 + Σ2,V) = expand(ρ,Σ1,V) + expand(ρ,Σ2,V),
expand(ρ,Σ1 2 Σ2,V) = expand(ρ,Σ1,V) 2 expand(ρ,Σ2,V),
expand(ρ,Σ(L),V) = Σ(expand(ρ,L,V)).
The operation expand is a partial operation, because the above-mentioned
rules may introduce undefined module renamings ρ · ρ1. This is the case if
ρ1 is not renameable by ρ (see Section 6.6).

The simple rules (+1), (+2), (2) and (α2) are sufficient to make the
intended interchangeability of importing, exporting and origin substitution
with application derivable. The complex rule (•) is needed to make the
intended interchangeability of renaming with application derivable. This
rule is very explicit about how terms with generalized renamings are to be
unfolded. In order to unfold a term of the form ρ • L, all subterms of L
with generalized renamings have to be unfolded first. It is important that,
when L is of the form (λx v L′.M ′), free occurrences of x in M ′ are not
renamed (i.e. not replaced by the term ρ • x). The auxiliary operations
expand accomplish this by ‘remembering’ the lambda variables that may
not be renamed.

The rule (α1) expresses that the second argument of origin substitution
can always be replaced by a module description. This is in accordance
with the intuition that the sole purpose of the second argument of origin
substitution is to provide for the origins to be substituted for certain origin
variables.

Definition. By considering the rules (•), (+1), (+2), (2), (α1) and (α2)
as reduction rules, reduction for λπ++[M] is obtained.

It will only be described informally here. As usual, one-step reduction
for λπ++[M] is tantamount to contraction of a subterm. The main dif-
ference with reduction for λπ[M] is that not only subterms of the form
(λx v L1.M)L2 can be contracted. The subterms that are candidates for
contraction are terms of the following forms:

(λx v L1.M)L2,
ρ • L,
M 0

1 + (λx v L.M2),
(λx v L.M1) + M2,
Σ 2 (λx v L.M),
α(P , λx v L.M1,M2),
α(P ,M1, λx v L.M2).

Subterms of the first two forms cannot always be contracted. For terms
of the first form, it depends upon the context as for λπ[M]. Terms of the
second form cannot be contracted if they are already in unfolded form,
which is obvious.
Fact. In λπ++[M], every term reduces to a unique normal form.

INSTANTIATING λπ-CALCULUS 197

Proof: By showing that the diamond property and the strong normaliza-
tion property hold. This is shown in a similar way as for generalized class
calculus, see (Feijs, Jonkers, Koymans and Renardel de Lavalette, 1987,
Theorems 4.4.8.1 and 4.4.9.4), using that the following holds:

Γ ` M → N ⇒ Γ ` unfold(M) →→ unfold(N). 2

Unconditional reduction for λπ++[M], which only differs in the fact that
subterms of the form (λx v L1.M)L2 can always be contracted, gives also
unique normal forms.

The instantiation λπ[S]

λπ[S] is the λπ-calculus with MSA together with the inverse inclusion re-
lation on its signatures as underlying algebraic system with pre-order.

Definition. The algebraic system with pre-order S is the algebraic system
with pre-order induced by MSA and the restriction of the inverse of the set
inclusion relation on P(MSym) to MSig. 0 is identified with MSig.

λπ[S] (Module Signature Calculus) is the instance of λπ-calculus for S. So
MRen and MSig are the basic types of λπ[S].

The constant symbols and function symbols from Sig(S), i.e. the sig-
nature of MSA introduced in Section 7.1, are used as constant symbols
and function symbols for the terms of λπ[S]. Because constants are consid-
ered to be symbols themselves, this implies that the collection of constant
symbols contains all elements of each of the domains of S.

The binary function symbols •, + and 2 are used in infix notation.

The generalization λπ++[S]

Below, λπ[S] is extended with higher-order generalizations of renaming,
union and intersection of signatures. The generalizations are analogous to
those for λπ++[M]. The resulting calculus is denoted by λπ++[S].

In the construction of the terms of λπ++[S], the following additional
(higher-order) function symbols are used:

for every σ ∈ HType, the symbol •σ;
for every σ, τ ∈ HType, the symbol +(σ,τ);
for every σ ∈ HType, the symbol 2σ.

The symbols •, + and 2 are identified with •0, +(0,0) and 20, respectively.
The additional symbols are used without superscripts when this causes no
ambiguity.

Definition. The lambda terms of λπ++[S], denoted by Λ++[S], are in-
ductively defined by the formation rules for the terms of λπ[S] and the
following additional formation rules:

198 SPECIALIZATION AND GENERALIZATION FOR VVSL

6′. if ρ is a lambda term of the basic type MRen and Σ is a lambda term
of higher type σ, then (ρ •σ Σ) is a lambda term of higher type σ;

7′. if Σ1 and Σ2 are lambda terms of higher types σ = σ1, . . . , σn → 0 and
τ = τ1, . . . , τm → 0, respectively, then (Σ1 +(σ,τ) Σ2) is a lambda term
of higher type σ1, . . . , σn , τ1, . . . , τm → 0;

8′. if Σ1 and Σ2 are lambda terms of higher types 0 and σ, respectively,
then (Σ1 2σ Σ2) is a lambda term of higher type σ.

We shall henceforth use (with or without subscripts):

ρ to stand for an arbitrary lambda term of the basic type MRen,
Σ to stand for an arbitrary lambda term of higher type (which includes
the basic type MSig).

Definition. The derivation system of λπ++[S] is defined by the derivation
rules of λπ[S] and the additional derivation rules (•), (+1), (+2) and (2)
of λπ++[M], but with the place-holder L replaced by Σ , etc.

The operations unfold and expand are in this case simultaneously and
inductively defined by

unfold(x) = x ,
unfold(c) = c,
unfold(Σ1Σ2) = unfold(Σ1)unfold(Σ2),
unfold(λx v Σ1.Σ2) = λx v unfold(Σ1).unfold(Σ2),
unfold(ρ • Σ) = expand(ρ, unfold(Σ), { }),
unfold(Σ1 + Σ2) = unfold(Σ1) + unfold(Σ2),
unfold(Σ1 2 Σ2) = unfold(Σ1) 2 unfold(Σ2),

expand(ρ, x ,V) = x if x ∈ V ,
ρ • x otherwise,

expand(ρ, c,V) = ρ • c,
expand(ρ,Σ1Σ2,V) = expand(ρ,Σ1,V)expand(ρ,Σ2,V),
expand(ρ, λx v Σ1.Σ2,V) = λx v expand(ρ,Σ1,V).

expand(ρ,Σ2,V ∪ {x}),
expand(ρ, ρ1 • Σ ,V) = (ρ · ρ1) • expand(ρ,Σ ,V),
expand(ρ,Σ1 + Σ2,V) = expand(ρ,Σ1,V) + expand(ρ,Σ2,V),
expand(ρ,Σ1 2 Σ2,V) = expand(ρ,Σ1,V) 2 expand(ρ,Σ2,V).

This operation expand is also a partial operation: one of the rules introduces
undefined module renamings ρ · ρ1, if ρ1 is not renameable by ρ.

Definition. For Σ ∈ Λ++[S], Σ is renameable by ρ iff expand(ρ,Σ , { }) is
defined.

Reduction for λπ++[S] is similar to reduction for λπ++[M]. We only
mention here that the subterms that are candidates for contraction are

SEMANTIC DOMAINS FOR THE STRUCTURING LANGUAGE 199

terms of the following forms:

(λx v Σ1.Σ2)Σ3,
ρ • Σ ,
Σ 0

1 + (λx v Σ2.Σ3),
(λx v Σ1.Σ2) + Σ3,
Σ1 2 (λx v Σ2.Σ3).

Subterms of the first two forms cannot always be contracted. For terms
of the first form, it depends upon the context as for λπ[S]. Terms of the
second form cannot be contracted if they are already in unfolded form.

In λπ++[S], every term reduces to a unique normal form. The corre-
sponding unconditional reduction, which only differs in the fact that sub-
terms of the form (λx v Σ1.Σ2)Σ3 can always be contracted, also gives
unique normal forms.

7.3 Semantic domains for the structuring language

The main semantic domain for the interpretation of the modularization
and parametrization constructs of VVSL is a domain of description terms.
A domain of signature terms is used to represent syntactic properties of
the modularization and parametrization constructs.

This section starts with the definition of the set of lambda variable sym-
bols that underlie the domain of signature terms and the domain of de-
scription terms. Thereafter, these domains are defined.

Lambda variable symbols

In the definition of λπ-calculus, only one assumption about lambda vari-
able symbols is made (viz. the assumption that there are lambda variable
symbols for each higher type). So lambda variable symbols may be actu-
alized in many ways. For the use of λπ-calculus in the formal definition of
VVSL, this is done in a way resembling the way in which the symbols of
MPLω are actualized for the use of this logic as the underlying logic of DA
in Section 6.2. Lambda variable symbols are built from user-defined names
and higher types.

Definition. The set LVar of lambda variable symbols is defined by

LVar := {〈i , τ〉 | i ∈ UIdent, τ ∈ HType}.
We write ι(x), where x = 〈i , τ〉 is a lambda variable symbol, for i . Instead
of 〈i , τ〉, we write iτ .

Symbols from LVar are interpreted as lambda variable symbols of λπ-
calculus according to the following rule:

• each x = iτ is a lambda variable symbol of type τ in λπ-calculus.

200 SPECIALIZATION AND GENERALIZATION FOR VVSL

This actualization of lambda variable symbols is implicit in the definition
of the domains of module signature terms and module description terms.

Domains of signature terms and description terms

Definition. The domain STerm of module signature terms is defined by

STerm := Λ++[S].

The domain DTerm of module description terms is defined by

DTerm := Λ++[M].

We write STermR and STermS for the subdomains {ρ ∈ STerm | ltype(ρ) =
MRen} and {ρ ∈ STerm | ltype(ρ) ∈ HType}, respectively, of STerm. We
write DTermR, DTermS , and DTermD for the subdomains {ρ ∈ DTerm |
ltype(ρ) = MRen}, {ρ ∈ DTerm | ltype(ρ) = MSig}, {ρ ∈ DTerm | ltype(ρ) ∈
HType}, respectively, of DTerm.

There is a mapping from description terms to signature terms correspond-
ing to taking the signature for description terms of type MDes.
Definition. The forgetful transformation from description terms to signa-
ture terms is given by a mapping sterm:DTerm → STerm, which is induc-
tively defined by

sterm(x) = Σ(x),
sterm(c) = Σ(c) if c: MDes,

c otherwise,
sterm(LM) = sterm(L)sterm(M),
sterm(λx v L.M) = λx v sterm(L).sterm(M),
sterm(ρ • L) = ρ • sterm(L),
sterm(L1 + L2) = sterm(L1) + sterm(L2),
sterm(Σ 2 L) = sterm(Σ) 2 sterm(L),
sterm(α(P ,L1,L2)) = sterm(L2),
sterm(ρ • Σ) = ρ • sterm(Σ),
sterm(Σ1 + Σ2) = sterm(Σ1) + sterm(Σ2),
sterm(Σ1 2 Σ2) = sterm(Σ1) 2 sterm(Σ2),
sterm(Σ(L)) = sterm(L).

Obviously, redβ(Σ(L)) = redβ(sterm(L)) if ltype(L) = 0.

8

Definition of the Structuring
Language

This chapter contains a formal semantics for the structuring sublanguage of
VVSL. This language consists of modularization constructs and parametri-
zation constructs. The semantics presented describes the meaning of con-
structs in the language in terms of terms from λπ++[M], which is roughly
an instance of λπ-calculus for a subalgebra of DA extended with higher-
order generalizations of the operations of this algebra. DA and λπ-calculus
were introduced in Chapter 6. DA is a general algebraic model of mod-
ular specification and λπ-calculus is a variant of classical typed lambda
calculus. The relevant subalgebra of DA, MDA, the relevant instance of
λπ-calculus, λπ[M], and the relevant higher-order generalizations thereof
were all introduced in Chapter 7. The presentation in this chapter illus-
trates an approach to give a formal semantics for a language for modular
structuring of specifications. The semantics presented describes the mean-
ing of modularly structured VVSL specifications as lambda terms denoting
essentially presentations of logical theories about what is described in them
or (higher-order) functions on such theory presentations.

Chapter 5 contains a logic-based semantics for flat VVSL by which the
meaning of constructs in flat VVSL is described in terms of formulae from
the language of MPLω. The semantics for the structuring language of VVSL
presented in this chapter, which describes the meaning of the modulariza-
tion and parametrization constructs complementing flat VVSL, is built on
top of the logic-based semantics for flat VVSL. The building blocks of the
terms of λπ++[M] are the constants of MDA and these constants are es-
sentially presentations of theories by sets of formulae of MPLω.

It is worth noticing again that many laws commonly holding in mod-
els proposed for modularly structured algebraic specification also hold in
DA, the model used, together with λπ-calculus, as the basis for the pre-
sented semantics. Nevertheless, DA has some special features, which are not
found in those models, making it more suitable as the underlying model
for modularizing model-oriented, state-based specifications. In λπ-calculus,

202 DEFINITION OF THE STRUCTURING LANGUAGE

no essential deviations from classical typed lambda calculus are imposed:
λπ-calculus has parameter restrictions in lambda abstractions and conse-
quently a conditional version of the rule (β). This extension permits us to
put requirements on the actual parameters to which parametrized modules
may be applied.

The illustrated approach is applicable to any structuring language for
model-oriented specifications. The only prerequisite is a logic-based se-
mantics for the flat specification language concerned. Other proposed ap-
proaches commonly have the same prerequisite, but notwithstanding formal
semantics for flat model-oriented specification languages are generally not
logic-based. For example, the formal semantics of VDM-SL presented in the
draft ISO standard is not logic-based. However, the logic-based semantics
of flat VVSL presented in Chapter 5 includes a logic-based semantics for
most of VDM-SL. Note that modularization and parametrization are not
incorporated in the standardized version of VDM-SL; the mathematical
foundations of the proposals could not be completed satisfactorily.

Note that as a result of the approach applied in this book features of
flat VVSL can be understood without any understanding of the modular-
ization and parametrization features of VVSL, the modularization features
of VVSL can be understood without any understanding of the features
of flat VVSL and the parametrization features of VVSL, etc. Indeed, the
high degree of orthogonality is perhaps more relevant than the particular
ingredients used. It supports the development of proof rules which allow
theorems to be proved about a module from theorems about the modules
from which it has been constructed. This is further discussed in Section 9.2.
Such proof rules naturally suggest general proof strategies which exploit the
modular structure of specifications, which matters to the issue of formal
correctness proofs of design steps (i.e. verified design). Besides, they en-
able compositional development of theories about modules, which seems
essential to the issue of module reusability. The proof rules concerned can
be devised without understanding the features of flat VVSL. If efficiency
is an issue, it seems rarely possible to maintain the modular structure of
a specification in the ultimate software system – see also (Fitzgerald and
Jones, 1990). This justifies the supply of conversion rules which allow us to
transform a specification to another specification with a different modular
structure in a meaning preserving way. Such conversion rules can also be
devised without understanding the features of flat VVSL. Of course, all
this is also relevant to other model-oriented specification languages.

The meaning of constructs in the structuring language is only defined for
well-formed language constructs. Both the well-formedness and meaning of
a construct generally depend on the name introducing constructs in the
scope in which it occurs. In the case of the modularization and parametri-
zation constructs of VVSL, the constructs concerned comprise definitions
introducing names for types, functions, state variables and operations as

CONTEXTS 203

well as constructs introducing names for modules (abstractions and local
definitions). So it does not suffice to use the contexts introduced in Chap-
ter 5 for modelling the scope. For modelling the scope with respect to names
for modules, other contexts are needed. They are introduced before the ac-
tual presentation of the syntax and semantics begins. In later sections, the
well-formedness and meaning of constructs in the structuring sublanguage
of VVSL is described with respect to a context modelling the scope in re-
lation to names for types, functions, state variables and operations as well
as a context modelling the scope in relation to names for modules.

There is a section that deals with the syntax and semantics of complete
modularly structured specifications and a section that deals with the mod-
ularization and parametrization constructs. Each section starts with an
overview of the constructs concerned, a presentation of their syntax and
some general remarks regarding their well-formedness, syntactic properties
and meaning. Following this introduction, there are separate subsections
on the constructs of the various forms that are distinguished by the pro-
duction rules given in the syntax presentation concerned. In fact, only a
kernel of the structuring sublanguage of VVSL is defined in this chapter:
the remainder is introduced as abbreviations in Appendix E.

8.1 Contexts

The well-formedness and meaning of a construct from flat VVSL gener-
ally depends on its name context and symbol context, respectively. Name
contexts and symbol contexts were introduced in Section 5.1, together with
predicates and mappings on them which are relevant to the well-formedness
and meaning of constructs in flat VVSL. Name contexts and symbol con-
texts, as well as some of these predicates and mappings, are also relevant
to the well-formedness and meaning of modularization and parametriza-
tion constructs, but they are not sufficient. This section introduces two
additional notions of context which are needed for the well-formedness and
meaning of the modularization and parametrization constructs in addition
to the above-mentioned ones. Predicates and mappings, which are used to
describe the context dependent aspects of the well-formedness, syntactic
properties and meaning of the modularization and parametrization con-
structs, are also defined.

In the structuring sublanguage of VVSL, abstraction modules and local
definition modules introduce names for modules. Such a name introducing
construct introduces a name for a possibly parametrized module descrip-
tion; the constructs within which the name is visible constitute the scope
of the construct. For this name, there must be a corresponding lambda
variable symbol in λπ++[M]. The corresponding lambda variable symbol
is obtained by combining the name and the type of the lambda variable
symbol. Both the well-formedness and meaning of a modularization or pa-

204 DEFINITION OF THE STRUCTURING LANGUAGE

rametrization construct depend on the symbols corresponding to the names
of modules that occur in the construct as well as the terms associated with
them (see below). A prerequisite for well-formedness is that that these
names have been introduced by constructs in the scope in which the mod-
ularization or parametrization construct occurs.

The context of a modularization or parametrization construct consists of
all lambda variable symbols corresponding to names introduced by name
introducing constructs in the scope in which the construct occurs, each
one together with the term it is associated with: the parameter restriction
for restricted parameters of abstraction modules and the abbreviated term
for module bindings of local definition modules. This provides all details
about the names of modules occurring in the construct on which its well-
formedness and meaning depends.

In fact, we distinguish between two different kinds of lambda variable
contexts: those where the lambda variable symbols are coupled with de-
scription terms, called description contexts, and those where they are cou-
pled with signature terms, called signature contexts. This is not essential,
but it avoids blurring the distinction between well-formedness and meaning.
For well-formedness, the signature contexts suffice.
Definition. The sets SCxt of signature contexts and DCxt of description
contexts are defined by

SCxt := { 〈〈x1,Σ1〉, . . . , 〈xn ,Σn〉〉 ∈ LVar× STermS)∗ |
n∧

j=1

(ltype(xj) = ltype(Lj)) ∧
n∧

j=1

(
n∧

k=j+1

(ι(xj) 6= ι(xk)))},

DCxt := { 〈〈x1,L1〉, . . . , 〈xn ,Ln〉〉 ∈ (LVar×DTermD)∗ |
n∧

j=1

(ltype(xj) = ltype(Lj)) ∧
n∧

j=1

(
n∧

k=j+1

(ι(xj) 6= ι(xk)))}.

The requirement expressed by
n∧

j=1

(
n∧

k=j+1

(ι(xj) 6= ι(xk))), enforces that there

is at most one lambda variable symbol corresponding to each name. Note
that signature and description contexts are sequences (in contrast with
sets). Sequences are used to preserve the introduction order of lambda
variable symbols. Thus, substitutions can be applied in the right order
when free variables are removed from a term (in order to determine by
syntactic manipulation properties which it represents).

The reconstruction of the signature context of a construct from its de-
scription context is straightforward. It is needed to describe the meaning
of import module constructs.
Definition. The mapping scxt :DCxt → SCxt is defined by

scxt(〈〈x1,L1〉, . . . , 〈xn ,Ln〉〉) := 〈〈x1, sterm(L1)〉, . . . , 〈xn , sterm(Ln)〉〉

CONTEXTS 205

(the mapping sterm: DTerm → STerm was introduced in Section 7.3). We
write Γ for scxt(Γ).

An identifier used as a name for a module description is called visible in
its signature context if it is part of a lambda variable symbol being found in
that context. This property is defined for signature contexts only, because
it is only needed to define well-formedness.
Definition. The predicate visible:UIdent× SCxt is defined by

visible(i , 〈〈x1,Σ1〉, . . . , 〈xn ,Σn〉〉) :⇔
n∨

j=1

(i = ι(xj)).

In the description of the well-formedness of constructs, we write ‘x is visible
in ∆’ instead of visible(x ,∆)
visible(i ,∆) indicates that i is the name of a module description for which
there is a corresponding lambda variable symbol in the context ∆.

Partial mappings, which give the lambda variable symbol corresponding
to an identifier in a signature context and in a description context, are
defined below. These mappings are only defined if the identifier is visible
in the context. This condition is met by all well-formed modularization
and parametrization constructs. These mappings are used to describe the
syntactic properties and meaning of modularization and parametrization
constructs.
Definition. The mapping lvar :UIdent× SCxt → LVar and the mapping
lvar : UIdent×DCxt → LVar are inductively defined by

x ∈ dom(∆) ∧ i = ι(x) ⇒ lvar(i ,∆) = x ,
x ∈ dom(Γ) ∧ i = ι(x) ⇒ lvar(i ,Γ) = x ,

where dom(∆) and dom(Γ) are defined by

dom(〈〈x1,Σ1〉, . . . , 〈xn ,Σn〉〉) := {x1, . . . , xn},
dom(〈〈x1,L1〉, . . . , 〈xn ,Ln〉〉) := {x1, . . . , xn}.

We write m∆ and mΓ for lvar(m,∆) and lvar(m,Γ), respectively.
lvar(i ,∆) and lvar(i ,Γ) are the lambda variable symbols corresponding to
the identifier i in the signature context ∆ and the description context Γ ,
respectively.

Module name signatures and name contexts are closely connected. The
construction of a name context from a signature term and a signature
context is defined below. First two auxiliary mappings are introduced. The
following partial mapping is used to reduce a given signature term to its
normal form. A signature context is needed to remove the free variables
from the signature term concerned before its reduction. More precisely, the
mapping gives the closed flat signature term corresponding to a signature
term of type 0 in a given signature context where all the free lambda
variables of the term are visible.

206 DEFINITION OF THE STRUCTURING LANGUAGE

Definition. The auxiliary mapping flatten:STermS × SCxt → STermS is
inductively defined by

∆ = 〈〈x1,Σ1〉, . . . , 〈xn ,Σn〉〉∧
free(Σ) ⊆ {x1, . . . , xn} ∧ ltype(Σ) = 0 ⇒

flatten(Σ ,∆) = redβ([x1 :=Σ1] . . . [xn :=Σn]Σ).

flatten(Σ ,∆) is the closed flat signature term representing the module name
signature consisting of those names for which it can be determined ‘stat-
ically’ that they belong to the module name signature represented by the
signature term Σ , given the signature context ∆.

The following partial mapping is used to get the module name signature
represented by a closed flat signature term.
Definition. The auxiliary mapping sig : STermS → MSig is inductively
defined by

Σ is flat ∧ free(Σ) = { } ⇒ sig(Σ) = ΣS .

So sig(Σ) is the module name signature to which the closed flat signature
term Σ evaluates in the algebraic system with pre-order S.

The construction of a name context from a signature term and a sig-
nature context is now defined. This mapping is used to describe the well-
formedness and meaning of import module constructs.
Definition. The mapping ncxt : STermS ×SCxt → NCxt is defined by

ncxt(Σ ,∆) :=
{w ∈ MNam | w ∈ sig(flatten(Σ ,∆))}∪ if ltype(Σ) = 0,
{〈S ,S ′〉 | ıS→S ′ ∈ sig(flatten(Σ ,∆))}
{ } otherwise.

Instead of ncxt(Σ ,∆), we write ncxt∆(Σ).
ncxt(Σ ,∆) is the name context (from which the module name signature
can be reconstructed) that consists of those names for which it can be
determined statically that they belong to the module name signature rep-
resented by the signature term Σ , given the signature context ∆.

The symbols used to denote values of enumerated types and ‘option’
values require special treatment, for symbols with the same name must
always be identical. The following mapping gives the corresponding name
context of basic modules. It is used in the description of the meaning of
basic modules.
Definition. The mapping atdefs: BasicModule → NCxt is defined by

atdefs(B) := {[func a:→ { a1 , . . . , an }] ∈ {[B]} |
a1, . . . , an ∈ UIdent, a ∈ {a1, . . . , an}}∪
{[func nil:→ t] ∈ {[B]} | t ∈ UIdent}.

atdefs(B) is the name context that corresponds to the atom names and
nil’s associated with the basic module B .

CONTEXTS 207

In an import module, the importing module may use visible names of
the imported module without introducing them. This forces the gathering
of the imported name context of the basic modules. The following mapping
is used for this purpose.

Definition. The mapping imp:BasicModule → NCxt is defined by

imp(B) :=
is the least name context N such that B is well-formed in {[B]} ∪N

(the predicate wf :BasicModule×NCxt, notation: ‘B is well-formed in N ’,
and the mapping {[•]}: BasicModule → NCxt were defined in Section 5.5).

imp(B) is the name context that corresponds to the names used but not
introduced in basic module B .

Given the imported context of a basic module (determined by means of
imp), the following can be fixed: the symbols corresponding to user-defined
names, the symbols corresponding to pre-defined names, the conversion
function symbols corresponding to subtype relationships declared by type
definitions (both the ‘externally visible’ and the ‘internal’ ones), and the
generation predicate symbols corresponding to user-defined type names as
well as basic and constructed types used to define them.

Definition. The five auxiliary mappings usym, psym, ecsym, icsym and
gsym: Cxt → P(MSym) are defined by

usym(C) := symbols(C),
psym(C) := symbols(predefs(C)),
ecsym(C) :=

⋃{ {ıS→S ′ , ı
−1
S ′→S} |

〈S ,S ′〉 ∈ sdcls(C),S ,S ′ ∈ usym(C)},
icsym(C) :=

⋃{ {ıS→S ′ , ı
−1
S ′→S} |

〈S ,S ′〉 ∈ sdcls(C ∪ predefs(C))},
gsym(C) :=

{genS | S ∈ (usym(C) ∩MType) ∪ bctypes(C ∪ predefs(C))}
(the mappings bctypes: Cxt → P(MType) and predefs: Cxt → Cxt, were
defined in Section 5.1).

usym is for the symbols corresponding to user-defined names, psym is for
the symbols corresponding to pre-defined names, ecsym is for the externally
visible conversion function symbols, icsym is for the internal conversion
function symbols, gsym is for the generation predicate symbols.

Having introduced mappings which give the sets of symbols of various
kinds corresponding to a context, mappings which give the externally visi-
ble signature corresponding to a context and the internal signature corre-
sponding to a context, respectively, can easily be defined. These mappings
are used to describe the meaning of basic modules.

Definition. The mappings extsig :Cxt → MSSig and intsig :Cxt → MSSig

208 DEFINITION OF THE STRUCTURING LANGUAGE

are defined by

extsig(C) :=
the least module name signature Σ ∈ MSig such that
usym(C) ∪ ecsym(C) ⊆ Σ ∪MVal,

intsig(C) :=
the least module name signature Σ ∈ MSig such that
usym(C) ∪ psym(C) ∪ icsym(C) ∪ gsym(C) ⊆ Σ ∪MVal .

extsig(C) is the externally visible signature corresponding to a context
where we have symbols as given by C . intsig(C) is the internal signature
corresponding to a context where we have symbols as given by C .

In the semantics of the structuring sublanguage of VVSL, the context
dependence of the meaning of basic modules is modelled by means of the
origin substitution operation α of DAα (see Section 6.6). A module param-
eter and a module description are used as the first and second argument of
α. It is mainly the externally visible signature of the module parameter and
the module description concerned that matters. Symbol contexts might be
regarded as representations of these signatures. However, the requirements
that apply to symbol contexts have to be relaxed in the case of the ex-
ternally visible signature of the module description. The origin uniqueness
requirement is too restrictive for the current purpose in the presence of
parametrization. Therefore, the proto-contexts which were introduced in
Chapter 5 are used instead.
Definition. The set PCxt of all proto-contexts is defined by

PCxt := {C ⊆ NSym∪SDcl | C is a proto-context}.
Because a special kind of signature is required for module parameters, a
special kind of symbol context is used as well. A parameter context is
a symbol context in which the origin of each symbol is either an origin
variable or 〈〉 and the origins of each two distinct symbols are not the same
unless they are 〈〉.
Definition. A parameter context is a symbol context C ∈ Cxt such that

∀w ∈ symbols(C) (ω(w) ∈ OVar ∨ ω(w) = 〈〉),
∀w ,w ′ ∈ symbols(C) (ω(w) ∈ OVar∧ω(w) = ω(w ′) ⇒ w = w ′).

The set QCxt of all parameter contexts is defined by

QCxt := {C ∈ Cxt | C is a parameter context}.
Module descriptions are constructed from proto-contexts like the trivial

embedding from module symbol signatures to module descriptions. Module
parameters are constructed from parameter contexts in exactly the same
way. The following mappings are used for this in the description of the
meaning of basic modules.

TYPED NAMES 209

Definition. The mappings des: PCxt → MDes and par : QCxt → MPar are
defined by

des(C) := 〈Σ ′,Σ ′, { }, π⊥〉,
par(C) := 〈Σ ′,Σ ′, { }, π⊥〉,

where Σ ′ is the least module symbol signature Σ such that
symbols(C) ⊆ Σ ∪MVal .

des(C) is the module description corresponding to the proto-context C .
par(C) is the module parameter corresponding to the parameter context
C .

8.2 Typed names

Typed names are subconstructs of renamings and signatures in the struc-
turing sublanguage of VVSL. The name from MNam (the subset of Nam
relevant to VVSL, see Section 7.1) corresponding to a typed name is given
by the mapping name defined below. This mapping is a degenerate case
of a meaning function. It is used to describe the syntactic properties and
meaning of renaming constructs and signature constructs.
Definition. The mapping name:TypedName → MNam is inductively de-
fined by

ι(w) = t ∧ τ(w) = sort ⇒ name(t) = w ,

name(t) = S ∧ ι(w) = v ∧ τ(w) = 〈func, State,S 〉 ⇒
name(v : t) = w ,

n+1∧

k=1

(name(tk) = Sk)∧

ι(w) = f ∧ τ(w) = 〈func,S1, . . . ,Sn ,Sn+1〉 ⇒
name(f : t1 × · · · × tn → tn+1) = w ,

n∧

k=1

(name(tk) = Sk) ∧
m∧

k=1

(name(t ′k) = S ′k)∧

ι(w) = op ∧ τ(w) = 〈pred,S1, . . . ,Sn , Comp,S ′1, . . . ,S
′
m〉 ⇒

name(op: t1 × · · · × tn ⇒ t ′1 × · · · × t ′m) = w .

name(u) is the name from MNam corresponding to the typed name u.
The typed names of VVSL are similar to the names from MNam. For user-

defined names, there is a unique correspondence between typed names and
names from MNam. In Chapter 5, names from MNam are also used for the
pre-defined names that are associated with the basic types and constructed
types that are used for type definition. For these names from MNam there
is no corresponding typed name in VVSL. This is not by accident. Inside
a basic module, pre-defined names can, in many respects, be treated just

210 DEFINITION OF THE STRUCTURING LANGUAGE

as user-defined names. However, the defining type for a user-defined type
name is never available outside the module in which it is defined: only
user-defined names may be renamed or exported.

8.3 Organization of the definition

The remarks made in Section 5.4 also apply to the definition of the struc-
turing sublanguage.

The variables used in this case range over the terminal productions of
fixed nonterminals as follows (subscripts and primes are not shown):

Z <specification-document>
M <module>
R <renaming>
S <signature>
u <typed-name>
i <name>
B <basic-module>
m <module-name>

There are no production rules given for the nonterminal <module-name>.
They are supposed to produce identifiers, which are considered to be ter-
minals.

8.4 Specification documents

Specification documents are modules that are intended for the specifica-
tion of complete systems (in contrast with system components). They are
considered to be complete specifications in full VVSL. This language can
be viewed as being composed of five sublanguages: one for modules, one for
definitions, one for types, one for expressions and logical expressions, and
one for temporal formulae. Their hierarchical structure is indicated by the
following:

• Specification documents are modules regarded as complete specifica-
tions.

• Modules (Section 8.5) are constructed from basic modules and names;
basic modules are roughly collections of definitions.

• Definitions are constructed from types, expressions and logical expres-
sions, temporal formulae, and names.

• Types are constructed from names only.

• Expressions are constructed from logical expressions, names and num-
bers, and logical expressions are constructed from expressions and names.

• Temporal formulae are also constructed from expressions and names.

SPECIFICATION DOCUMENTS 211

The remainder of this section and the next section deal with the syntax
and semantics of specification documents and modules, respectively. The
other sublanguages are described in Chapter 5.

To introduce specification documents in broad outline, the following suf-
fices. A specification document is generally a modularly structured specifi-
cation, but it may also be a flat specification (i.e. basic module). Anyhow, a
specification document is just a module that has been designated as a com-
plete specification. So, in principle, any module could serve as an example.
Examples which are meant to illustrate a good choice of modular structure
to achieve the goals of modular structuring are given in Chapters 11 to 13.

Syntax

Specification documents are the terminal productions of the nonterminal
<specification-document>. Specification documents must be considered to
be the sentences of VVSL, i.e. <specification-document> is the start symbol
of the grammar for VVSL.

<specification-document> ::=
system is <module>

The production rules of <module> are presented in Section 8.5.
The set SpecDocument of syntactically correct specification document con-
structs is defined by

SpecDocument :=
{Z | Z is a terminal production of <specification-document>}.

Well-formedness. The well-formedness of syntactically correct specifica-
tion document constructs is defined by a predicate

wf : SpecDocument .

wf (Z) indicates that Z is well-formed. Instead of wf (Z), we write ‘Z is
well-formed’. The well-formedness of specification documents is defined in
terms of the well-formedness of modules (defined in Section 8.5).

Meaning. The meaning of specification documents is defined by a map-
ping

[[•]]: SpecDocument → DTermD .

[[Z]] is the description term representing the meaning of the specification
document Z . [[Z]] is only defined if Z is well-formed. The meaning of spec-
ification documents is defined in terms of the meaning of modules (defined
in Section 8.5).

Below specification documents are precisely described.

212 DEFINITION OF THE STRUCTURING LANGUAGE

Specification document

There is no essential difference between the module M and the specifica-
tion document system is M , but a specification document is intended for the
specification of a complete ‘system’. The intended global nature of spec-
ification documents is reflected in their meaning, which does not depend
upon a context.

Structure:

system is M

Well-formedness:

M is well-formed in 〈{}, 〈〉〉.
Meaning:

[[system is M]] := [[M]]{}〈〉 .

8.5 The module sublanguage

The previous section dealt with the syntax and semantics of specification
documents. Specification documents are just modules. They are built from
basic modules using modularization and parametrization constructs. This
section deals with the syntax and semantics of modules. An overview of
modular structuring of specifications in VVSL was given in Section 2.2. A
short example was also given in that section. Chapters 11 to 13 contain
long examples of modular structuring in VVSL.

Syntax

Modules are the terminal productions of <module>. Renamings and sig-
natures are the terminal productions of <renaming> and <signature>, re-
spectively.

<module> ::=
<basic-module>
| rename <renaming> in <module>
| import <module> into <module>
| export <signature> from <module>
| abstract <restricted-parameter-list> of <module>
| apply <module> to <module-list>
| let <module-binding> in <module>
| <module-name>

THE MODULE SUBLANGUAGE 213

<renaming> ::=
<atomic-renaming>
| <atomic-renaming> , <renaming>

<atomic-renaming> ::=
<typed-name> 7→ <name>

<signature> ::=
<typed-names>
| signature <module>
| add <signature> to <signature>

<typed-names> ::=
<typed-name>
| <typed-name> , <typed-names>

<typed-name> ::=
<type-name>
| <variable-name> : <type-name>
| <function-name> : <type-name-list> → <type-name>
| <operation-name> : <type-name-list> ⇒ <type-name-list>

<type-name-list> ::=
<empty>
| <nonempty-type-name-list>

<nonempty-type-name-list> ::=
<type-name>
| <type-name> × <nonempty-type-name-list>

<name> ::=
<type-name>
| <variable-name>
| <function-name>
| <operation-name>

<restricted-parameter-list> ::=
<restricted-parameter>
| <restricted-parameter> , <restricted-parameter-list>

<restricted-parameter> ::=
<module-name> : <module>

214 DEFINITION OF THE STRUCTURING LANGUAGE

<module-list> ::=
<module>
| <module> , <module-list>

<module-binding> ::=
<module-name> 4 <module>

The single production rule of <basic-module> is presented in Section 5.5.
The sets Module, Renaming and Signature of syntactically correct module
constructs, renaming constructs and signature constructs, respectively, are
defined by

Module := {M | M is a terminal production of <module>},
Renaming := {R | R is a terminal production of <renaming>},
Signature := {S | S is a terminal production of <signature>}.

The set TypedName of syntactically correct typed name constructs is de-
fined by

TypedName := {u | u is a terminal production of <typed-name>}.
Well-formedness. The well-formedness of syntactically correct module
constructs is defined by a predicate

wf : Module×NCxt× SCxt .

wf (M ,N ,∆) indicates that M is well-formed in the name context N and
the signature context ∆. Instead of wf (M ,N ,∆), we write ‘M is well-
formed in 〈N ,∆〉’. The well-formedness of modules is defined in terms of
the well-formedness of renamings and signatures and the well-formedness
of basic modules in flat VVSL (defined in Section 5.5).

The well-formedness of syntactically correct renaming constructs is de-
fined by a predicate

wf : Renaming .

wf (R) indicates that R is well-formed. Instead of wf (R), we write ‘R is
well-formed’.

The well-formedness of syntactically correct signature constructs is de-
fined by a predicate

wf : Signature× SCxt .

wf (S ,∆) indicates that S is well-formed in the signature context ∆. In-
stead of wf (S ,∆), we write ‘S is well-formed in ∆’. The well-formedness
of signatures is defined in terms of the well-formedness of modules.

THE MODULE SUBLANGUAGE 215

Syntactic properties. The signature term associated with modules is de-
fined by a mapping

〈[•]〉•: Module×SCxt → STermS .

〈[M]〉∆ is a signature term representing the externally visible signature of
the module M in the signature context ∆. The signature terms for modules
is defined in terms of the signature terms for renamings and signatures.

The signature term associated with renamings is defined by a mapping

〈[•]〉: Renaming → STermR .

〈[R]〉 is a signature term representing the renaming R.
The signature term associated with signatures is defined by a mapping

〈[•]〉•: Signature× SCxt → STermS .

〈[S]〉∆ is a signature term representing the signature S in the signature
context ∆. The signature terms for signatures is defined in terms of the
signature terms for modules.

Meaning. The meaning of modules is defined by a mapping

[[•]]••: Module×PCxt×DCxt → DTermD .

[[M]]CΓ is the description term representing the meaning of the module M in
the proto-context C and the description context Γ . [[M]]CΓ is only defined if
M is well-formed in 〈C ,Γ 〉. The meaning of modules is defined in terms of
the meaning of renamings and signatures and the meaning of basic modules
in flat VVSL (defined in Section 5.5).

The meaning of renamings is defined by a mapping

[[•]]: Renaming → DTermR .

[[R]] is the description term representing the meaning of the renaming R.
[[R]] is only defined if R is well-formed.

The meaning of signatures is defined by a mapping

[[•]]•: Signature×DCxt → DTermS .

[[S]]Γ is the description term representing the meaning of the signature S
in the description context Γ . [[S]]Γ is only defined if S is well-formed in Γ .
The meaning of signatures is defined in terms of the meaning of modules.

The modules, renamings and signatures of the different forms are now
treated separately.

Basic module

The basic module B is a basic building block of modules. Its visible names
are the names introduced by the definitions which constitute the basic

216 DEFINITION OF THE STRUCTURING LANGUAGE

module. There are no hidden names. Its formulae represent the properties
characterizing what is denoted by these names according to their defini-
tions.

If B occurs as an importing module, then the names from the imported
module, that are used but not introduced in B , are treated as if they are
introduced in B by a free definition. This means that the origins associated
with these names are not fixed at all inside B .

In the case of names for values of enumerated types and the name nil

for the option value, the value denoted by the same name is considered
identical in all modules. This means that the origins associated with these
names are fixed throughout the specification document concerned.

Structure:

B

Well-formedness in 〈N ,∆〉:
B is well-formed in N .

Signature:

〈[B]〉∆ :=
the least module name signature Σ ∈ MSig such that

w ∈ names({[B]} ∪ imp(B)) ⇒ w ∈ Σ ,

〈S ,S ′〉 ∈ sdcls({[B]} ∪ imp(B)) ∧ S ,S ′ ∈ Σ ⇒ ıS→S ′ , ı
−1
S ′→S ∈ Σ .

Meaning:

[[B]]CΓ :=
α(par(Cp), des(Cd), 〈extsig(C ′), intsig(C ′), [[B]]C

′
, πω(Σdes(Cd))〉),

where

Cp is a fresh parameter context such that Cp = {[B]} ∪ imp(B),
Cd is the greatest subset of C such that Cd = Cp ,
C ′ is a symbol context such that

C ′ = Cp ,

w ,w ′ ∈ symbols(C ′) ⇒ (ω(w) = ω(w ′) ∧ ω(w) 6= 〈〉 ⇒ w = w ′),
w ∈ atdefs(B) ⇒ 〈ι(w), 〈〉, τ(w)〉 ∈ C ′,

w ∈ {[B]}free ⇒ ∃x ∈ OVar (〈ι(w), x , τ(w)〉 ∈ C ′),
w ∈ imp(B) ⇒ ∃x ∈ OVar (〈ι(w), x , τ(w)〉 ∈ Cp ∩ C ′),
w ∈ {[B]} − (atdefs(B) ∪ {[B]}free) ⇒

∃c ∈ OCon (〈ι(w), 〈c, x1, . . . , xm〉, τ(w)〉 ∈ C ′),
{x1, . . . , xm} =

{x ∈ OVar | ∃w ∈ {[B]}free ∪ imp(B) (〈ι(w), x , τ(w)〉 ∈ C ′)}.

THE MODULE SUBLANGUAGE 217

Renaming module

The renaming module rename R in M has the same meaning as the module
M , except that the names have been changed. The visible names of the
module M are renamed according to the renaming R and all occurrences
of these names in the formulae of the module M are replaced by the new
names for them.

Structure:

rename R in M

Well-formedness in 〈N ,∆〉:
R is well-formed,

M is well-formed in 〈{},∆〉,
〈[M]〉∆ is renameable by 〈[R]〉.

Signature:

〈[rename R in M]〉∆ := 〈[R]〉 • 〈[M]〉∆.

Meaning:

[[rename R in M]]CΓ := [[R]] • [[M]]{}Γ .

Import module

The import module import M1 into M2 combines the two modules M1 and
M2. The visible names and formulae of the ‘imported’ module M1 are added
to those of the ‘importing’ module M2. It is assumed that all visible names
of M1 which are used but not defined in M2, are implicitly introduced in
M2 by a free definition.

Structure:

import M1 into M2

Well-formedness in 〈N ,∆〉:
M1 is well-formed in 〈N ,∆〉,
M2 is well-formed in 〈N ∪ ncxt∆(〈[M1]〉∆),∆〉.

Signature:

〈[import M1 into M2]〉∆ := 〈[M1]〉∆ + 〈[M2]〉∆.

Meaning:

[[import M1 into M2]]CΓ := [[M1]]CΓ + α(par(C ′), [[M1]]CΓ , [[M2]]C∪C ′
Γ),

where

C ′ is a fresh parameter context such that C ′ = ncxtΓ (〈[M1]〉Γ).

218 DEFINITION OF THE STRUCTURING LANGUAGE

Export module

The export module export S from M restricts the visible names of module
M to those which are also in the signature S . The visible names of the
‘exporting’ module M are intersected with the names of the ‘exported’
signature S . The formulae remain the formulae of the exporting module
M .

Structure:

export S from M
Well-formedness in 〈N ,∆〉:

S is well-formed in ∆,
M is well-formed in 〈N ,∆〉.

Signature:

〈[export S from M]〉∆ := 〈[S]〉∆ 2 〈[M]〉∆.
Meaning:

[[export S from M]]CΓ := [[S]]Γ 2 [[M]]CΓ .

Abstraction module

The abstraction module abstract m1:M1, . . . ,mn :Mn of M parametrizes
the module M . The intended meaning is the function that maps modules
m1, . . . ,mn to module M , provided that the visible names of mi and the
properties represented by the formulae of mi include those of the ‘parameter
restriction’ module Mi (1 ≤ i ≤ n), and is undefined otherwise.

Structure:

abstract m1:M1, . . . ,mn :Mn of M
Well-formedness in 〈N ,∆〉:

m1, . . . ,mn are distinct identifiers,
m1, . . . ,mn are not visible in ∆,
M1, . . . ,Mn are well-formed in 〈{},∆〉,
M is well-formed in 〈N ,∆′〉,
where
∆′ = ∆ + 〈〈mτ1

1 , 〈[M1]〉∆〉, . . . , 〈mτn
n , 〈[Mn]〉∆〉〉,

τi = ltype(〈[Mi]〉∆) (1 ≤ i ≤ n).
Signature:

〈[abstract m1:M1, . . . ,mn :Mn of M]〉∆ :=
(λmτ1

1 v 〈[M1]〉∆. · · · (λmτn
n v 〈[Mn]〉∆.〈[M]〉∆+∆′) · · ·),

where

THE MODULE SUBLANGUAGE 219

∆′ = ∆ + 〈〈mτ1
1 , 〈[M1]〉∆〉, . . . , 〈mτn

n , 〈[Mn]〉∆〉〉,
τi = ltype(〈[Mi]〉∆) (1 ≤ i ≤ n).

Meaning:
[[abstract m1:M1, . . . ,mn :Mn of M]]CΓ :=

(λmτ1
1 v [[M1]]

{}
Γ . · · · (λmτn

n v [[Mn]]{}Γ .[[M]]CΓ+Γ ′) · · ·),
where
Γ ′ = Γ + 〈〈mτ1

1 , [[M1]]
{}
Γ 〉, . . . , 〈mτn

n , [[Mn]]{}Γ 〉〉,
τi = ltype([[Mi]]

{}
Γ) (1 ≤ i ≤ n).

Application module

The application module apply M to M1, . . . ,Mn instantiates the parame-
trized module M . The intended meaning is the value of the function M for
arguments M1, . . . ,Mn .

Structure:
apply M to M1, . . . ,Mn

Well-formedness in 〈N ,∆〉:
M1, . . . ,Mn ,M are well-formed in 〈N ,∆〉,
there are higher types σ1, . . . , σn , τ such that
ltype(〈[Mi]〉∆) = σi for i = 1, . . . ,n, and
ltype(〈[M]〉∆) = σ1, . . . , σn → τ .

Signature:
〈[apply M to M1, . . . ,Mn]〉∆ := (· · · (〈[M]〉∆〈[M1]〉∆) · · · 〈[Mn]〉∆).

Meaning:
[[apply M to M1, . . . ,Mn]]CΓ := (· · · ([[M]]CΓ [[M1]]CΓ) · · · [[Mn]]CΓ).

Local definition module

The local definition module let m 4 M1 in M2 introduces the name m as
an abbreviation of the module M1 to be used in the module M2.

Structure:
let m 4 M1 in M2

Well-formedness in 〈N ,∆〉:
m is not visible in ∆,
M1 is well-formed in 〈{},∆〉,
M2 is well-formed in 〈N ,∆′〉,
where
∆′ = ∆ + 〈〈mτ , 〈[M1]〉∆〉〉, τ = ltype(〈[M1]〉∆).

220 DEFINITION OF THE STRUCTURING LANGUAGE

Signature:
〈[let m 4 M1 in M2]〉∆ := [mτ :=〈[M1]〉∆]〈[M2]〉∆′ ,
where
∆′ = ∆ + 〈〈mτ , 〈[M1]〉∆〉〉, τ = ltype(〈[M1]〉∆).

Meaning:

[[let m 4 M1 in M2]]CΓ := [mτ :=[[M1]]
{}
Γ][[M2]]CΓ ′ ,

where
Γ ′ = Γ + 〈〈mτ , [[M1]]

{}
Γ 〉〉, τ = ltype([[M1]]

{}
Γ).

Reference module

The reference module m is what the module name m stands for.
What the module name stands for is known if m acts as an abbreviation

of some module and is unknown if m acts as a formal parameter.

Structure:
m

Well-formedness in 〈N ,∆〉:
m is visible in ∆.

Signature:
〈[m]〉∆ := m∆.

Meaning:
[[m]]CΓ := mΓ .

Renaming

The renaming u1 7→ i1, . . . , un 7→ in is roughly a type preserving mapping
which associates with the enumerated ‘old’ names the corresponding ‘new’
names. Due to the possibility of ‘identifier overloading’, the old names must
be accompanied with their types. The renaming behaves like an identity
mapping for names that are not enumerated.

A renaming is used in renaming modules only.

Structure:
u1 7→ i1, . . . , un 7→ in

Well-formedness:
u1, . . . , un are distinct typed names.

Signature:
〈[u1 7→ i1, . . . , un 7→ in]〉 :=

the unique ρ ∈ MRen such that for all w ∈ MSym:

THE MODULE SUBLANGUAGE 221

w ∈ name(uk) ⇒ ι(ρ(w)) = ik (k = 1, . . . ,n),
w /∈ ⋃n

k=1 name(uk) ⇒ ι(ρ(w)) = ι(w).
Meaning:

[[u1 7→ i1, . . . , un 7→ in]] :=
the unique ρ ∈ MRen such that for all w ∈ MSym:

w ∈ name(uk) ⇒ ι(ρ(w)) = ik (k = 1, . . . ,n),
w /∈ ⋃n

k=1 name(uk) ⇒ ι(ρ(w)) = ι(w).

Enumeration signature

The enumeration signature u1, . . . , un is roughly the set of enumerated
names, which are accompanied with their types because of the possibility
of identifier overloading.

Like the other signature constructs, an enumeration signature is used in
export modules only. The subtype relationships in force in the exporting
module remain in force if the types concerned are in the exported signature.
This requires that the associated conversion function names (which are not
available as pre-defined names) must be exported implicitly.

Structure:
u1, . . . , un

Well-formedness in ∆:
True.

Signature:
〈[u1, . . . , un]〉∆ :=

the least module name signature Σ ∈ MSig such that:⋃n
k=1 name(uk) ⊆ Σ ,

S ,S ′ ∈ Σ ∩MType ⇒ ıS→S ′ , ı
−1
S ′→S ∈ Σ .

Meaning:
[[u1, . . . , un]]Γ :=

the least module name signature Σ ∈ MSig such that:⋃n
k=1 name(uk) ⊆ Σ ,

S ,S ′ ∈ Σ ∩MType ⇒ ıS→S ′ , ı
−1
S ′→S ∈ Σ .

Union signature

The union signature add S1 to S2 is the set-theoretic union of the signatures
S1 and S2.

Structure:
add S1 to S2

222 DEFINITION OF THE STRUCTURING LANGUAGE

Well-formedness in ∆:

S1,S2 are well-formed in ∆.
Signature:

〈[add S1 to S2]〉∆ := 〈[S1]〉∆ + 〈[S2]〉∆.
Meaning:

[[add S1 to S2]]Γ := [[S1]]Γ + [[S2]]Γ .

Module signature

The module signature signature M is the signature consisting of the visible
names of the module M .

Structure:

signature M
Well-formedness in ∆:

M is well-formed in 〈{},∆〉,
ltype(〈[M]〉∆) = 0.

Signature:

〈[signature M]〉∆ := 〈[M]〉∆.
Meaning:

[[signature M]]Γ := Σ([[M]]{}Γ).

9

Discussion

In this chapter some points are discussed which were raised by the material
in preceding chapters, but for which space could not be found there.

The first section analyses how DA, used in Chapter 8 as the basis for
the semantics of the structuring sublanguage of VVSL, and two more ab-
stract models of modular specifications are related. This is analysed by
means of an extension of DA which has additional abstraction operations
on descriptions. In one of the models concerned, specification modules cor-
respond essentially to MPLω theories. In the other model, they correspond
to module objects (Bergstra, 1986), which are less abstract than theories.

The formal semantics for VVSL presented in Chapters 5 and 8 opens up
the possibility of constructing formal proofs to justify claims concerning
specifications written in VVSL. The next section is concerned with proof
rules for VVSL. The principal proof rules are presented and their connection
with the formal semantics for VVSL is described informally and in broad
outline. They include proof rules for a typed first-order temporal logic
which extends LPF and proof rules which are needed to construct proofs
of facts about modules.

The last section demonstrates the generality of the logic-based approach
to semantics which is applied to VVSL in Chapter 5. This is done by
applying it to a language whose constructs are common control constructs
of imperative programming languages. They include parallel composition
and await constructs. The language is a simplified version of an extension
of VVSL which is needed to be able to specify operations explicitly by a
defining program.

9.1 DA and more abstract models

The mapping from origin consistent descriptions to their theories can be
split into three mappings which treat ‘origin consistency enforcement’,
‘symbol identification’ and ‘hidden symbol abstraction’, respectively.

224 DISCUSSION

The first mapping, when applied to origin consistent descriptions, yields
‘origin consistency enforcing’ descriptions. Origin consistency enforcing de-
scriptions are roughly descriptions with an origin partition which declares
the origins of symbols in the externally visible signature with the same
name to be equal. The second mapping, when applied to origin consistent
descriptions, yields ‘semi-abstract’ descriptions. In semi-abstract descrip-
tions, symbols from the externally visible signature with the same name
must have the same origin (the origin partitions of semi-abstract descrip-
tions are dummy components). Semi-abstract descriptions correspond to
Bergstra’s module objects (Bergstra, 1986). The third mapping, when ap-
plied to origin consistent descriptions, yields ‘abstract’ descriptions. Ab-
stract descriptions are essentially logical theories.

The first mapping corresponds to the operation µ of DA. The second
and third mapping correspond to the new operations ‘identifying’ (ν) and
‘abstracting’ (γ) of DA+ (Extended Description Algebra).

DA+ is an extension of DA. The extension consists of the addition of
two operations which are only defined for origin consistent descriptions:
ν and γ. These operations are meant for abstracting from the origins of
externally visible names and for abstracting from the names that are not
externally visible. By means of these operations, each origin consistent
description can be adapted in such a way that the resulting description
is essentially the theory of the description. Thus, the theory of an origin
consistent description can be obtained within DA+.

In this section, first the additional operations of DA+ are defined. Next,
each of the above-mentioned kinds of descriptions is defined (together with
specializations of the operations of DA on descriptions for that kind) and
analysed. The operations Σ and π are not taken into account.

Additional operations on descriptions

The operations of DA+ include all operations of DA and two additional
operations on descriptions: identifying and abstracting. These additional
operations are partial functions. In other words, DA+ is a partial hetero-
geneous algebra.

Externally visible symbols in an origin consistent description with the
same name can be made equal, according to the origin partition of the
description, by means of identifying.

Definition. The partial identifying operation ν: Des → Des on descrip-
tions is defined by

ν(X) := 〈µX (ΣX), µX (ΓX), µX (ΦX), π⊥〉 if X origin consistent,
undefined otherwise.

π⊥ is the bottom of the complete lattice 〈OPar,≤〉 (see Section 6.2).

DA AND MORE ABSTRACT MODELS 225

Symbols in an origin consistent description which are not externally visible,
i.e. hidden symbols, can be forgotten about by means of abstracting.

Definition. The partial abstracting operation γ: Des → Des on descrip-
tions is defined by

γ(X) :=
〈ΣX ′ ,ΣX ′ ,L(ΣX ′) ∩ Th(ΓX ′ ,ΦX ′), π⊥〉 if X origin consistent,
undefined otherwise,

where X ′ = ν(X).

Extended Description Algebra (DA+) is the partial heterogeneous algebra,
which is obtained from DA (Section 6.4) by the following additions:

Operations: ν : Des → Des
γ : Des → Des .

In the remainder of this section, we write X = Y , where X and Y are
terms of DA+ for denoting descriptions, to indicate that the descriptions
denoted X and Y are both defined and equal.

Total variants of the operations ν and γ are conceivable. However, using
the bottom or top of the complete lattice 〈Des,≤〉 as ‘the undefined de-
scription’ is not very satisfactory since importing is not strict with respect
to bottom and exporting is not strict with respect to top. On the other
hand, using a new element added to the domain of descriptions as the
undefined description would lead to a non-conservative extension of DA.
Besides, the partial operations ν and γ are only undefined for descriptions
that should be considered meaningless, i.e. non-origin-consistent descrip-
tions. Moreover, these operations are not needed for the interpretation of
the VVSL modularization constructs. This means that the partial opera-
tions are appropriate for analysis while their total variants cause anomalies.

Origin consistency enforcing descriptions

The origin partition of a description declares certain origins to be equal.
No restrictions are imposed on the origin partition of a description. For an
origin consistency enforcing description, the origin partition must at least
declare the origins of symbols in the externally visible signature with the
same name to be equal.

Definition. For X ∈ Des, X is called origin consistency enforcing iff

πω(ΣX) ≤ πX .

The unifying operation µ: Des → Des of DA, yields origin consistency
enforcing descriptions.

226 DISCUSSION

Definition. The operations •µ : Ren×Des → Des, +µ :Des×Des → Des
and 2µ :Sig×Des → Des are defined by

ρ •µ X := µ(ρ • X),
X +µ Y := µ(X + Y),
Σ 2µ X := µ(Σ 2 X).

An operation µµ : Des → Des is not defined, since µ(µ(X)) = µ(X).

These derived operations of DA are defined for all descriptions. Their re-
strictions to origin consistency enforcing descriptions are interesting. To-
gether with the set of origin consistency enforcing descriptions, these re-
stricted operations constitute an ‘algebra of origin consistency enforcing
descriptions’ within DA. The operation µ of DA can be regarded as a
function from the objects of DA to the objects of this algebra of origin
consistency enforcing descriptions. If exporting is restricted to signatures
that do not hide symbols with the same name but different origins, then µ
is a homomorphism with respect to renaming, importing and exporting.

Fact. For descriptions X and Y :

µ(ρ • X) = ρ •µ µ(X),
µ(X + Y) = µ(X) +µ µ(Y),
µ(Σ 2 X) = Σ 2µ µ(X) if ∀v ,w ∈ ΣX

(v = w ∧ v /∈ Σ ⇒ ω(v) = ω(w)).

Proof: The first and second property follow immediately from the laws
(M1) and (M2) of DA (Section 6.4). The third property is a direct con-
sequence of the law (M3) of DA and the definition of the operation µ.

2

Origins, which are declared to be equal (e.g. to enforce origin consistency),
may be different. In pure DA, there is no operation for identifying origins
that are declared to be equal, but such an operation (ν) was introduced
earlier in this section. With that operation origins that are declared to
be equal will be made the same, provided that there are no origin consis-
tency violations. The condition of the third property only expresses that
possible origin consistency violations should not be hidden. The condition
is not automatically met by descriptions yielded by interpretation of the
modularization constructs of VVSL. The condition does not seem to be
restrictive in practice.

Semi-abstract descriptions

The origin partition of a description declares certain origins to be equal. The
intention is that origins that are declared to be equal should be identified.
After actual identification, the origin partition goes out of use. Apart from
the restriction that the externally visible signature must be a subsignature

DA AND MORE ABSTRACT MODELS 227

of the internal signature, no restrictions are imposed on the externally
visible signature of a description. In a semi-abstract description, symbols
in the externally visible signature with the same name must have the same
origin and the origin partition must not declare origins to be equal.
Definition. For X ∈ Des, X is called semi-abstract iff

∀v ,w ∈ ΣX (v = w ⇒ ω(v) = ω(w)),
πX = π⊥ .

The operations •, 2, + and µ, applied to semi-abstract descriptions, al-
ways yield π⊥ as origin partition. In other words, the origin partition of
a semi-abstract description is a dummy component; exactly as intended.
Semi-abstract descriptions are origin consistent descriptions whose origin
partitions are irrelevant. They correspond to Bergstra’s module objects
(Bergstra, 1986).

The operation ν: Des → Des, when applied to origin consistent descrip-
tions, yields semi-abstract descriptions.
Definition. The partial operations •ν : Ren×Des → Des, +ν : Des×Des
→ Des, 2ν : Sig×Des → Des and µν : Des → Des are defined by

ρ •ν X := ν(ρ • X),
X +ν Y := ν(X + Y),
Σ 2ν X := ν(Σ 2 X),
µν(X) := ν(µ(X)).

These derived operations of DA+ are not defined for all descriptions. Their
restrictions to semi-abstract descriptions are interesting. Together with the
set of semi-abstract descriptions, these restricted operations constitute an
‘algebra of semi-abstract descriptions’ within DA+. Note that the objects
of DA and the ones of DA+ are the same. The operation ν can be viewed
as a function from the objects of DA to the objects of the algebra of semi-
abstract descriptions. Moreover, its restriction to origin consistency enforc-
ing descriptions can be viewed as a function from the objects of the algebra
of origin consistency enforcing descriptions to the objects of the algebra of
semi-abstract descriptions. If importing is restricted to pairs of descriptions
with origin partitions that do not identify more than the origin partition
of the union of externally visible symbols, then ν is a homomorphism with
respect to renaming, importing, exporting and unifying, for origin consis-
tency enforcing descriptions.
Fact. For origin consistency enforcing descriptions X and Y :

ν(ρ • X) = ρ •ν ν(X),
ν(X + Y) = ν(X) +ν ν(Y) if πX ≤ πω(ΣX ∪ΣY)∧

πY ≤ πω(ΣX ∪ΣY),
ν(Σ 2 X) = Σ 2ν ν(X),
ν(µ(X)) = µν(ν(X)).

228 DISCUSSION

Proof: The first property follows immediately from the fact that renaming
permutes with origin substitution (Section 6.5). The third and fourth prop-
erty are direct consequences of the definitions of the operations involved.
For the proof of the second property, it suffices to show that

µω(ΣX ∪ΣY) = µω(µω(ΣX) ∪ µω(ΣY))
where µω(Σ) = µπω(Σ)(Σ),

which is straightforward from the definitions of πω and µπ. 2

The condition of the second property expresses that only origins associated
with the two descriptions concerned should be declared to be equal in
either one. This condition is automatically met by descriptions µ(X), for
descriptions X yielded by interpretation of modularization constructs of
VVSL.

The application of the composition of µ and ν to an origin consistent
description yields a result which is half-way between the description and
the theory of the description.

Abstract descriptions

The formulae of a description present the properties characterizing the
sets, functions and relations which may be associated with the symbols in-
troduced in the internal signature. The formulae constitute a collection of
properties from which the others can be derived. Apart from the restriction
that the formulae must be MPLω formulae whose signature is a subsigna-
ture of the internal signature, no restrictions are imposed on the formulae
of a description. The externally visible signature declares certain symbols
from the internal signature to be externally visible. The intention is that
the other symbols from the internal signature as well as the properties char-
acterizing the sets, functions and relations which may be associated with
these symbols should be hidden from the outside. These sets, functions
and relations are considered to be of an auxiliary nature. Apart from the
restriction that the externally visible signature must be a subsignature of
the internal signature, no restrictions are imposed on the externally visible
signature of a description. In an abstract description, the externally visible
signature must declare all symbols from the internal signature to be ex-
ternally visible, symbols in the externally visible signature with the same
name must have the same origin, the formulae must include all derivable
properties (thus abstracting from the presentation of these properties), and
the origin partition must not declare origins to be equal.

DA AND MORE ABSTRACT MODELS 229

Definition. For X ∈ Des, X is called abstract iff

∀v ,w ∈ ΣX (v = w ⇒ ω(v) = ω(w)),
ΓX = ΣX ,
ΦX = Th(ΣX ,ΦX),
πX = π⊥ .

The formulae of an abstract description constitute an MPLω theory. Given
these formulae, the externally visible signature, the internal signature and
the origin partition can be reconstructed. In other words, these components
are superfluous for an abstract description; an abstract description is a the-
ory in disguise. It is considered convenient to treat theories as descriptions
of a special kind.

The operation γ: Des → Des, when applied to origin consistent descrip-
tions, yields abstract descriptions.
Definition. The partial operations •γ : Ren×Des → Des, +γ : Des×Des
→ Des, 2γ : Sig×Des → Des and µγ : Des×Des are defined by

ρ •γ X := γ(ρ • X),
X +γ Y := γ(X + Y),
Σ 2γ X := γ(Σ 2 X),
µγ(X) := γ(µ(X)).

Like the operations •ν , +ν , 2ν and µν , these derived operations are not
defined for all descriptions. Their restrictions to abstract descriptions are
interesting. Together with the set of abstract descriptions, these restricted
operations constitute an ‘algebra of abstract descriptions’ within DA+. The
objects of DA and the ones of DA+ are the same. The operation γ can be
considered to be a function from the objects of DA to the objects of the
algebra of abstract descriptions. Besides, its restriction to semi-abstract
descriptions can be considered to be a function from the objects of the al-
gebra of semi-abstract descriptions to the objects of the algebra of abstract
descriptions. If renaming is restricted to renamings that map symbols with
different names to symbols with different names and importing is restricted
to pairs of descriptions such that symbols occurring in the formulae of both
descriptions are externally visible in both descriptions, then γ is a homo-
morphism with respect to renaming, importing, exporting and unifying, for
semi-abstract descriptions.
Fact. For semi-abstract descriptions X and Y :

γ(ρ • X) = ρ •γ γ(X) if inj (ρ,ΣX ∪sig(ΦX)),
γ(X + Y) = γ(X) +γ γ(Y) if sig(ΦX) ∩ sig(ΦY) ⊆ ΣX ∩ΣY ,
γ(Σ 2 X) = Σ 2γ γ(X),
γ(µ(X)) = µγ(γ(X)).

Proof: The operations •γ , +γ and 2γ on abstract descriptions correspond
closely to the operators •, + and 2 of MA (Bergstra, Heering and Klint,

230 DISCUSSION

1990), respectively. It is also easy to devise operations Σγ and Tγ corre-
sponding to Σ and T of MA, leading to a model of the axioms of MA
except axioms (R4), (R5) and (R6). However, it is obvious that the follow-
ing variants of (R4) and (R6) hold:

inj (ρ,Σ ∪Σ(X)) ⇒
ρ • (Σ 2 X) = (ρ • Σ) 2 (ρ • X) (R4∗)

(dom(ρ) ∪ rng(ρ)) ∩ Σ = { } ∧ inj (ρ,Σ(X)) ⇒
Σ 2 X = Σ 2 (ρ • X) (R6∗)

The differences with (R4) and (R6) are consequences of the restriction in
MA to ‘atomic renamings’. Atomic renamings are bijective and permutative
renamings of a restricted kind.
For any semi-abstract description X , we have γ(X) = ΣX 2 (T(ΓX) +
ΦX) = ΣX 2 ΦX by axioms (C4) and (E3) of MA. The first property
now follows immediately from axiom (R4∗). Proof of the second property is
straightforward from axioms (E1), (E2) and (E4) of MA. The third property
follows immediately from axiom (E2) of MA. The fourth property is a direct
consequence of the definition of µ and γ. 2

This proof shows a strong connection between DA and MA. The proof
amounts to viewing the restriction of γ to semi-abstract descriptions as a
function from module objects to theories. A model of the axioms of MA
based on theories (Bergstra, Heering and Klint, 1990) as well as models
based on module objects (Bergstra, 1986) have been explored.

The condition of the second property and the weaker condition of axiom
(E4) of MA are strongly related. The former condition is equivalent to

sig(ΦX) ∩ sig(ΦY) ⊆ ΣX ∪ΣY ∧
sig(ΦX) ∩ ΣY ⊆ ΣX ∧ sig(ΦY) ∩ ΣX ⊆ ΣY .

The first conjunct is due to the application of axiom (E4) of MA. The other
two conjuncts are necessary conditions.

The condition of the second property is not automatically met by de-
scriptions ν(µ(X)), for descriptions X yielded by translation of modulariza-
tion constructs of VVSL. The condition seems to be restrictive in practice.
For example, this condition is not met if the same hidden state variable
is accessed by operations from modules that are combined by means of
importing (see also Section 6.1).

The application of the composition of µ, ν and γ to an origin consistent
description yields a result which is essentially the theory of the description.

Fact. For an origin consistent description X :

γ(ν(µ(X))) = 〈sig(ThS (X)), sig(ThS (X)),ThS (X), π⊥〉.
Proof: Follows immediately from the definitions of µ, ν and γ.

PROOF RULES FOR VVSL 231

Summary of analysis

In this section, the connections between DA and two more abstract models
of specification modules are analysed. In the most abstract model, specifica-
tion modules correspond essentially to MPLω theories. In the other model,
they correspond essentially to module objects (Bergstra, 1986). However,
module objects and theories are presented as special kinds of descriptions,
called semi-abstract descriptions and abstract descriptions, respectively, to
ease the analysis of the connections between the models.
The results of the analysis can be summarized as follows:
• The mapping which assigns to each origin consistent description its ab-

straction to a module object can be proven to be a homomorphism under
mild restrictions on the use of importing and exporting.

• The mapping which assigns to each origin consistent description its ab-
straction to a theory can be proven to be a homomorphism under a mild
restriction on the use of renaming, the above-mentioned restrictions on
the use of importing and exporting, and an additional restriction on the
use of importing which is generally severe for state-based specification.

Of course, these mappings can always be used to provide the modularization
constructs of VVSL with a more abstract semantics than the compositional
semantics defined in Chapter 8. However, the results show that, generally,
such a semantics is not compositional.

9.2 Proof rules for VVSL

The formal semantics for VVSL presented in Chapters 5 and 8 opens up
the possibility of formal reasoning about specifications written in VVSL.
This section introduces the principal proof rules for VVSL. It begins by
presenting proof rules for a typed version of LPF and additional rules for
conditional expressions and explicit function definitions. These rules are ba-
sic to formal reasoning about VVSL specifications. Thereafter, proof rules
are given which are needed to construct proofs of temporal properties. Fi-
nally, special proof rules are introduced which allow facts about a module
to be inherited from its constituent modules. The connection between the
proof rules and the formal semantics for VVSL is described in broad outline.

The basis of formal reasoning

The logical expressions of VVSL are considered to be formulae of a typed
version of LPF. The proof system of the monotone part of this logic is used
in formal reasoning about VVSL specifications. Extensions are needed for
the basic and constructed types, for recursively defined functions, etc.

There are also non-monotone connectives in LPF which make it an ex-
pressively complete three-valued logic. However, these connectives are nei-

232 DISCUSSION

ther needed for specifying software systems nor for reasoning about speci-
fications.

The proof system of the monotone part of the typed version of LPF is
defined by the following axiom schemas and rules of inference:
Logical Axioms.

(>) ` >

(⊥) ⊥ `

(taut) E ` E

(contr) E ,¬E `
Non-logical Axioms.

(eqv) ` (∀x ∈ T · x = x) ∧
(∀x ∈ T , y ∈ T , z ∈ T · x = y ∧ x = z → y = z)

(sub) e1 = e2, [x := e1]E ` [x := e2]E

(var) ` x = x

(strict1) e1 = e2 ` e1 = e1 ∧ e2 = e2

(strict2) ¬(e1 = e2) ` e1 = e1 ∧ e2 = e2

(comp) e1 = e1, e2 = e2 ` e1 = e2,¬(e1 = e2)

Rules of Inference.

(¬¬L)
Γ ,E ` ∆

Γ ,¬¬E ` ∆

(¬¬R)
Γ ` ∆,E

Γ ` ∆,¬¬E

(∧L)
Γ ,Ei ` ∆

Γ ,E1 ∧ E2 ` ∆
for i = 1, 2

(∧R)
Γ ` ∆,E1 Γ ` ∆,E2

Γ ` ∆,E1 ∧ E2

(¬∧L)
Γ ,¬E1 ` ∆ Γ ,¬E2 ` ∆

Γ ,¬(E1 ∧ E2) ` ∆

(¬∧R)
Γ ` ∆,¬Ei

Γ ` ∆,¬(E1 ∧ E2)
for i = 1, 2

PROOF RULES FOR VVSL 233

(∀L)
Γ ` ∆, e ∈ T Γ , [x := e]E ` ∆

Γ , ∀x ∈ T · E ` ∆

(∀R)
Γ ` ∆,E

Γ ` ∆,∀x ∈ T · E
x not free in Γ ∪∆

(¬∀L)
Γ ,¬E ` ∆

Γ ,¬∀x ∈ T · E ` ∆
x not free in Γ ∪∆

(¬∀R)
Γ ` ∆, e ∈ T Γ ` ∆,¬[x := e]E

Γ ` ∆,¬∀x ∈ T · E

(cut)
Γ ` ∆,E Γ ′,E ` ∆′

Γ ,Γ ′ ` ∆,∆′

(weak)
Γ ` ∆

Γ ,Γ ′ ` ∆,∆′

e ∈ T is used as an abbreviation of the formula ∃x ∈ T · x = e.
Negation, disjunction and existential quantification were taken as basic

in the logical expression sublanguage of VVSL presented in Section 5.8.
In order to make comparison with the proof system of MPLω (presented
in Section 3.4) easier, negation, conjunction and universal quantification
are taken as basic in the proof system presented above. Conjunction and
universal quantification are introduced as abbreviations in Appendix E in
the usual way. For comparison with MPLω, the rules are moreover given
as inference rules of a sequent calculus for classical deduction in Gentzen’s
style. The rules given by Jones (1990) are for natural deduction. Natural
deduction proofs are generally more comprehensive but more difficult to
construct.

Adding the axiom schema ` E ,¬E , corresponding to the law of the
excluded middle, would make the above collection of axiom schemas and
inference rules a complete proof system for classical many-sorted first-order
logic with equality. Because this law does not hold, the rules (¬L) and (¬R)
are replaced by the axiom schema (contr) and the special rules concerning
negation for negation, conjunction and universal quantification. The axiom
schema (var) expresses that free variables always denote. The additional
axiom schemas for equality are due to the extension of equality to the three-
valued case. The axiom schema (strict1) is similar to the axiom schema (=↓)
of MPLω. The usual rules for universal quantification are slightly adapted,
because bound variables always denote. The adapted rules also differ from
the corresponding rules of MPLω, because, unlike in MPLω, free variables
always denote in LPF.

The formulae of LPF are mapped to formulae of MPLω by the logic-
based semantics presented in Chapter 5. This translation can be extended

234 DISCUSSION

to sequents such that what can be proved in LPF remains the same after
translation. This implies that the axiom schemas and inference rules of
LPF become derived ones of MPLω after translation. See also (Middelburg
and Renardel de Lavalette, 1991). So the logic-based semantics for VVSL
justifies the axiom schemas and inference rules of LPF.

Jones (1990) informally explains how a recursive definition of a partial
function can be rendered into inference rules. The inference rules concerned
resemble the appropriate rules of an inductive definition of the function (for
partial functions, such rules usually need to be of a particular form). Given
the recursive definition, the inference rules can also be regarded as derived
rules of the above version of LPF extended with the following additional
inference rules for conditional expressions and explicit function definitions:

(if)
` e1 ∈ T ` E

` if E then e1 else e2 = e1

` e2 ∈ T ` ¬E
` if E then e1 else e2 = e2

(f -form)
` x1 ∈ T1 . . . ` xn ∈ Tn ` E

` f (x1, . . . , xn) ∈ T

(f -def)
` x1 ∈ T1 . . . ` xn ∈ Tn ` E ` e ∈ T

` f (x1, . . . , xn) = e

if f is defined by f (x1:T1, . . . , xn :Tn)T pre E 4 e.

Because the inference rules do not cover the ‘leastness’ of recursively defined
functions, they are not sufficient to prove all properties that hold for those
functions. Their undefinedness properties cannot be proved.

Just like formulae of LPF, conditional expressions and recursive function
definitions are mapped to formulae of MPLω by the logic-based semantics
presented in Chapter 5. The rules (if), (f -form) and (f -def) become derived
rules of MPLω after translation. So the logic-based semantics for VVSL
justifies these additional rules as well. Consequently, it also justifies the
generation of rules from recursive function definitions according to (Jones,
1990).

Other additional rules needed for formal reasoning about VVSL speci-
fications, such as the rules given in (Jones, 1990) for proofs about basic
and constructed types can be justified in the same vein. In general, the
justifications are straightforward. In the author’s opinion, the justifications
would be more difficult in case the semantics would describe the meaning
of specifications in terms of the models that satisfy them.

Temporal reasoning

The temporal formulae of VVSL are the formulae of a typed first-order
temporal logic which extends the typed version of LPF discussed just now.

PROOF RULES FOR VVSL 235

This temporal logic includes temporal operators referring to the future and
temporal operators referring to the past. Its proof system is obtained by
adapting and extending the proof system of the typed version of LPF.

The adaptation consists of a common restriction on the axiom schema
(sub) and the rules (∀L) and (¬∀R). The restriction is that the substitution
of the term concerned for the free occurrences of x does not introduce new
occurrences of state variables in the scope of a temporal operator.

Axiom schemas and rules of inference for the future temporal operators
©©© and U are:

` ©©©ϕ ⇒ ©©©ϕ

` ©©©(ϕ1 ⇒ ϕ2) ⇒ (©©©ϕ1 ⇒ ©©©ϕ2)

` 2(ϕ1 ⇒ ϕ2) ⇒ (2ϕ1 ⇒ 2ϕ2)

` 2ϕ ⇒ ©©©ϕ

` 2(ϕ ⇒ ©©©ϕ) ⇒ (ϕ ⇒ 2ϕ)

` ϕ1 U ϕ2 ⇔ ϕ2 ∨ (ϕ1 ∧©©©(ϕ1 U ϕ2))

` ϕ1 U ϕ2 ⇒ 3ϕ2

` (∀x ∈ T · ©©©ϕ) ⇔ (©©©∀x ∈ T · ϕ)

` (∃x ∈ T · ϕ1 U ϕ2) ⇒ ((∃x ∈ T · ϕ1) U ϕ2) if x not free in ϕ2

` (∃x ∈ T · ϕ1 U ϕ2) ⇔ (ϕ1 U (∃x ∈ T · ϕ2)) if x not free in ϕ1

` ϕ

` 2ϕ

©©©ϕ is used as an abbreviation of ¬©©©¬ϕ,
3ϕ is used as an abbreviation of true U ϕ,
2ϕ is used as an abbreviation of ¬3¬ϕ.

The conjecture is that adding the axiom schemas ` ©©©ϕ ∨ ¬©©©ϕ and
` ϕ1 U ϕ2 ∨ ¬ (ϕ1 U ϕ2), expressing that the temporal operators ©©©
and U are always defined, leads to completeness for these future temporal
operators.

Temporal operators referring to the past obviate the need to introduce
auxiliary state variables acting as history variables.

Axiom schemas and rules of inference for the past temporal operators ©©−©
and S are:

` ©©−©ϕ ⇒ ©©−©ϕ

` ©©−©(ϕ1 ⇒ ϕ2) ⇒ (©©−©ϕ1 ⇒ ©©−©ϕ2)

` −2(ϕ1 ⇒ ϕ2) ⇒ (−2ϕ1 ⇒ −2ϕ2)

236 DISCUSSION

` −2ϕ ⇒ ©©−©ϕ

` −2(ϕ ⇒ ©©−©ϕ) ⇒ (ϕ ⇒ −2ϕ)

` ϕ1 S ϕ2 ⇔ ϕ2 ∨ (ϕ1 ∧©©−©(ϕ1 S ϕ2))

` −3©©−©false

` (∀x ∈ T · ©©−©ϕ) ⇔ (©©−©∀x ∈ T · ϕ)

` (∃x ∈ T · ϕ1 S ϕ2) ⇒ ((∃x ∈ T · ϕ1) S ϕ2) if x not free in ϕ2

` (∃x ∈ T · ϕ1 S ϕ2) ⇔ (ϕ1 S (∃x ∈ T · ϕ2)) if x not free in ϕ1

` ϕ

` −2ϕ

©©−©ϕ is used as an abbreviation of ¬©©−©¬ϕ,
−3ϕ is used as an abbreviation of true S ϕ,
−2ϕ is used as an abbreviation of ¬−3¬ϕ.

Note the duality between past and future. The only asymmetry is due to
the fact that, unlike the future, the past is always bounded. The following
axiom schemas relate past and future:

ϕ ` ©©©©©−©ϕ

ϕ ` ©©−©©©©ϕ

The conjecture is that adding axiom schemas expressing that the tem-
poral operators ©©−© and S are always defined leads to completeness for these
past temporal operators as well.

An additional chop operator obviates the need to introduce auxiliary
state variables acting as control variables.

Axiom schemas and rules of inference for the chop temporal operator C
are:

` (ϕ1 C ϕ2) C ϕ3 ⇔ ϕ1 C (ϕ2 C ϕ3)

` (ϕ1 ∨ ϕ2) C ϕ3 ⇒ ϕ1 C ϕ3 ∨ ϕ2 C ϕ3

` ϕ1 C (ϕ2 ∨ ϕ3) ⇒ ϕ1 C ϕ2 ∨ ϕ1 C ϕ3

` ϕ1 C ϕ2 ⇒ ϕ1 if no temporal operator in ϕ1

` (©©©false) C ϕ ⇔ ϕ if no past temporal operator in ϕ

` (©©©ϕ1) C ϕ2 ⇒ ©©©(ϕ1 C ϕ2)

` (∃x ∈ T · ϕ1 C ϕ2) ⇔ ((∃x ∈ T · ϕ1) C ϕ2) if x not free in ϕ2

` (∃x ∈ T · ϕ1 C ϕ2) ⇔ (ϕ1 C (∃x ∈ T · ϕ2)) if x not free in ϕ1

` ϕ1 ⇒ ϕ′1 ` ϕ2 ⇒ ϕ′2
` ϕ1 C ϕ2 ⇒ ϕ′1 C ϕ′2

PROOF RULES FOR VVSL 237

Adding an axiom schema expressing that the temporal operator C is
always defined appears to be insufficient for completeness.

The temporal operators ©©© and ©©−© are available on terms as well. Their
use generally reduces the need for existential quantification.

Axiom schemas for the temporal operator ©©© on terms are:

` ©©©x = x

f (©©©t1, . . . ,©©©tn) = t ` ©©©f (t1, . . . , tn) = t

©©©f (t1, . . . , tn) = t ` f (©©©t1, . . . ,©©©tn) = t

P(©©©t1, . . . ,©©©tn) ` ©©©P(t1, . . . , tn)

` ©©©P(t1, . . . , tn) ⇒ P(©©©t1, . . . ,©©©tn)

©©©t1 = ©©©t2 ` ©©©(t1 = t2)

` ©©©(t1 = t2) ⇒ ©©©t1 = ©©©t2

Axiom schemas for the temporal operator ©©−© on terms are obtained by
replacing ©©−© for ©©© in the axiom schemas for the temporal operator ©©© on
terms.

Temporal formulae of VVSL are mapped to formulae of MPLω by the
logic-based semantics in Chapter 5. It is straightforward to prove that the
above axiom schemas and rules are sound by showing that they become
derived ones of MPLω after translation.

As far as the propositional part of this temporal logic is concerned, the
axiom schemas and rules presented here are similar to the ones in (Licht-
enstein, Pnueli and Zuck, 1985) and (Rosner and Pnueli, 1986).

Structured proofs

For proofs of theorems about modules, special inference rules are needed
which allow theorems about a module to be inherited from its constituent
modules. For example:

thm in M
thm in import M into M ′

if the common state variables on which
thm depends are visible in M and M ′

thm in M
thm in export Σ from M

if sig(thm) ⊆ Σ and
hidden names are origin unique

thm in M
ρ(thm) in rename ρ in M

if ρ is injective

where thm stands for an arbitrary sequent.

The restrictions on these rules are stated informally above but can be
made mathematically precise. The intended meaning of Γ ` ∆ in M is

238 DISCUSSION

that one of the formulae in ∆ logically follows from the formulae in Γ
and the theory of the description corresponding to the module M . It is
easy to prove that the rules are sound. They are strongly related to the
results concerning the connections between DA and more abstract models
of modular specification given in Section 9.1. Only the restriction on the
first rule requires some understanding of the features of flat VVSL.

9.3 Logic-based semantics of an imperative language

The logic-based approach to semantics which is applied to VVSL in Chap-
ter 5 is applied to another language in this section. Its purpose is to demon-
strate the generality of the approach. The constructs of the language con-
cerned are the control constructs usually found in imperative programming
languages. The language is a simplified version of an extension of VVSL
which is needed to be able to specify operations explicitly by a defining
program. The simplified version is not adequate for operations that yield
result values. It includes the following:

skip skip
v := e assignment
call op(e1, . . . , en) call
S1;S2 sequential composition
if E then S1 else S2 conditional
while E do S while loop
S1‖S2 parallel composition
await E do S await
〈S 〉 atomic

So the typical control constructs for sequential programming are avail-
able as well as powerful constructs for parallel programming with shared-
variables. Await statements are used for synchronization between subpro-
grams that are executed in parallel. Atomic statements are used to make a
subprogram insensitive to interference.

More on states and computations

Some abbreviations of terms and formulae of MPLω are introduced which
are used below to describe the meaning of the control constructs. All of
them are concerned with states and computations.

The first two abbreviations are perfectly simple.

ini(c) := st0(c)
fin(c) := ιs: State(

∨
n(¬(stn+1(c)↓) ∧ stn(c) = s))

ini(c) and fin(c) are terms denoting the initial state and the final state,
respectively, of computation c.

LOGIC-BASED SEMANTICS OF AN IMPERATIVE LANGUAGE 239

State changes caused by the execution of a statement and external state
changes may often be alternated. The next two abbreviations are used to
delimit the possible alternation.

is-skip(c) :=
∨

n(¬(stn+1(c)↓) ∧
n∧

m=0

(extm(c)))

is-skip(c) is a formula stating that c is a finite computation with external
steps only.

atomic(c) :=
(st1(c)↓ → int0(c) ∧ ¬(st2(c)↓)) ∨ ∧

n(stn(c) = stn+1(c) ∧ intn(c))

atomic(c) is a formula stating that c is a computation with zero, one or
infinitely many internal steps and no external steps.

The following two abbreviations are only used to describe the meaning
of assigment statements.

mod-only(s1, s2, v) := mod〈ω(v)〉(s1, s2)

mod-only(s1, s2, v) is a formula stating that state variables other than v
are not modified if the state changes from s1 to s2.

no-trans(c) := ¬(st1(c)↓)
no-trans(c) is a formula stating that there are no state transitions in com-
putation c.

The next two abbreviations are basic to the description of sequential
composition and parallel composition, respectively.

Concat(c1, c2, c) :=∨
n(Prefixn(c, c1) ∧ Suffixn(c, c2)) ∨ (

∧
n(stn(c1)↓) ∧ c = c1)

Concat(c1, c2, c) is a formula stating that computation c1 followed by com-
putation c2 yields computation c. Note that c equals c1 if c1 is an infinite
computation.

Conjoin(c1, c2, c) :=∧
n(stn(c) ' stn(c1) ∧ stn(c) ' stn(c2) ∧

((intn(c) ∧ ((intn(c1) ∧ extn(c2)) ∨ (extn(c1) ∧ intn(c2)))) ∨
(extn(c) ∧ (extn(c1) ∧ extn(c2))) ∨
¬(stn+1(c)↓)))

Conjoin(c1, c2, c) is a formula stating that computation c1 intertwined with
computation c2 yields computation c.

The execution of while loops may give rise to no state change for an
infinitely long time. The next abbreviation is used to exhibit this.

Stutter(c1, c2) := no-trans(c1) ∧
∧

n(stn(c2) = st0(c1) ∧ intn(c2))

240 DISCUSSION

Stutter(c1, c2) is a formula stating that adding infinitely many internal
identity steps to a computation c1 without any step yields computation c2.

The following abbreviation is used to make the execution of statements
insensitive to interference. It is needed for await statements and atomic
statements.

Flatten(c1, c2) :=∧
n(stn+1(c1)↓ → intn(c1)) ∧ atomic(c2) ∧

ini(c1) = ini(c2) ∧ (fin(c1) = fin(c2) ∨
∧

n(stn(c1)↓ ∧ stn(c2)↓))
Flatten(c1, c2) is a formula stating that removal of intermediate steps from
a computation c1 with internal steps only yields computation c2.

The meaning of the control constructs is now described using the abbre-
viations just introduced. Expression evaluation is assumed to be determin-
istic.

Skip

Execution of skip does not cause any state change and terminates success-
fully.

[[skip]]Cc := is-skip(c)

Assignment

The execution of v := e normally causes a state change in which the state
variable v gets the value of the expression e in the state directly before the
change and terminates immediately thereafter. In this case, only the state
variable v is modified. The execution may also terminate without any state
change in a state in which the values of v and e are the same.

Let [var v :T] ∈ C , then:
[[v := e]]Cc :=
∃c1: Comp, c2: Comp, s1: State, s2: State
(Concat(c1, c2, c) ∧ is-skip(c1) ∧ atomic(c2) ∧
ini(c2) = s1 ∧ fin(c2) = s2 ∧ mod-only(s1, s2, vC

T) ∧
∃y :TC ([[e]]C〈s1〉,y ∧ [[v]]C〈s2〉,y ∧ ([[v]]C〈s1〉,y → no-trans(c2))))

Note that an assignment is not visible as a step in computations if it does
not give rise to a state change.

Call

The execution of call op(e1, . . . , en) causes a succession of state changes
that the operation op may perform according to its definition in case its

LOGIC-BASED SEMANTICS OF AN IMPERATIVE LANGUAGE 241

arguments are the values of the expressions e1, . . . , en .

Let [op op:T1 × · · · × Tn ⇒] ∈ C , then:
[[call op(e1, . . . , en)]]Cc :=
∃c1: Comp, c2: Comp, s: State
(Concat(c1, c2, c) ∧ is-skip(c1) ∧ ini(c2) = s ∧
∃x1:TC

1 , . . . , xn :TC
n (

n∧

i=1

([[ei]]C〈s〉,xi
) ∧ opC

T1×···×Tn⇒(x1, . . . , xn , c2)))

Sequential composition

The execution of S1;S2 causes the succession of state changes caused by
the execution of S1 immediately followed by the succession of state changes
caused by the execution of S2 provided that the execution of S1 terminates.

[[S1;S2]]Cc := ∃c1:Comp, c2: Comp(Concat(c1, c2, c) ∧ [[S1]]Cc1
∧ [[S2]]Cc2

)

Conditional

The execution of if E then S1 else S2 causes the succession of state changes
caused by the execution of S1 if the value of the logical expression E is
initially true and causes the succession of state changes caused by the
execution of S2 if the value of logical expression E is initially false.

[[if E then S1 else S2]]Cc :=
∃c1: Comp, c2: Comp, s: State
(Concat(c1, c2, c) ∧ is-skip(c1) ∧ ini(c2) = s ∧
(([[E]]C〈s〉,tt ∧ [[S1]]Cc2

) ∨ ([[E]]C〈s〉,ff ∧ [[S2]]Cc2
)))

Note that a condition test is not visible as a step in computations – just
like an assignment that does not give rise to a state change.

While loop

The execution of while E do S causes the succession of state changes caused
by the repeated execution of S while E is true at the start of its execution.

[[while E do S]]Cc :=
Iter(c) ∧ ∀s: State(fin(c) = s → [[E]]C〈s〉,ff) ∨∧

n(∃c′:Comp(
∨

m(Prefixn+m(c, c′)) ∧ Iter(c′)))
where Iter is

242 DISCUSSION

δiter .
∀c1: Comp, c2: Comp, c3: Comp, c4: Comp, c5:Comp, s: State
((is-skip(c1) → iter(c1)) ∧
(Concat(c1, c4, c5) ∧ Concat(c2, c3, c4) ∧ ini(c2) = s ∧
iter(c1) ∧ [[E]]C〈s〉,tt ∧ [[S]]Cc2

∧ (is-skip(c3) ∨ Stutter(c2, c3)) →
iter(c5)))

The execution does not terminate if the condition test never fails. Note
that, if the execution does not cause any state change for an infinitely long
time, the iterations concerned are made visible as steps.

Parallel composition

The execution of S1‖S2 causes the succession of state changes caused by
the execution of S1 intertwined with the succession of state changes caused
by the execution of S2.

[[S1‖S2]]Cc :=
∃c1: Comp, c2: Comp
(Conjoin(c1, c2, c) ∧
∃c′: Comp, c′′: Comp(Concat(c′, c′′, c1) ∧ [[S1]]Cc′ ∧ is-skip(c′′)) ∧
∃c′: Comp, c′′: Comp(Concat(c′, c′′, c2) ∧ [[S2]]Cc′ ∧ is-skip(c′′)))

The termination of the intertwined executions is possibly delayed in order
to achieve simultaneous termination.

Await

The execution of await E do S waits until E is true and causes immediately
thereafter the succession of state changes caused by the execution of S
without any interference.

[[await E do S]]Cc :=
∃c1: Comp, c2: Comp, s: State
(Concat(c1, c2, c) ∧ is-skip(c1) ∧ atomic(c2) ∧ ini(c2) = s ∧
[[E]]C〈s〉,tt ∧ ∃c′: Comp(Flatten(c′, c2) ∧ [[S]]Cc′))

In the case that the execution of S does not terminate, this is visible as an
infinite sequence of internal steps without state changes.

Atomic

The execution of 〈S 〉 causes the succession of state changes caused by the
execution of S but without any interference.

[[〈S 〉]]Cc := ∃c′: Comp(Flatten(c′, c) ∧ [[S]]Cc′)

An await statement await true do S is semantically equivalent to skip; 〈S 〉.

LOGIC-BASED SEMANTICS OF AN IMPERATIVE LANGUAGE 243

Decomposition rules

For the restriction of the language to the constructs for sequential program-
ming, it is easy to prove that the decomposition rules for operations given
in (Jones, 1990) are consistent with the semantics given above.

For the full programming language, these rules have to be generalized to
assertions with inter-conditions. For example, the decomposition rule for
sequential composition becomes:

{E1}S [ϕ]{E ′
1 ∧ E2} {E ′

1}S ′[ϕ′]{E ′
2}

{E1}S ;S ′[ϕ C ϕ′]{E2 | E ′
2}

Some rules get rather complex. They can be simplified if the form of the
inter-conditions is restricted to, for example, the form corresponding to
rely- and guarantee-condition pairs.

10

Introduction to Case
Studies

The remaining chapters are concerned with two case studies in VVSL. They
are meant to clarify the extent to which the specification of software sys-
tems can be improved by the extensions of VDM-SL for modular structur-
ing and specifying interference of operations. Both case studies are related
to ‘Relational DataBase Management Systems’ (RDBMSs). They are case
studies for demonstrating the practical usefulness of the above-mentioned
extensions. Relational database management systems are sufficiently fa-
miliar to most people involved in the construction of software systems to
allow them to concentrate on the formal specification tasks rather than on
the examples used for them. The case studies are also interesting because
the specifications yielded by them give comprehensive pictures of (1) the
relational approach to databases and (2) transaction management in data-
base systems, which are mathematically precise and modularly structured
as well. Such descriptions are still rare.

The first case study deals with the underlying concepts of relational data-
base management systems and the operations for data manipulation and
data definition which can be performed by such systems. An attempt is
made to give a full picture of the relational approach. The concepts con-
cerned include many of the basic concepts of the ‘Relational Data Model’
(RDM), which was introduced by Codd (1970). They include the concepts
which are considered fundamental in (Brodie and Schmidt, 1981). The op-
erations concerned make up an external RDBMS interface: the operations
are available directly to the users of the RDBMS. The interface is abstract
in the sense that it does not deal with details of actual interfaces like con-
crete syntax of operations, their embedding in a host language, concrete
representation of the data objects yielded by query operations, etc. The
modular structure of the specification yielded by this case study isolates
the description of the RDM concepts from the description of the external
RDBMS interface. This means that large parts of the specification can be
re-used in specifications of other possible external RDBMS interfaces and

246 INTRODUCTION TO CASE STUDIES

even various internal RDBMS interfaces.
The second case study deals with the underlying concepts and operations

of systems for handling concurrent access to a relational database by mul-
tiple transactions. The specification yielded by this case study provides for
a way of looking at ‘Transaction Management’ (TM) in database systems.
The concepts concerned are concepts associated with the following facets
of transaction management in database systems: concurrency control for
databases (Eswaran, Gray, Lorie and Traiger, 1976; Rosenkrantz, Stearns
and Lewis, 1978; Kung and Papadimitriou, 1983) and in-progress transac-
tion backup (Gray, 1978; Gray et al., 1981; Haerder and Reuter, 1983). It
does not cover the low-level concepts that are needed for particular solu-
tions of transaction management problems, e.g. locking protocols for solving
concurrency control problems – see (Bernstein and Goodman, 1981) for a
survey – and log protocols for solving transaction backup problems are not
described. The operations concerned make up an internal RDBMS inter-
face: the operations are not available directly to the users of the RDBMS.
In any existing RDBMS, the execution of the high-level data manipulation
operations of its external interface gives rise to the execution of lower-level
access handling operations of an internal interface which is comparable to
the described internal interface.

It was argued in Chapter 1 that a precise specification is the right
starting-point for the development of a satisfactory software system. This
carries over to theoretical development of solutions for idealizations of com-
mon problems in software systems of a certain kind – such as locking pro-
tocols for concurrency control problems in database systems. Here, a for-
mal specification of the idealization of such a problem provides a reference
point against which the correctness of the proposed solutions can be es-
tablished and the confidence in the pertinence of the idealization to the
actual problems can be increased. The usual absence of such specifications
in the area of transaction management in database systems – as well as in
many other areas – is reflected by the difficulties in relating the different
solutions to seemingly the same problem. A specification like the one given
in Chapter 13 was already needed before the early work concerning locking
protocols for solving database concurrency control problems and log proto-
cols for solving transaction backup problems (such as the work presented in
(Eswaran, Gray, Lorie and Traiger, 1976; Gray, Lorie, Putzolu and Traiger,
1976; Gray, 1978) was carried out. Actually, the specification was largely
acquired by seeking the unmentioned assumptions about the problem(s) to
be solved in the presentations of that work.

In the remainder of this chapter general remarks are made about the
case studies worked out in Chapters 11 to 13. This includes remarks about
the scope of the formal specifications, summaries of formalized concepts,
short overviews of the interfaces and outlines of the specifications. This
introduction is meant to excite interest in the later chapters and to make

SCOPE OF THE SPECIFICATIONS 247

them more comprehensible. It is possible to understand the material in
these chapters without reading the remainder of this chapter. However, the
material is better understood with an picture of what is formally described
and how the descriptions concerned are organized.

Neither this chapter nor the later chapters are intended to be used in
becoming familiar with the relational approach to databases or transaction
management in database systems. For that purpose, it is better to study a
textbook such as (Ullman, 1988).

10.1 Scope of the specifications

RDM concepts and an external RDBMS interface

A formal definition of RDM concepts necessarily has to be selective. Some
RDM concepts have several definitions based on different views of the con-
cept. The most striking example is the basic concept of a relation: there
exists a ‘set-of-sequences’ view and a ‘set-of-maps’ view of relations. Fur-
thermore, in several areas there is a multitude of closely related concepts.
One such area is the area of dependencies: there are functional dependen-
cies, multi-valued dependencies, join dependencies, implied dependencies,
transitive dependencies, mutual dependencies, extended transitive depen-
dencies, embedded implicational dependencies, etc. Both in cases of differ-
ent views of concepts and in cases of multitudes of closely related concepts,
choices have been made. The generality of the definition, its ability to fit a
coherent collection of concepts and its practical relevance have been taken
into account. Naturally the choices also reflect the taste and biases of the
author.

Another problem one encounters in formalizing RDM concepts is that
some concepts of practical relevance have imprecise definitions. An example
is the definition of inclusion dependency for the general case (involving one
or more attributes), which is imprecise in both (Fagin, 1981) and (Fagin
and Vardi, 1986). As is often the case, the concept seems so straightforward
that inaccuracies in its definition only show up if one tries to formalize it.
In such cases, attempts have been made to find out the intentions in order
to acquire the exact details in a faithful manner. As a matter of course,
concepts that are both imprecisely defined and not very relevant have been
dropped.

Concerning the concept of a relation, the set-of-maps view has been cho-
sen. It can be regarded as a generalization of the set-of-sequence view and
it is the basis of most experimental and commercially available RDBMSs,
e.g. PRTV (Todd, 1976), QBE (Zloof, 1977), INGRES (Stonebraker, Wong,
Kreps and Held, 1976; Stonebraker, 1980) and the RDBMSs providing SQL
(Astrahan et al., 1976; Chamberlin et al., 1981). Moreover, it turns out not
to hinder a coherent collection of RDM concepts. Originally, relations were

248 INTRODUCTION TO CASE STUDIES

viewed as sets of sequences (Codd, 1970). The consequences of choosing
one view over the other are illustrated by Bjørner (1982).

With respect to the concept of a relation schema, the view has been
taken that it should define not only the attributes of the relations which
are considered to be its instances, but also the domains of these attributes
and the sets of attributes which form a key. However it should not define
more than this. One reason for this choice is that it corresponds roughly
to what is offered most commonly in existing RDBMSs. Another reason is
that many proposed definitions of a relation schema are based on concepts
which are not generally accepted as RDM concepts. These concepts are
usually related to attempts to extend the RDM to capture more meaning
(Codd, 1979). In the presented formalization, domain dependencies and key
dependencies are the only ones that are supported by the relation schema.
The concept of a domain dependency generalizes in a purely relational way
the semantic idea of entity integrity advocated by Codd (1979) and Date
(1986). Other dependencies are also considered to be of practical interest,
but mainly for database design. For this reason several of them, including
the well-known functional dependencies and multi-valued dependencies, are
treated separately (but connected with the concept of a relation schema).

Remarks, which are similar to those made above, apply to the concept of
a database schema. In the presented formalization, inclusion dependencies
are the only additional ones that are supported by the database schema.
The concept of an inclusion dependency generalizes in a purely relational
way the semantic idea of referential integrity advocated by Codd (1979)
and Date (1986).

One usually distinguishes two kinds of notation for querying relational
databases: algebraic notation and logical notation. One abstract language of
the former kind called relational algebra has been proposed by Codd (1972)
and two abstract languages of the latter kind, called tuple relational cal-
culus and domain relational calculus have been proposed by Codd (1972)
and Lacroix and Pirotte (1977), respectively. These abstract languages are
equivalent in expressive power. See, for example, (Ullman, 1988). Query lan-
guages of existing RDBMSs often resemble one of these abstract languages.
For example, ISBL (PRTV) resembles relational algebra, QUEL (INGRES)
resembles tuple relational calculus and Query-by-Example (QBE) resem-
bles domain relational calculus. The influential SQL (Chamberlin et al.,
1976) resembles relational algebra for simple queries and resembles tuple
relational calculus for more complex queries. For the description of an ex-
ternal RDBMS interface a choice from the abstract languages has been
made in favour of relational algebra. The main reason for this choice is
that it gives rise to an abstract interface which can be concisely defined
in terms of the formalized RDM concepts and illustrates most of them.
This yields an interface that supports the RDM concepts directly. Such an
external interface is sometimes even considered to be a part of the RDM,

SCOPE OF THE SPECIFICATIONS 249

for example, in (Brodie and Schmidt, 1981). Its specification is not meant
to provide the sole starting-point for the design of concrete ones which are
convenient for the user, because it is somewhat extreme with respect to
queries.

TM concepts and an internal RDBMS interface

The description of an internal RDBMS interface covers concepts associated
with concurrency control for databases and in-progress transaction backup.
Some formalized concepts are precisely defined instances of concepts which
are widely used in this area but which are usually only vaguely described.
Even nameless concepts described by expressions like ‘the dynamic syn-
tactic information about the transactions issuing access requests’ had to
be formalized. Other formalized concepts are generalizations of concepts
which are mostly used in theoretical work on transaction management but
which are often not very useful in practice. For example, many concepts
are based on assumptions that preclude dynamic creation of transactions.
However, as in existing systems, the internal RDBMS interface described
later on provides for dynamic transaction creation. Moreover, some formal-
ized concepts are abstractions of concepts which are used in this area, since
the original concepts were too concrete to underlie the formalized interface.

Concerning concurrency control, the view has been taken that the inter-
face should completely hide the mechanism used for scheduling the access
requests issued on behalf of various transactions. For example, the interface
should not include operations for locking. This view corresponds to ‘concur-
rency transparency’, which is mentioned as one of the types of transparency
that transactions should provide, for example, in (Traiger, Gray, Galtieri
and Lindsay, 1982). The main reason for this choice is that it leads to an
interface which reflects the essential characteristics of concurrency control
for databases instead of the details of a particular mechanism supporting
it. Such an interface seems more suitable to provide for a way of looking
at transaction management. Another reason for this choice is that it gives
rise to an interface which, as far as concurrency control is concerned, can
be defined in terms of a small collection of underlying concepts that are
both simple and general.

One usually distinguishes two purposes of transaction-oriented database
recovery: in-progress transaction backup and crash recovery. See, for exam-
ple, (Gray, 1978). In-progress transaction backup is needed in order to be
able to undo the updates of the database made by a particular transaction
in the event that the transaction cannot complete due to an error which al-
lows its abortion in a controlled manner. Crash recovery is needed in order
to be able to undo the updates made by any transaction that was incom-
plete at the time of a crash (i.e. an error which does not allow its abortion
in a controlled manner) and to redo the updates made by any completed

250 INTRODUCTION TO CASE STUDIES

transaction whose effects were lost due to the crash. A choice has been
made not to take crash recovery into account. A useful treatment of crash
recovery would require a multitude of low-level concepts to be formalized.

A system for handling concurrent access to a relational database may
handle access to either single tuples of stored relations, subsets of stored
relations or entire stored relations. For the description given a choice from
these ‘units of access’ has been made in favour of subsets of stored relations.
The main reason for this choice is that access to subsets of stored relations
is a generalization of the other cases. Moreover, the distinction between
access to single tuples and access to subsets of stored relations is blurred
in comparable internal interfaces of existing RDBMSs by the provision of
‘scans’ – also called cursors; see, for example, (Gray, 1987).

The above-mentioned choices determine the scope of the specification
given in Chapter 13. For example, concepts underlying particular concur-
rency control mechanisms and concepts underlying crash recovery are not
covered. It builds on the formalization of RDM concepts given in Chap-
ter 11. This means that the definitions are couched in terms of the RDM.
This restricts the scope of the formalization slightly. The definitions seem
to carry over to other data models without many problems.

10.2 Subject matter of the specifications

The first specification makes precise many of the basic concepts of the
relational data model and describes an external RDBMS interface. The
second specification makes precise many concepts associated with transac-
tion management in database systems and describes an internal RDBMS
interface.

Summary of the formalized RDM concepts

The principal formalized structure concepts are tuple, relation, database,
tuple structure, relation schema and database schema. The concepts rela-
tion and relation schema are connected through a predicate ‘is valid in-
stance of’ on relations and relation schemas. The concepts database and
database schema are connected analogously.

The principal formalized manipulation concepts are the usual ones con-
nected with relations: union, intersection, difference, product, projection,
selection, renaming, joining and division of relations. Concepts concerning
the manipulation of relations in databases and relation schemas in database
schemas are formalized as well.

The general integrity concepts connected with relations and databases,
relation constraint and database constraint, are also formalized. The for-
malized specializations of these concepts are functional dependency, multi-
valued dependency, join dependency, domain dependency, key dependency

SUBJECT MATTER OF THE SPECIFICATIONS 251

and inclusion dependency. The concepts relation schema and relation con-
straint are connected through a predicate ‘in domain-key normal form with
respect to’ on relation schemas and collections of relation constraints. The
concepts database schema and database constraint are connected analo-
gously. Domain-key normal form is the only formalized normal form.

The formalized concepts include the concepts which are considered fun-
damental in (Brodie and Schmidt, 1981). The remaining formalized con-
cepts are mainly integrity concepts. Concepts concerning aspects of a
DBMS that are not specifically associated with the RDM (e.g. views and
authorization, transactions) are not included.

Overview of the external RDBMS interface

The formalized external interface consists of two parts: a data manipulation
interface and a data definition interface. The data manipulation interface
comprises an operation for selecting a relation that is derived from the ones
stored in the current database and operations for altering one of the rela-
tions stored in the current database by insertion, deletion or replacement.
The data definition interface comprises operations for changing the current
database schema by addition and removal of relation schemas.

The main arguments of the data manipulation operations are queries, i.e.
expressions denoting relations. These queries resemble expressions from re-
lational algebra. The description of queries makes precise their abstract
syntax, their well-formedness and their evaluation in a database. Both
well-formedness and evaluation are defined with respect to a given data-
base schema. Evaluation of queries yields relations. So well-formedness and
evaluation of queries connect queries to relations, databases and database
schemas. This means that the description of queries illustrates many of the
formalized RDM concepts.

Given the description of queries, the definition of the data manipulation
operations is straightforward. A large part of the description of the data
manipulation interface relates to the well-formedness of queries. This is not
exceptional. Well-formedness (also called ‘context conditions’ and ‘static
semantics’) tends not to be defined in a concise way for any language even
if it is well thought out with respect to semantics.

The main arguments of the data definition operations are declarations.
Declarations are syntactic objects corresponding to relation schemas. The
description of declarations makes precise their abstract syntax, their well-
formedness and their evaluation. Different from the well-formedness of
queries, the well-formedness of declarations is entirely straightforward.

252 INTRODUCTION TO CASE STUDIES

Summary of the formalized TM concepts

The formalized concurrency control concepts include: access and access
table. The concept of an access was originally defined in connection with
the idea of predicate locks (Eswaran, Gray, Lorie and Traiger, 1976). The
concept of an access table makes precise what is informally described as
‘dynamic syntactic information about a transaction system’ in (Kung and
Papadimitriou, 1983). The formalized concepts also include operators for
creating, updating and destroying the access information about a single
transaction. The concepts of access and access table are connected through
predicates ‘conflicts’ and ‘deadlock liable’ on accesses and access tables.

The formalized transaction backup concepts include: transition record,
transition log and log table. The concept of a transition record generalized
what is used in, for example, System R (Gray et al., 1981) to record the
differences occurring when changes are made to a tuple of some stored
relation. The concept of a log table is based on the informal concept of a
system log described in (Gray, 1978). The formalized concepts also include
operators for creating, updating and destroying transition logs in log tables,
and an operator for undoing changes made to stored relations according to
transition logs.

Together with the description of RDM concepts in Chapter 11, this de-
scription of concurrency control and transaction backup concepts provides
all of the concepts that are needed to understand the internal RDBMS
interface which is described in Chapter 13.

Overview of the internal RDBMS interface

The formalized internal interface comprises operations for starting and
stopping a transaction, operations for accessing a subset of one of the stored
relations to read it or to overwrite it, and operations for creating and de-
stroying stored relations.

The main arguments of these operations are simple formulae for stating
the properties of tuples. The description of simple formulae makes precise
their abstract syntax, their well-formedness and their evaluation.

Most of the operations can be regarded as requests on behalf of some
transaction to perform an action on a subset of a stored relation. Transac-
tions are the units of consistency: it is assumed that each action which is
performed on behalf of a transaction may violate database consistency, but
that each transaction, when executed alone, preserves database consistency.
Interleaved performance of actions requested by several transactions is pro-
vided in such a manner that each transaction sees a consistent database
and produces a consistent database. When a transaction issues a request, it
is never made to wait for ever for the grant of the request. An issued request
is rejected immediately if the request would cause deadlock. Other reasons

RELATED WORK 253

why a transaction might wait for ever are prevented from occurring by the
way of granting requests. One of the operations stops an transaction after
undoing all changes made to the database so far. This is usually needed if
an issued request is rejected.

The external RDBMS interface which is described in Chapter 12 does
not deal with concurrency at all. This is in accordance with the view that it
should appear to any user of the RDBMS as if each operation is executed in
isolation. The internal RDBMS interface which is described in Chapter 13
deals with concurrency. Access handling requests issued on behalf of several
data manipulation operations are executed in an interleaved way by which
it appears as if each of them is executed in isolation. This can be used
for an implementation of the RDBMS with concurrent execution of data
manipulation operations in a multi-user environment.

10.3 Related work

Date’s definition of the RDM (Date, 1986, Chapter 7), called ‘A Formal
Definition of the Relational Model’, is a semi-formal∗ mixture of syntactic
and semantic aspects, static and dynamic aspects, etc., which provides for
a restricted picture of the relational approach. For example, it covers only
a very restricted ‘name-based’ variant of relational algebra and it does
not cover ‘dynamic’ data definition. The first case study in this book tries
to give a well-structured formal description of many of the basic RDM
concepts, which provides for a full picture of the relational approach.

In (Tompa, 1980), an algebra of quotient relations, is formally defined
using an algebraic specification technique. It endows relational algebra with
explicit set-processing capabilities which are closely connected with the
GROUP BY clause of SQL (Chamberlin et al., 1976). The concept of a
quotient relation, which is relevant to efficient implementation of query
evaluation and for the support of ‘views’, is not treated in Chapter 11.

An RDBMS with a layered architecture, in which an external, conceptual
and internal level are distinguished, is formally described in (Neuhold and
Olnhoff, 1980) using the VDM specification language described in (Jones,
1982) and known as META-IV. It covers some general aspects of a DBMS,
i.e. aspects that are not particularly relational in nature. These aspects are
not covered in this book.

In (Brodie and Schmidt, 1981), a start is made with a formal defini-
tion of the RDM using META-IV in behalf of a ‘Relational Standard’.
Using META-IV, Bjørner (1982) focusses on query languages resembling
relational algebra and tuple relational calculus. Both have influenced the
descriptions in Chapters 11 and 13.

Usual set theoretic notation is the basis of a formalization of basic con-

∗ A BNF-like syntax notation and English text is used.

254 INTRODUCTION TO CASE STUDIES

cepts of a data model by Niemi and Järvelin (1984). The data model con-
cerned is called the RDM by the authors. However, the concepts deviate
rather a lot from the usual RDM concepts since the separation between
instances (objects) and schemas (meta-objects) is avoided, e.g. a structure
concept such as tuple or relation is defined so that it contains a description
of its structure. In the description in Chapter 11, we try not to deviate so
much.

The ideas, which are elaborated in the presented description of an inter-
nal RDBMS interface, were mainly developed by abstraction and combi-
nation of many useful ideas that have been developed in the area of con-
currency control. The latter ideas are usually associated with particular
(kinds of) concurrency control mechanisms. Amongst the ideas that have
been most influential are the ideas of ‘two-phase’ locking and ‘predicate
locks’ which are introduced in (Eswaran, Gray, Lorie and Traiger, 1976),
the ideas of ‘strict’ and ‘superstrict’ concurrency control which are intro-
duced in (Rosenkrantz, Stearns and Lewis, 1978), and the idea of ‘optimal
schedulers’ (for available information) which is introduced in (Kung and
Papadimitriou, 1983). However, none of these ideas themselves are directly
formalized. Influential ideas in the area of transaction backup are mainly
the ideas described in (Gray, 1978) and partly in (Gray et al., 1981); no-
tably the idea that should be called ‘logical transition logging’ according
to the classification of log data presented in (Haerder and Reuter, 1983).

The ideas of two-phase locking and predicate locks are treated formally
in (Eswaran, Gray, Lorie and Traiger, 1976). Usual set theoretic notation
is used as the basis of the formalization in that paper. Other early work in
this area is often informal or semi-formal. For example, useful ideas about
granularity of locks are introduced and elaborated informally in (Gray,
Lorie, Putzolu and Traiger, 1976). In (Schlageter, 1978) only a few concepts
are formalized – perhaps it is due to this lack of formality that several
results are in error. A good example of a formal presentation is (Bernstein,
Shipman and Wong, 1979). Herein several concurrency control mechanisms
and properties of schedules are defined and analysed in a formal manner,
but under several simplifying assumptions. Therefore, it has not influenced
the description in Chapter 13.

10.4 Outline of the first specification

Structure

The choice of modular structure was mainly governed by the criteria men-
tioned in Section 2.2. If the reader wants to understand the formalized
concepts of the RDM and the external RDBMS interface in detail, he or
she can study the modules in the next two chapters in the order in which
they appear. For a global understanding, he or she may find it better to

OUTLINE OF THE FIRST SPECIFICATION 255

read them in reverse order.
The modules in Chapter 11 are modules containing definitions of under-

lying concepts of RDBMSs and the modules in Chapter 12 are modules
containing definitions concerning the states of an RDBMS and the opera-
tions of the external RDBMS interface. The latter modules are composed
of the former modules.

In Chapter 12 the modules SELECTION WFF, QUERY and
DECLARATION only contain definitions of types and functions, while
DBMS STATE, MANIPULATION and DEFINITION only contain
definitions of state variables and operations. This means that the state inde-
pendent aspects of the external RDBMS interface and the state dependent
ones are separated.

RDM concepts

In Chapter 11, many of the basic RDM concepts are defined. In the def-
initions concerned, relation names, attributes and values are regarded as
primitive concepts about which it suffices to make a few assumptions. The
modules REL NM, ATTRIBUTE and VALUE contain the assump-
tions concerned. Relation names and attributes have no a priori properties.
For values, it is assumed that any finite set of values constitutes a domain.
Of course, relation names and attributes are usually identifiers and values
are usually numbers from some finite range of integers and strings over a
finite alphabet up to some finite length. However, because the definitions of
RDM concepts do not rely on any property of relation names and attributes
and rely on only a few properties of values, we do not commit ourselves to
a particular choice of relation names, attributes and values.

Attribute sets and attribute bijections (one-to-one maps between at-
tribute sets) are jointly used in various modules, e.g. as arguments of
functions on tuples, relations, etc. The relevant definitions are collected
in the module ATTR SUPPL. The closely related key sets (sets of at-
tribute sets) are mainly used in other modules, e.g. as components of
relation schemas. The relevant definitions are collected in the module
KEY SUPPL.

In the module TUPLE, tuples are defined as maps from attributes to
values. Tuples can be viewed as records, with the attributes corresponding
to fields. Tuple predicates are defined as maps from tuples to truth values.
A tuple predicate is used to select tuples from some relation.

In the module RELATION, relations are defined as sets of tuples. All
tuples from a relation must have the same attributes, i.e. they must have
the same domain. Relations can be viewed as files of records with the same
fields. Relations together with the functions defined in this module for
constructing new relations from old ones constitute a version of relational
algebra (Codd, 1972). These functions comprises traditional set operators

256 INTRODUCTION TO CASE STUDIES

and special relational operators.
In the module RELATION EXTENSION, some additional functions

for constructing a new relation from old ones are defined in terms of the
primitive ones defined in the module RELATION.

In the module DATABASE, databases are defined as maps from re-
lation names to relations. Informally, it is a collection of uniquely named
relations. Databases together with the functions defined in this module for
constructing them constitute an algebra of databases, in the same vein as
relational algebra is an algebra of relations.

In the module TUPLE STRUCT, tuple structures are defined as maps
from attributes to domains. Tuple structures can be viewed as record types,
with the attributes and domains corresponding to fields and types of the
fields, respectively. A tuple structure is used to present structural con-
straints on the tuples of some relation.

In the module REL SCHEMA, relation schemas are defined as com-
posite values with a tuple structure and a set of keys as components. A
relation schema is used to present intra-relational constraints which must
be obeyed by some named relation. Its tuple structure presents the struc-
tural constraints on the tuples of the relation and each of the keys presents
a uniqueness constraint on the relation. The relations that obey the con-
straints presented by a given relation schema are its valid instances.

In the module DB SCHEMA, database schemas are defined as com-
posite values with a map from relation names to relation schemas and a set
of inclusions as components. A database schema is used to present intra-
relational constraints on the named relations of some database, in the form
of relation schemas, as well as inter-relational constraints on the database,
in the form of inclusions. Each of the inclusions presents an inclusion con-
straint between two named relations in the database. The databases that
obey the constraints presented by a given database schema are its valid
instances.

In the module REL CONSTRAINT, relation constraints are defined
as maps from relations to truth values. Intra-relational constraints, such
as the well-known functional dependencies and multi-valued dependencies,
are special kinds of relation constraints. Domain dependencies and key de-
pendencies are the only two kinds of intra-relational constraints that can be
presented in relation schemas as defined in the module REL SCHEMA.
Domain-key normal form is introduced to connect relation schemas with
relation constraints.

In the module DB CONSTRAINT, database constraints are defined
as maps from databases to truth values. Inclusion dependencies are a special
kind of database constraints. It is the only kind of inter-relational constraint
that can be presented in database schemas as defined in DB SCHEMA.
The intra-relational constraints which are treated as special kinds of rela-
tion constraints in the module REL CONSTRAINT are lifted to data-

OUTLINE OF THE FIRST SPECIFICATION 257

base constraints. Domain-key normal form is lifted to connect database
schemas with database constraints.

The external RDBMS interface

In Chapter 12, an external RDBMS interface is described. In the definitions,
value constants and domain constructions are also regarded as primitive
concepts. Value constants and domain constructions are used as syntactic
objects denoting values and domains, respectively. The definitions only rely
on the existence of evaluation functions for value constants and domain
constructions.

The module VALUE CONST is based on the assumptions with respect
to values from the module VALUE. In this module it is assumed that
there is a type Value const and a total evaluation function value on value
constants yielding values.

The module DOMAIN CONST is based on the assumptions with re-
spect to values from the module VALUE. In this module it is assumed
that there is a type Domain const and a total evaluation function domain
on domain constructions yielding domains.

In the module SELECTION WFF, selection formulae are defined as
composite values of several kinds. Selection formulae are simple formulae
for stating properties of tuples. They should be considered to be abstract
syntactic objects since they do not deal with concrete representation de-
tails. A selection formula is used as a constituent of queries in which a
relation is expressed as a selection from another one. The well-formedness
and evaluation of selection formulae are also defined.

In the module QUERY, queries are defined as composite values of sev-
eral kinds. Queries can be viewed as expressions denoting relations. Like
selection formulae, they should be considered to be abstract syntactic ob-
jects. Queries are used as arguments of data manipulation operations. Their
well-formedness and evaluation are also defined.

In the module DECLARATION, declarations are defined as compos-
ite values. Declarations can be viewed as expressions denoting relation
schemas. Like selection formulae and queries, they should be considered
to be abstract syntactic objects. Declarations are used as arguments of
data definition operations. Their well-formedness and evaluation are also
defined.

In the module DBMS STATE, a varying database and a varying data-
base schema are defined as state variables. They can be viewed as taking
at any point in time the current database value and the current database
schema value, respectively. Together they constitute the changing state of
a database management system. The intention that the current database
schema always applies to the current database, is made precise with a state
invariant.

258 INTRODUCTION TO CASE STUDIES

In the module MANIPULATION, an operation for the selection of
a relation that is derived from the ones stored in the current database
and three operations for altering one of the relations stored in the current
database (by insertion, deletion and replacement) are defined as operations.
Together they constitute the data manipulation interface of a database
management system.

In the module DEFINITION, three operations for altering the current
database schema are defined as operations. Together they constitute the
data definition interface of a database management system.

In the system module (system), the relevant definitions from the previous
modules are combined and what constitutes the external RDBMS interface
is specified by making only the names of these concepts visible.

10.5 Outline of the second specification

Structure

The structure of the second specification is similar to the structure of the
first one. Again, if the reader wants to understand the formalized TM
concepts and the internal RDBMS interface in detail, he or she can study
the modules in Chapter 13 in the order in which they appear. But for a
global understanding, he or she may find it better to read them in reverse
order. The reused part from Chapter 11 is not really repeated in the second
specification.

In Chapter 13 the modules SIMPLE WFF, . . . ,LOG TABLE only
contain definitions of types and functions. The modules AH STATE and
ACCESS HANDLING only contain definitions of state variables and
operations (except the definition of the type Status which is used by most
operations to return an indication of success or failure). This means that
the state independent aspects of the internal RDBMS interface and the
state dependent ones are separated.

TM concepts and the internal RDBMS interface

In Chapter 13, an internal RDBMS interface is described. In the definitions,
transaction names are also regarded to be primitive. Transaction names are
usually identifiers.

In the module TRANS NM it is assumed that there is a type
Trans nm with no a priori properties.

The modules ATTR SUPPL, . . . ,DB SCHEMA contain the re-
quired definitions of RDM concepts. These modules were outlined before.

In the module SIMPLE WFF, simple formulae are defined as com-
posite values of several kinds. Simple formulae and selection formulae (de-
fined in the module SELECTION WFF) are almost the same. Simple

OUTLINE OF THE SECOND SPECIFICATION 259

formulae are used as arguments of access handling operations. Their well-
formedness and evaluation are also defined.

In the module ACCESS, accesses are defined as composite values with
an access mode (READ, WRITE, CREATE or DESTROY), a relation name
and a simple formula as components. An access is used to present syntactic
properties of an access request issued by some transaction. These properties
are made use of to grant the request concerned amongst requests issued by
other transactions in a consistency preserving order. One access is in conflict
with another one if the effects of the requested actions possibly interfere
according to the syntactic properties concerned.

In the module ACCESS TABLE, access tables are defined as maps
from transaction names to access records (composite values with two sets of
accesses as components). An access table is used to present, for each active
transaction, the syntactic properties of its previously granted requests and
its currently waiting request (only when it is currently waiting). All this
is made use of to grant the waiting and coming requests of the active
transactions in a consistency preserving order. For a given transaction,
an access is in conflict with an access table if the effect of the requested
action possibly interferes with the effect of one of the actions that was
previously requested by another active transaction. A conflicting request
is not granted immediately; it becomes a waiting request which eventually
will be granted or it is rejected immediately. The latter will happen when
it would otherwise be waiting for itself indirectly, i.e. the access is liable for
deadlock.

In the module TRANSITION RECORD, transition records are de-
fined as composite values with a transition mode (NORMAL, INIT, FINAL),
a relation name and two relations as components. A transition record re-
flects the effect of a write action on some stored relation by recording the
differences that occur when the stored relation is changed by performing
the write action on it. It provides all the details of its effect that are required
to undo the effect.

In the module TRANSITION LOG, transition logs are defined as se-
quences of transition records. A transition log is used to record the effects
of all write actions on stored relations which have been performed on re-
quest of some transaction, in the order in which they have taken place. The
transition log of a transaction provides all the details that are required to
undo its cumulative effect.

In the module LOG TABLE, log tables are defined as maps from trans-
action names to transition logs. A log table is used to record the effects
of all write actions on stored relations which have been performed on the
request of active transactions, in the order in which they have taken place
and aggregated by transaction. The log table provides all the details that
are required to abort any of the active transactions in a controlled manner.

In the module AH STATE, a varying database, a varying database

260 INTRODUCTION TO CASE STUDIES

schema, a varying access table and a varying log table are defined as state
variables. They can be viewed as taking at any point in time the current
database value, the current database schema value, the current access table
value and the current log table value, respectively. Together they constitute
the changing state of the access handler.

In the module ACCESS HANDLING, the operations which consti-
tute the internal RDBMS interface are defined as operations. The definition
of these operations is quite straightforward but far from concise. A large
part is related to the characterization of all possible ways in which they
may be scheduled.

In the system module (system), the relevant definitions from the previous
modules are combined and what constitutes the internal RDBMS interface
is specified by making only the names of these concepts visible.

Miscellaneous

In the specifications, the universe of values for the attributes of tuples is
not fixed, but restricted to be finite. By this restriction, the specifications
could be founded on a simple algebraic theory of finite sets and maps in-
stead of a strong variety of set theory like Zermelo-Fraenkel set theory. In
particular, various concepts could be defined as finite maps instead of gen-
eral functions. Thus, higher-order functions have been avoided. Assuming
an infinite universe of values, as is done sometimes in theoretical work, is
quite unrealistic. In reality, every RDBMS supports only a finite universe
of values. Values are usually numbers from some finite range of integers
and strings over a finite alphabet up to some finite length. Therefore, the
restriction to a finite universe of values is not considered to be a loss.

It often occurs that a function is a generalization of another function.
In these cases, the same name is used for both functions, unless the usual
names for them are different. This causes no problems in VVSL, since
overloading of function names is allowed. For the reader, it means that
sometimes he may have to look back a few lines to fix the function con-
cerned exactly. Instead, long compound names could be used. It is doubtful
whether that would enhance comprehension of the specification.

11

Formalization of RDM
Concepts

This chapter is the first of two chapters in which the first case study in
VVSL is presented. This case study deals with the underlying concepts of
relational database management systems and the operations for data ma-
nipulation and data definition which can be performed by such systems.
The underlying concepts are described in this chapter and the operations
are described in Chapter 12. The second case study is presented in Chap-
ter 13. The current chapter contains the part of the specification yielded
by the first case study that is re-used in the second case study. The pur-
pose of the first case study is to demonstrate the practical usefulness of the
extensions of VDM-SL for modular structuring.

The concepts described in this chapter include many of the basic concepts
of the RDM. The RDM is the way of looking at data which underlies any
RDBMS. The relevant concepts cover data structure, data manipulation
and data integrity aspects.

The description of RDM concepts in this chapter has the following key
features: (1) it gives a full picture of the RDM, (2) it is mathematically
precise and (3) it is modularly structured. Descriptions having features (1)
and (2) are not of frequent occurrence; those having in addition feature (3)
are really rare. It is worth noting that the use of VVSL is not needed for
the features (1) and (2): the notation employed is mostly fairly standard
mathematical notation. However, notation for modular structuring is really
a deviation from ordinary mathematical practice. Besides, the descriptions
given in Chapters 12 and 13, which build upon the description in the current
chapter, employ special notation which makes it easier to describe software
systems in terms of operations which interrogate and/or modify a state.

The main criteria for the choice of modular structure mentioned in Sec-
tion 2.2 were: the simplicity of the separate modules, the intuitive clarity
of the modular structure and the suitability of the separate modules for
re-use. In this connection, it is worth noting the following about the de-
scription in this chapter. An important indication for the simplicity of the

262 FORMALIZATION OF RDM CONCEPTS

separate modules is the ease with which theories about them can be devel-
oped. It is obvious that it must be relatively easy to develop theories about
most of the modules that constitute the description of RDM concepts in
this chapter. It is difficult to assess whether the clearness of the modular
structure chosen in this chapter might be improved. In any case, it is clear
that the chosen modular structuring aids a global understanding. Each of
the modules describes concepts of great generality and wide applicability.
Many modules are first used in the description of an external RDBMS in-
terface in Chapter 12 and later re-used in the description of an internal
RDBMS interface in Chapter 13.

The description of RDM concepts begins with the presentation of three
parameter modules which are used to make precise what assumptions are
made. Subsequently, there are separate sections on the modules which con-
stitute the description of RDM concepts. Each module is preceded by an
explanation of what the module concerned is about.

A reader who is unfamiliar with the relational approach to databases
should first study a textbook such as (Ullman, 1988) to acquire an intuitive
understanding of what is described formally in this chapter and Chapter 12.

11.1 Assumptions

Later on modules are presented in which tuples, relations, relational data-
bases and other RDM concepts are defined. Tuples are defined in terms of
attributes and values, relations are defined in terms of tuples, databases
are defined in terms of relation names and relations, etc. Both relation
names and attributes are usually identifiers. Values are usually numbers
from some finite range of integers and strings over a finite alphabet up to
some finite length. However, in the definitions concerned relation names,
attributes and values are regarded as primitive objects about which it suf-
fices to make a few assumptions.

The modules REL NM, ATTRIBUTE and VALUE contain the as-
sumptions concerned. For relation names and attributes, it suffices to as-
sume that there are types Rel nm and Attribute, respectively, with no a
priori properties. For values, it does not suffice to assume that there is a
type Value. It is in addition assumed that any finite set of values consti-
tutes a domain for which membership can be tested and cardinality can
be computed and also that there is a fixed domain all . These additional
assumptions are needed to describe tuples and tuple structures (the latter
present structural constraints on tuples) and they are consequently used
in the modules TUPLE and TUPLE STRUCT. The last of the above-
mentioned assumptions is connected with the need for a domain that can
serve as a finite universe of values. Furthermore, it is assumed that there is
a fixed ordering relation lt on values. This assumption is needed to describe
the meaning of the selection formulae that are used in queries for selection

ASSUMPTIONS 263

of tuples from relations and it is used in the module SELECTION WFF.
That module is a part of the description of an external RDBMS interface
in Chapter 12.

Most later modules are parametrized. REL NM, ATTRIBUTE and
VALUE are used as parameter restriction modules for the parameters of
those modules. In this way, it is made precise that they are based on the
above-mentioned assumptions about relation names, attributes and values.

component

REL NM is

module

types

Rel nm free

end

ATTRIBUTE is

module

types

Attribute free

end

VALUE is

module

types

Value free

Domain = Value-set

functions

member(v :Value, d :Domain)B
4 v ∈ d

card(d :Domain)N
4 card d

all()Domain free

post true

lt(v1:Value, v2:Value)b:B free

pre false

post true

end

It should be remarked that relation names and attributes are used both as
abstract syntactic objects and as semantic objects. That is, RDM concepts
such as relation, which are semantic in nature, are defined in terms of them
and syntactic concepts of the external RDBMS interface such as query are

264 FORMALIZATION OF RDM CONCEPTS

also defined in terms of them. This mix-up of syntax and semantics can
be circumvented by ‘copying’ the objects involved and connecting these
copies to their originals by a bijection. Here it is preferred to keep the
minor mix-up, since copying is not felt to result in a real gain.

Value in the sense of the RDM should not be confused with value in the
sense of VVSL. Only the elements of the assumed type Value are values in
the sense of the RDM. In Chapters 11 to 13, value is mainly used in the
sense of the RDM. Where it is used in the sense of VVSL and confusion
may occur, it is explicitly mentioned that it is used in the other sense.

11.2 Attribute sets, etc.

Attribute sets are just sets of attributes and attribute bijections are bi-
jections between attribute sets. Attribute sets and attribute bijections are
jointly used in various modules, e.g. as arguments of functions on tuples,
relations, etc. Therefore, the definitions concerned are collected in a general
module which is imported into these modules.

The module ATTR SUPPL contains the definitions concerning at-
tribute sets and attribute bijections. As a matter of course, this module is
based on assumptions contained in the module ATTRIBUTE. Therefore,
the parameter module X, which actualizes the assumptions, is imported.

The only constant (i.e. nullary functions) for attribute sets is empty , the
empty attribute set. The following functions on attribute sets are defined:
singleton (converts an attribute to an attribute set), union (combines two
attribute sets), difference (removes from an attribute set attributes that are
members of another attribute set), member (checks whether an attribute
is in an attribute set or not), included (checks whether an attribute set is
a subset of another attribute set or not), and disjoint (checks whether two
attribute sets are disjoint or not). All these function are total functions.

There are no constants for attribute bijections. The following func-
tions on attribute bijections are defined: singleton (converts an attribute-
attribute pair to an attribute bijection), merge (joins two attribute bijec-
tions with disjoint domains), inverse (inverts an attribute bijection), attrs1
(extracts the domain of an attribute bijection), attrs2 (extracts the range
of an attribute bijection) and rename (renames an attribute according to
an attribute bijection). Most of these function are total functions.

All of the functions defined in the module ATTR SUPPL correspond
to basic operators on sets and maps as is clear from their simple explicit
definitions.

The constructor functions empty , singleton and union for attribute sets
and the constructor functions singleton and merge for attribute bijec-
tions are made available because attribute sets and attribute bijections are
not only used as semantic objects but also as abstract syntactic objects,
just like attributes. The remaining constructor functions, difference for at-

ATTRIBUTE SETS, ETC. 265

tribute sets and inverse for attribute bijections, are used in the module
RELATION EXTENSION to define some well-known functions on re-
lations in terms of the primitive ones defined in the module RELATION.
The non-constructor functions for attribute sets and attribute bijections
are frequently used in other modules, starting with the module TUPLE.

ATTR SUPPL is

abstract

X:ATTRIBUTE
of

import

X
into

module

types

Attr set = Attribute-set

Attr bij = Attribute m←→ Attribute

functions

empty()Attr set
4 { }

singleton(a:Attribute)Attr set
4 {a}

union(as1:Attr set , as2:Attr set)Attr set
4 as1 ∪ as2

difference(as1:Attr set , as2:Attr set)Attr set
4 as1 − as2

member(a:Attribute, as:Attr set)B
4 a ∈ as

included(as1:Attr set , as2:Attr set)B
4 as1 ⊆ as2

disjoint(as1:Attr set , as2:Attr set)B
4 as1 ∩ as2 = { }

singleton(a1:Attribute, a2:Attribute)Attr bij
4 {a1 7→ a2}

266 FORMALIZATION OF RDM CONCEPTS

merge(ab1:Attr bij , ab2:Attr bij)Attr bij
pre disjoint(attrs1(ab1), attrs1(ab2))∧

disjoint(attrs2(ab1), attrs2(ab2))
4 ab1 ∪ ab2

inverse(ab:Attr bij)Attr bij
4 { rename(a, ab) 7→ a |

a ∈ Attribute ; member(a, attrs1(ab))}
attrs1(ab:Attr bij)Attr set
4 dom ab

attrs2(ab:Attr bij)Attr set
4 rng ab

rename(a:Attribute, ab:Attr bij)Attribute
pre member(a, attrs1(ab))
4 ab(a)

end

Note that the above-mentioned functions to generate attribute sets and
attribute bijections (the constructor functions) and to analyse them (the
non-constructor functions) are the only ones that can be used outside the
module ATTR SUPPL. That is, their representation by sets and maps
are not available outside this module.

Key sets are just sets of attribute sets. The attribute sets concerned are
called keys.

The module KEY SUPPL contains definitions concerning key sets.
The module is based on definitions contained in the parametrized module
ATTR SUPPL. Consequently, the appropriate application of this module
is imported.

The only constant for key sets is empty , the empty key set. The following
functions on key sets are defined: singleton (converts a key to a key set),
union (combines two key sets) and member (checks whether a key is in a
key set or not). All these function are total functions.

All of the functions defined in the module KEY SUPPL correspond to
basic operators on sets as well.

The constructor functions empty , singleton and union for key sets are
also made available because key sets are not only used as semantic objects
but also as abstract syntactic objects. The functions on key sets are mainly
used in the modules REL SCHEMA and REL CONSTRAINT to de-
fine the functions is valid instance (which connects relations and relation
schemas) and dom key normal form (which connects relation schemas and
relation constraints).

TUPLES 267

KEY SUPPL is

abstract

X:ATTRIBUTE
of

import

apply ATTR SUPPL to X
into

module

types

Key set = Attr set-set

functions

empty()Key set
4 { }

singleton(as:Attr set)Key set
4 {as}

union(ass1:Key set , ass2:Key set)Key set
4 ass1 ∪ ass2

member(as:Attr set , ass:Key set)B
4 as ∈ ass

end

The next four sections present modules in which tuples, relations, data-
bases and functions to manipulate them are defined. Both attribute sets
and attribute bijections are used as arguments of functions on tuples and re-
lations. Key sets are used later in connection with schemas and constraints
which are treated in subsequent sections.

11.3 Tuples

Tuples are maps from attributes to values with a non-empty domain. The
values associated with the attributes concerned have to be elements of all
(so all plays the role of a finite universe of values). The domain of a tuple
is called its attribute set. Tuples can be thought of as records, with the
attributes corresponding to fields.

The module TUPLE contains the definitions concerning tuples. This
module is based on assumptions contained in the modules ATTRIBUTE
and VALUE as well as definitions contained in the parametrized module
ATTR SUPPL. Therefore, X and Y, which actualize the assumptions,
and the appropriate application of the module ATTR SUPPL are im-
ported.

There are no constants for tuples. The following functions on tuples

268 FORMALIZATION OF RDM CONCEPTS

are defined: singleton (converts an attribute-value pair to a tuple), merge
(joins two tuples with disjoint attribute sets), restrict (restricts a tuple to
a subset of its attribute set), rename (renames the attributes of a tuple),
attrs (extracts the attribute set of a tuple) and value (looks up the value
of an attribute in a tuple). Most of these functions are partial functions.

Tuple predicates are maps from tuples to truth values. The attribute sets
of the tuples concerned have to be the same. A tuple predicate holds for a
given tuple if the map concerned associates with the tuple the truth value
true. The tuple predicate is only defined for tuples that are in the domain
of the map. A tuple predicate is like a property that tuples can have.

The following functions on tuple predicates are defined: holds (checks
whether a tuple predicate holds for a tuple or not) and defined (checks
whether a tuple predicate is defined for a tuple or not).

Most of the functions defined in the module TUPLE correspond to
basic operators on maps as is clear from their simple explicit definitions.
The function rename is defined by means of map comprehension.

In the module RELATION, relations are defined in terms of tuples.
The functions defined in the module TUPLE are used in that module to
define functions to manipulate relations. They are also used in the module
SELECTION WFF (which is a part of the description of an external
RDBMS interface given in Chapter 12) to define the evaluation of selection
formulae. For that latter module, relations do not matter. That is why the
definitions concerning tuples and the definitions concerning relations are in
separate modules. Nothing defined in the module TUPLE is regarded as
being of an auxiliary nature. This means that nothing is hidden by means
of exporting.

TUPLE is

abstract

X:ATTRIBUTE,
Y:VALUE

of

import

X
Y
apply ATTR SUPPL to X

into

module

types

Tuple = Attribute m−→ Value
where inv(t) 4
dom t 6= { } ∧ ∀a ∈ Attribute · a ∈ dom t ⇒ member(t(a), all)

TUPLES 269

Tuple predicate = Tuple m−→ B
where inv(tp) 4
∀t1 ∈ Tuple, t2 ∈ Tuple ·
t1 ∈ dom tp ∧ t2 ∈ dom tp ⇒ attrs(t1) = attrs(t2)

functions

% constructor functions
singleton(a:Attribute, v :Value)Tuple
4 {a 7→ v}

merge(t1:Tuple, t2:Tuple)Tuple
pre disjoint(attrs(t1), attrs(t2))
4 t1 ∪ t2

restrict(t :Tuple, as:Attr set)Tuple
pre included(as, attrs(t))
4 as C t

rename(t :Tuple, ab:Attr bij)Tuple
pre attrs(t) = attrs1(ab)
4 { rename(a, ab) 7→ value(t , a) |

a ∈ Attribute ; member(a, attrs(t))}
% non-constructor functions
holds(tp:Tuple predicate, t :Tuple)B
pre defined(tp, t)
4 tp(t)

defined(tp:Tuple predicate, t :Tuple)B
4 t ∈ dom tp

attrs(t :Tuple)Attr set
4 dom t

value(t :Tuple, a:Attribute)Value
pre member(a, attrs(t))
4 t(a)

end

It is worth noting that the importing of X is superfluous here.
apply ATTR SUPPL to X includes X as a result of importing. Such
superfluous importing is not left undone, because the result would be a
loss of clarity.

The restriction to a finite universe of values for the attributes of tuples
allows extensive use of maps in formalizing RDM concepts. Assumptions
made about values in the module VALUE are used in the module TUPLE
to enforce this restriction.

Tuples are defined as maps from attributes to values. It is not uncom-

270 FORMALIZATION OF RDM CONCEPTS

mon to define tuples as sequences of values, which is in accordance with
Codd’s original definition in (Codd, 1970). The consequences of choosing
one definition over the other are illustrated in (Bjørner, 1982). In (Ullman,
1988), it is suggested that converting between the two viewpoints is always
obvious, but this suggestion detracts from the contrasting consequences.

11.4 Relations

Relations are sets of tuples with the same attribute set. This common
attribute set of the tuples of a relation is called the attribute set of the
relation. A relation can be thought of as a file of records with the same
fields.

The module RELATION contains the definitions concerning relations.
This module is based on definitions contained in the parametrized module
TUPLE. So the appropriate application of this module is imported.

The only constant is empty , the empty relation. The following functions
on relations are defined: singleton (converts a tuple to a relation), union
(combines two relations with a common attribute set), difference (removes
from a relation tuples that are member of another relation with the same
attribute set), product (joins the tuples of two relations with disjoint at-
tribute sets), projection (restricts the tuples of a relation to a subset of
its attribute set), selection (selects the tuples of a relation for which a
tuple predicate holds), rename (renames the attributes of the tuples in a
relation), attrs (extracts the attribute set of a relation), values (looks up
the values of an attribute in the tuples of a relation) and member (checks
whether a tuple is in a relation or not). All except the last three functions
are constructor functions for relations.

Roughly speaking, relations together with the constructor functions de-
fined for them constitute a version of relational algebra. These functions
comprise traditional set operators (empty , union, difference), modified
slightly since relations are not arbitrary sets, and special relational op-
erators (product , projection, selection and rename).

The functions union and difference on two relations are normal set union
and set difference on relations with the same attribute set. If they do not
have the same attribute set, then the set union or set difference does not
yield a relation as a result. The special relational operators are all defined,
by means of set comprehension, in terms of functions on tuples defined in
the module TUPLE. For example, projection of a relation to an attribute
set is defined as the set that is obtained as follows: restrict each member
of the relation to the attribute set.

The non-constructor functions attrs and values have been implicitly de-
fined with pre- and post-conditions. attrs maps relations to their attribute
sets. The post-condition characterizes the result uniquely because the tu-
ples of a relation have a common attribute set. values maps a relation

RELATIONS 271

and one of its attributes to the domain consisting of all values associated
with the attribute concerned in tuples of the relation. In this case, the as-
sumptions made about values and domains are insufficient for an explicit
definition.

In the module DATABASE, databases are defined in terms of relation
names and relations. The constructor functions on relations are used in
the module QUERY (which is a part of the description of an external
RDBMS interface given in Chapter 12) to define the evaluation of relational
database queries. The non-constructor functions are used in the module
REL SCHEMA to define a function is valid instance through which
relations and relation schemas are connected. They are also used in the
module REL CONSTRAINT to define several special kinds of relation
constraints such as functional dependencies and join dependencies.

Nothing defined in this module is hidden by means of exporting.

RELATION is

abstract

X:ATTRIBUTE,
Y:VALUE

of

import

apply TUPLE to X,Y
into

module

types

Relation = Tuple-set
where inv(r) 4
∀t1 ∈ Tuple, t2 ∈ Tuple ·
t1 ∈ r ∧ t2 ∈ r ⇒ attrs(t1) = attrs(t2)

functions

% constructor functions
empty()Relation
4 { }

singleton(t :Tuple)Relation
4 {t}

union(r1:Relation, r2:Relation)Relation
pre r1 6= empty ∧ r2 6= empty ⇒ attrs(r1) = attrs(r2)
4 r1 ∪ r2

272 FORMALIZATION OF RDM CONCEPTS

difference(r1:Relation, r2:Relation)Relation
pre r1 6= empty ∧ r2 6= empty ⇒ attrs(r1) = attrs(r2)
4 r1 − r2

product(r1:Relation, r2:Relation)Relation
pre r1 6= empty ∧ r2 6= empty ⇒ disjoint(attrs(r1), attrs(r2))
4 {merge(t1, t2) |

t1 ∈ Tuple, t2 ∈ Tuple ; member(t1, r1) ∧member(t2, r2)}
projection(r :Relation, as:Attr set)Relation
pre r 6= empty ⇒ included(as, attrs(r))
4 {restrict(t , as) | t ∈ Tuple ; member(t , r)}

selection(r :Relation, tp:Tuple predicate)Relation
pre ∀t ∈ Tuple · member(t , r) ⇒ defined(tp, t)
4 {t | t ∈ Tuple ; member(t , r) ∧ holds(tp, t)}

rename(r :Relation, ab:Attr bij)Relation
pre r 6= empty ⇒ attrs(r) = attrs1(ab)
4 {rename(t , ab) | t ∈ Tuple ; member(t , r)}

% non-constructor functions
attrs(r :Relation)as:Attr set
pre r 6= empty
post ∃t ∈ Tuple · member(t , r) ∧ attrs(t) = as

values(r :Relation, a:Attribute)d :Domain
pre r 6= empty ∧member(a, attrs(r))
post ∀v ∈ Value ·

member(v , d) ⇔
∃t ∈ Tuple · member(t , r) ∧ value(t , a) = v

member(t :Tuple, r :Relation)B
4 t ∈ r

end

Relational algebra as originally defined by Codd in (Codd, 1972) re-
flects the set-of-sequences view of relations. Besides, it contains additional
functions which can be defined in terms of the others. They include the
functions intersection, equi join and division defined later in the module
RELATION EXTENSION. A renaming function as present in our ver-
sion is not found in the original one, since it does not make much sense in
the set-of-sequences view.

The functions on relations underlying the query language ISBL of the
PRTV (Todd, 1976) resemble the constructor functions for relations defined
here.

A relation can be perceived as a table. In that case the tuples are called
rows and the attributes are called column names. However, note that such a

ADDITIONAL FUNCTIONS ON RELATIONS 273

table is an unordered collection of rows. Moreover, the order of the columns
does not matter.

Perceiving relations as tables the above-mentioned functions on relations
can also be informally explained as follows:
• empty creates an empty table, that is, a table with no rows.
• singleton creates a table with one given row only.
• union adds to a given table the rows in another one, forming a new table

with more rows. In the case that the resulting table contains some rows
that are identical, all but one of them are discarded. Both tables must
have the same column names.

• difference removes from a given table the rows that are also in another
one, forming a new table with fewer rows. Both tables must have the
same column names.

• product puts each row in a given table and each row in another one
together, forming a new table with one row for each combination of rows
from the old ones. The tables must have no column name in common.

• projection selects certain columns in a given table, forming a new table
with fewer columns. A collection of column names is given to indicate
the columns to be selected. In the case that the resulting table contains
some rows that are identical, all but one of them are discarded.

• selection selects certain rows in a given table, forming a new table with
fewer rows. A property of rows is given to indicate the rows to be selected.
A selection property may be, for example, that one or more entries have
a specific value.

• rename changes the names of the columns in a given table, leaving ev-
erything else the same. A correspondence between old column names
and new column names is given to indicate the name change.

It is usual to explain relational concepts in terms of tables. However such
explanations normally do not mention details such as how identical rows
are treated in building new tables from existing ones.

11.5 Additional functions on relations

The module RELATION EXTENSION contains the definitions of
some additional functions on relations. They are defined in terms of the
functions on relations defined in the module RELATION. That is, the
module is based on definitions contained in the parametrized module
RELATION. So the appropriate application of this module is imported.

The functions concerned are intersection (takes the common tuples of
two relations), equi join (joins the tuples of two relations with disjoint at-
tribute sets that have the same value for connected attributes), and division
(divides a relation by another non-empty relation). division is so-named

274 FORMALIZATION OF RDM CONCEPTS

because division(product(r1, r2), r2, ab) = r1 if ab is the identity on the at-
tributes of r2. intersection of two relations is defined in terms of difference,
as for sets. equi join of two relations is defined in terms of product and
selection. division of a relation by another relation is defined in terms of
difference, product , projection and rename.

The tuple predicate tp used in the definition of equi join is such that it
holds only for the tuples from the product for which the values of attributes
associated with each other by the given attribute bijection are the same.
tp is uniquely characterized by the logical expression following s.t. θ-join
(where θ is <, ≤, 6=, ≥ or > instead of =), natural join and semijoin can
be defined in terms of the functions on relations defined in the module
RELATION as well.

Division as defined here is a straightforward generalization of the usual
one. It does not require relations with common attributes as operands.
Therefore the function inverse on attribute bijections, defined in the mod-
ule ATTR SUPPL, is needed in the definition of division.

RELATION EXTENSION is

abstract

X:ATTRIBUTE,
Y:VALUE

of

import

apply RELATION to X,Y
into

module

functions

intersection(r1:Relation, r2:Relation)Relation
pre r1 6= empty ∧ r2 6= empty ⇒ attrs(r1) = attrs(r2)
4 difference(r1, difference(r1, r2))

equi join(r1:Relation, r2:Relation, ab:Attr bij)Relation
pre r1 6= empty ∧ r2 6= empty ⇒

disjoint(attrs(r1), attrs(r2))∧
included(attrs1(ab), attrs(r1))∧
included(attrs2(ab), attrs(r2))

4 selection(product(r1, r2), tp)
where

DATABASES 275

tp:Tuple predicate is s.t.

∀t ∈ Tuple ·
(defined(tp, t) ⇔
attrs(t) = union(attrs(r1), attrs(r2)))∧

(holds(tp, t) ⇔
∀a ∈ Attribute ·
member(a, attrs1(ab)) ⇒
value(t , a) = value(t , rename(a, ab)))

division(r1:Relation, r2:Relation, ab:Attr bij)Relation
pre r2 6= empty∧

(r1 6= empty ⇒
included(attrs1(ab), attrs(r1))∧
included(attrs2(ab), attrs(r2)))

4 if r1 = empty
then empty
else difference(projection(r1, as ′),

projection(difference(r ′, r1), as ′))
where

r ′:Relation 4
product(projection(r1, as ′),

projection(rename(r2, ab′), as)),
as:Attr set 4 attrs1(ab),
as ′:Attr set 4 difference(attrs(r1), as),
ab′:Attr bij 4 inverse(ab)

end

Joining the tuples of relations is important in practice. Division, gener-
alized or not, is considered esoteric. Its main use has been in Codd’s proof
of the relational completeness of relational algebra in (Codd, 1972).

None of the functions defined in this module is used in another one.
The module is added to illustrate that some well-known functions on rela-
tions can be defined in terms of the ‘primitive’ ones defined in the module
RELATION.

11.6 Databases

Databases are just maps from relation names to relations. This makes the
intuition of a collection of uniquely named tables precise. The domain of
a database is called its relation name set. A relation name is in use by a
database if it is in the relation name set of the database.

The module DATABASE contains the definitions concerning data-
bases. This module is based on assumptions contained in the mod-
ule REL NM and definitions contained in the parametrized module
RELATION. Therefore, X, which actualizes the assumptions, and the

276 FORMALIZATION OF RDM CONCEPTS

appropriate application of the module RELATION are imported.
The only constant is empty database, the empty database. The following

functions on databases are defined: create (adds a new named relation to
a database; the new relation is empty), destroy (removes a named relation
from a database), update (replaces a named relation in a database), rel nms
(extracts the relation name set of a database), in use (checks whether a
relation name is in use by a database or not) and relation (looks up a
named relation in a database). The first three functions are constructor
functions for databases.

Most of the functions defined in the module DATABASE correspond
to basic operators on maps as is clear from their simple explicit definitions.

The constructor functions on databases are used in the modules
DBMS STATE, DEFINITION and MANIPULATION (which are
parts of the description of an external RDBMS interface given in Chap-
ter 12) to define the initial state of an RDBMS and the operations which
make up an external RDBMS interface. The non-constructor functions are
used in the modules DB SCHEMA to define a function is valid instance
through which databases and database schemas are connected. They are
also used in the module DB CONSTRAINT to define a special kind of
database constraint called inclusion dependency.

DATABASE is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

import

X
apply RELATION to Y,Z

into

module

types

Database = Rel nm m−→ Relation

Rel nms = Rel nm-set

functions

% constructor functions
empty database()Database
4 { }

DATABASES 277

create(db:Database, rnm:Rel nm)Database
pre ¬ in use(db, rnm)
4 db ∪ {rnm 7→ empty}

destroy(db:Database, rnm:Rel nm)Database
pre in use(db, rnm)
4 rnm −C db

update(db:Database, rnm:Rel nm, r :Relation)Database
pre in use(db, rnm)
4 db † {rnm 7→ r}

% non-constructor functions
rel nms(db:Database)Rel nms
4 dom db

in use(db:Database, rnm:Rel nm)B
4 rnm ∈ rel nms(db)

relation(db:Database, rnm:Rel nm)Relation
pre in use(db, rnm)
4 db(rnm)

end

The table view of relations is usually also applied to databases. Perceiving
databases as collections of uniquely named tables the constructor functions
on databases can also be informally explained as follows:

• empty creates a database with no tables.

• create adds to a given database an empty table with a given table name,
forming a new database with more tables. The old database must have
no table with the given name.

• destroy removes from a given database the table with a given table name,
forming a new database with fewer tables. The old database must have
a table with the given name.

• update replaces in a given database the table with a given table name
by another given table, forming a new database with the same number
of tables but with a new table assigned to one of its table names. The
old database must have a table with the given name.

In Chapter 12, databases are used as values that a time-varying ob-
ject (state variable in VVSL terminology) can take. Not uncommonly, this
time-varying object is also called database. Therefore, where confusion may
occur, the name database value will be used in the explanation instead of
database to refer to the concept defined in the module DATABASE.

The next three sections present modules in which tuple structures, rela-
tion schemas and database schemas are defined. They are used to present

278 FORMALIZATION OF RDM CONCEPTS

constraints on tuples, relations and databases, respectively. Constraints on
relations and databases are further treated in subsequent sections.

11.7 Tuple structures

Tuple structures are maps from attributes to domains. The domains as-
sociated with the attributes concerned have to be subsets of all and have
a cardinality greater than 1. The domain of a tuple structure is called its
attribute set. A tuple structure can be thought of as a record type, with
the attributes corresponding to fields and the domains corresponding to the
types of the fields. So a tuple structure is a kind of meta-object. It presents
structural constraints on the tuples of a relation as follows: for each tuple
of the relation, the attribute set has to be the same as the attribute set of
the tuple structure and the value associated with each of these attributes
has to be an element of the corresponding domain.

The module TUPLE STRUCT contains the definitions concerning tu-
ple structures. This module is based on assumptions contained in the mod-
ules ATTRIBUTE and VALUE as well as definitions contained in the
parametrized module ATTR SUPPL. Therefore, X and Y, which ac-
tualize the assumptions, and the appropriate application of the module
ATTR SUPPL are imported.

The only constant is empty , the empty tuple structure. The following
functions are defined on tuple structures: singleton (converts an attribute-
domain pair to a tuple structure), merge (joins two tuple structures with
disjoint attribute sets), restrict (restricts a tuple structure to a subset of its
attribute set), rename (renames the attributes of a tuple structure), attrs
(extracts the attribute set of a tuple structure) and domain (looks up the
domain of an attribute in a tuple structure).

Each of the functions on tuples that were defined in the module TUPLE
has a counterpart on tuple structures. Like most of the functions on tuples
that were defined in that module, most of the functions on tuple structures
defined in the module TUPLE STRUCT correspond to basic operators
on maps. Like the function rename on tuples, the function rename on tuple
structures is defined by means of map comprehension.

Tuple structures with an empty attribute set are, unlike tuples with an
empty attribute set, not excluded. Such empty tuple structures are not
used to present structural constraints on the tuples of some relations. An
empty tuple structure is used in well-formedness checking of queries (as
defined in the module QUERY) to indicate that a useful tuple structure
could not be extracted for the query being checked.

In the module REL SCHEMA, relation schemas are defined in terms of
tuple structures and key sets. The non-constructor functions defined in the
module TUPLE STRUCT are used in that module to define the func-
tion is valid instance which connects relations and relation schemas. These

TUPLE STRUCTURES 279

functions are also used in the modules SELECTION WFF and QUERY
to define the well-formedness of the selection formulae and queries. In the
latter module, the constant empty and the constructor functions restrict
and rename are used as well.

TUPLE STRUCT is

abstract

X:ATTRIBUTE,
Y:VALUE

of

import

X
Y
apply ATTR SUPPL to X

into

module

types

Tuple struct = Attribute m−→ Domain
where inv(tstr) 4
∀a ∈ Attribute ·
a ∈ dom tstr ⇒
card (tstr(a)) ≥ 2∧
∀v ∈ Value · member(v , tstr(a)) ⇒ member(v , all)

functions

% constructor functions
empty()Tuple struct
4 { }

singleton(a:Attribute, d :Domain)Tuple struct
4 {a 7→ d}

merge(tstr1:Tuple struct , tstr2:Tuple struct)Tuple struct
pre disjoint(attrs(tstr1), attrs(tstr2))
4 tstr1 ∪ tstr2

restrict(tstr :Tuple struct , as:Attr set)Tuple struct
4 as C tstr

rename(tstr :Tuple struct , ab:Attr bij)Tuple struct
pre attrs(tstr) = attrs1(ab)
4 { rename(a, ab) 7→ domain(tstr , a) |

a ∈ Attribute ; member(a, attrs(tstr))}

280 FORMALIZATION OF RDM CONCEPTS

% non-constructor functions
attrs(tstr :Tuple struct)Attr set
4 dom tstr

domain(tstr :Tuple struct , a:Attribute)Domain
pre member(a, attrs(tstr))
4 tstr(a)

end

As pointed out by Fagin (1981), tuple structures with domains that vio-
late the restriction that the cardinality must be greater than 1 are unreason-
able. Besides, this cardinality restriction allows that some well-known nor-
mal forms (Ullman, 1988), such as Boyce-Codd normal form, fourth normal
form and projection-join normal form, are simply connected to the domain-
key normal form described in the module RELATION-CONSTRAINT.
Assumptions made about values in the module VALUE are used in the
module TUPLE STRUCT to enforce this restriction.

11.8 Relation schemas

Relation schemas are composite values with a non-empty tuple structure
and a key set as components. The keys have to be subsets of the attribute
set of the tuple structure concerned. The attribute set of the tuple structure
of a relation schema is called its attribute set. A relation schema is a kind
of meta-object connected with relations, like a tuple structure is a kind of
meta-object connected with tuples. It presents intra-relational constraints
on a relation in a database. Its tuple structure presents the structural con-
straints on the tuples of the relation. Each of the keys presents a uniqueness
constraint on the relation as follows: no two distinct tuples of the relation
may have the same value for each of the attributes from the key. The re-
lations that obey the constraints presented by a given relation schema are
its valid instances.

The module REL SCHEMA contains the definitions concerning rela-
tion schemas. This module is based on definitions contained in the param-
etrized modules KEY SUPPL, TUPLE STRUCT and RELATION.
Consequently, the appropriate applications of these modules are imported.

The principal function defined in this module is is valid instance. This
function checks whether a relation is a valid instance of a relation schema
or not. Its definition is not short, but it describes the constraints presented
by relation schemas in plain terms. Furthermore, the functions attrs and
domain are lifted from tuple structures to relation schemas.

The constructor function mk-Rel schema for creating relation schemas
and the selector functions struct and keys for selecting the components
of relation schemas are implicitly defined in the definition of the type
Rel schema.

RELATION SCHEMAS 281

In the module DB SCHEMA, database schemas are defined in terms
of relation names, relation schemas and attribute bijections. The func-
tions defined in the module REL SCHEMA are used in that module to
define the function is valid instance which connects databases and data-
base schemas. The functions attrs and domain are also used in the mod-
ule REL CONSTRAINT to define the function dom key normal form
which connects relation schemas and relation constraints.

REL SCHEMA is

abstract

X:ATTRIBUTE,
Y:VALUE

of

import

apply KEY SUPPL to X
apply TUPLE STRUCT to X,Y
apply RELATION to X,Y

into

module

types

Rel schema :: struct :Tuple struct keys:Key set
where inv(rsch) 4
attrs(struct(rsch)) 6= empty∧
∀as ∈ Attr set ·
member(as, keys(rsch)) ⇒
included(as, attrs(struct(rsch)))

functions

% non-constructor functions
is valid instance(r :Relation, rsch:Rel schema)B
4 r 6= empty ⇒

attrs(r) = attrs(rsch)∧
(∀a ∈ Attribute, v ∈ Value ·

member(a, attrs(r)) ∧member(v , values(r , a)) ⇒
member(v , domain(rsch, a)))∧

(∀as ∈ Attr set , t1 ∈ Tuple, t2 ∈ Tuple ·
member(as, keys(rsch))∧
member(t1, r) ∧member(t2, r) ⇒
(restrict(t1, as) = restrict(t2, as) ⇒ t1 = t2))

attrs(rsch:Rel schema)Attr set
4 attrs(struct(rsch))

282 FORMALIZATION OF RDM CONCEPTS

domain(rsch:Rel schema, a:Attribute)Domain
pre member(a, attrs(rsch))
4 domain(struct(rsch), a)

end

A relation schema is often defined to be simply an attribute set; e.g. in
(Ullman, 1988; Fagin and Vardi, 1986). In (Fagin, 1981), it is defined to be
a composite value with an attribute set and a set of relation constraints
(defined in the module REL CONSTRAINT) as components. These
concepts of a relation schema are regarded as extremes. Here, a concept
of a relation schema which is similar to the one envisaged in (Brodie and
Schmidt, 1981) is formalized. It is between the two extremes.

11.9 Database schemas

Database schemas are composite values with a map from relation names
to relation schemas, called a database structure, and a set of inclusions as
components. The inclusions are composite values with two relation names
and an attribute bijection as components. The use of relation names and
attributes in each inclusion has to fit in with the database structure con-
cerned. The domain of the database structure of a database schema is called
its relation name set. A relation name is in use by a database schema if it
is in the relation name set of the database structure. Database schemas are
used as semantic counterparts of database descriptions. A database schema
presents intra-relational constraints on the named relations in a database
as well as inter-relational constraints on the database. Relation schemas
are used to present the intra-relational constraints and inclusions are used
to present the inter-relational constraints. Each of the inclusions presents
an inclusion constraint between two named relations as follows: for each
tuple in the first one, there must be a tuple in the second one with the
same values for certain attributes. The databases that obey the constraints
presented by a given database schema are its valid instances.

The module DB SCHEMA contains the definitions concerning data-
base schemas. This module is based on assumptions contained in the
module REL NM and definitions contained in the parametrized mod-
ules ATTR SUPPL, REL SCHEMA and DATABASE. So X, which
actualizes the assumptions, and the appropriate applications of the above-
mentioned parametrized modules are imported.

A principal function defined in this module is is valid instance. This
function checks whether a database is a valid instance of a database schema
or not. Just like the definition of the corresponding function in the module
REL SCHEMA, its definition is not short, but it reflects the constraints
presented by database schemas in plain terms. For database schemas, the
only constant is empty schema, the empty database schema. The following

DATABASE SCHEMAS 283

functions on databases schemas are defined as well: create (adds a new
named relation schema to a database schema), destroy (removes a named
relation schema from a database schema), constrain (adds an inclusion to
a database schema), rel nms (extracts the relation name set of a database
schema), in use (checks whether a relation name is in use by a database
schema or not) and attrs (looks up the attribute set of a named relation
schema in a database schema), struct (looks up the tuple structure of a
named relation schema in a database schema), applicable (checks whether
the use of relation names and attributes in an inclusion fits in with a
database schema or not). The first three functions are constructor functions
for database schemas.

Most of the functions on databases that were defined in the module
DATABASE have a counterpart on database schemas. destroy on data-
base schemas is not as simple as destroy on databases: inclusions referring
to the named relation schema that is removed are also removed.

The constructor function mk-Db schema for creating database schemas
and the selector functions struct and inclusions for selecting the compo-
nents of database schemas are implicitly defined in the definition of the
type Db schema.

Most of the functions defined in this module are used in the mod-
ules DEFINITION and MANIPULATION to define operations which
make up an external RDBMS interface. The non-constructor functions
are also used in the module QUERY to define the well-formedness
and evaluation of queries. Furthermore, they are used in the mod-
ule DB CONSTRAINT to define the function dom key normal form
which connects database schemas and database constraints.

DB SCHEMA is
abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

import
X
apply ATTR SUPPL to Y
apply REL SCHEMA to Y,Z
apply DATABASE to X,Y,Z

into

module
types

Db schema :: struct :Database struct inclusions: Inclusions

284 FORMALIZATION OF RDM CONCEPTS

where inv(dbsch) 4
∀incl ∈ Inclusion ·
incl ∈ inclusions(dbsch) ⇒
let
mk-Inclusion(rnm1, rnm2, ab) 4 incl
in
rnm1 ∈ dom struct(dbsch)∧
included(attrs1(ab), attrs(struct(dbsch)(rnm1)))∧
rnm2 ∈ dom struct(dbsch)∧
included(attrs2(ab), attrs(struct(dbsch)(rnm2)))∧
∀a ∈ Attribute ·
member(a, attrs1(ab)) ⇒
domain(struct(dbsch)(rnm1), a)
= domain(struct(dbsch)(rnm2), rename(a, ab))

Database struct = Rel nm
m−→ Rel schema

Inclusions = Inclusion-set

Inclusion :: Rel nm Rel nm Attr bij

functions

% constructor functions
empty schema()Db schema
4 mk-Db schema({ }, { })

create(dbsch:Db schema, rnm:Rel nm, rsch:Rel schema)Db schema
pre ¬ in use(dbsch, rnm)
4 let

dbstr ′:Database struct 4 struct(dbsch) ∪ {rnm 7→ rsch},
incls: Inclusions 4 inclusions(dbsch)
in
mk-Db schema(dbstr ′, incls)

destroy(dbsch:Db schema, rnm:Rel nm)Db schema
pre in use(dbsch, rnm)
4 let

dbstr ′:Database struct 4 rnm −C struct(dbsch),
incls ′: Inclusions 4
{mk-Inclusion(rnm1, rnm2, ab) |
rnm1 ∈ Rel nm, rnm2 ∈ Rel nm, ab ∈ Attr bij ;
mk-Inclusion(rnm1, rnm2, ab) ∈ inclusions(dbsch)∧
rnm1 6= rnm ∧ rnm2 6= rnm}

in
mk-Db schema(dbstr ′, incls ′)

DATABASE SCHEMAS 285

constrain(dbsch:Db schema, incl : Inclusion)Db schema
pre applicable(incl , dbsch)
4 let

dbstr :Database struct 4 struct(dbsch),
incls ′: Inclusions 4 inclusions(dbsch) ∪ {incl}
in
mk-Db schema(dbstr , incls ′)

% non-constructor functions
is valid instance(db:Database, dbsch:Db schema)B
4 (struct(dbsch) = { } ∧ db = empty database) ∨

(struct(dbsch) 6= { } ∧ rel nms(db) = rel nms(dbsch)∧
(∀rnm ∈ Rel nm ·

in use(db, rnm) ⇒
is valid instance(relation(db, rnm), struct(dbsch)(rnm)))∧

(∀incl ∈ Inclusion ·
incl ∈ inclusions(dbsch) ⇒
let
mk-Inclusion(rnm1, rnm2, ab) 4 incl
in
let
r1:Relation 4 projection(relation(db, rnm1), attrs1(ab)),
r2:Relation 4 projection(relation(db, rnm2), attrs2(ab))
in
included(rename(r1, ab), r2)))

rel nms(dbsch:Db schema)Rel nms
4 dom struct(dbsch)

in use(dbsch:Db schema, rnm:Rel nm)B
4 rnm ∈ rel nms(dbsch)

attrs(dbsch:Db schema, rnm:Rel nm)Attr set
pre in use(dbsch, rnm)
4 attrs(struct(dbsch)(rnm))

struct(dbsch:Db schema, rnm:Rel nm)Tuple struct
pre in use(dbsch, rnm)
4 struct(struct(dbsch)(rnm))

286 FORMALIZATION OF RDM CONCEPTS

applicable(incl : Inclusion, dbsch:Db schema)B
4 let

mk-Inclusion(rnm1, rnm2, ab) 4 incl
in
in use(dbsch, rnm1) ∧ in use(dbsch, rnm2)∧
included(attrs1(ab), attrs(dbsch, rnm1))∧
included(attrs2(ab), attrs(dbsch, rnm2))∧
∀a ∈ Attribute ·
member(a, attrs1(ab)) ⇒
domain(struct(dbsch, rnm1), a)
= domain(struct(dbsch, rnm2), rename(a, ab))

end

A database schema is often defined to be simply a set of relation schemas,
e.g. in (Ullman, 1988; Fagin and Vardi, 1986). In (Fagin, 1981), it is defined
to be a composite value with a set of relation schemas and a set of database
constraints (defined in the module DB CONSTRAINT) as components.
These concepts of a database schema are regarded as extremes. Here, a
concept of a database schema which is similar to the one envisaged in
(Brodie and Schmidt, 1981) is formalized. It is between the two extremes.

In Chapter 12, database schemas (like databases) are used as values that
a time-varying object can take. Not uncommonly, this time-varying object
is also called database schema. Therefore, where confusion may occur, the
name database schema value will be used in the explanation instead of
database schema to refer to the concept defined in this section.

The next two sections present modules in which relation constraints and
database constraints are defined. These constraints are mainly of practical
interest for database design. The modules concerned are not imported into
any other module.

11.10 Relation constraints

Relation constraints are maps from relations to truth values. The attribute
sets of all relations concerned have to be the same. A relation constraint
holds for a relation if the map concerned associates with the relation the
truth value true. The relation constraint is only defined for relations that
are in the domain of the map. A relation constraint is like a property that
relations can have.

The module REL CONSTRAINT contains the definitions concern-
ing relation constraints. This module is based on definitions contained in
the parametrized modules RELATION and REL SCHEMA. There-
fore, the appropriate applications of these modules are imported.

Dependencies, which are of practical interest for database design, are
shown to be special kinds of relation constraints (this section winds up
with an informal explanation of the dependencies concerned). The functions

RELATION CONSTRAINTS 287

func dep, join dep and dom dep express functional dependencies, join de-
pendencies and domain dependencies, respectively, as relation constraints.
It is also shown that key dependencies and multi-valued dependencies are
actually special cases of functional dependencies and join dependencies,
respectively. The functions key dep and multi val dep express key depen-
dencies and multi-valued dependencies as relation constraints. They are
defined in terms of fun dep and join dep.

Relation constraints are intra-relational. Only two special kinds of such
constraints can be presented in a relation schema, namely domain depen-
dencies and key dependencies. Domain-key normal form, originally defined
by Fagin (1981), is introduced to connect relation schemas with relation
constraints. The function dom key normal form checks whether a relation
schema is in domain-key normal form with respect to a set of relation con-
straints. That is the case if each of the relation constraints is a consequence
of the domain dependencies and key dependencies presented by the relation
schema.

The following functions on relation constraints are also defined: holds
(checks whether a relation constraint holds for a relation or not), defined
(checks whether a relation constraint is defined for a relation or not),
consequence (checks whether a relation constraint is a consequence of a
set of relation constraints or not), dom deps (extracts the domain depen-
dencies presented in a relation schema), key deps (extracts the key depen-
dencies presented in a relation schema) and attrs (computes the common
attribute set of the relations for which a relation constraint is defined).

The functions defined in this module are only used in the mod-
ule DB CONSTRAINT. The modules REL CONSTRAINT and
DB CONSTRAINT are added to connect the concepts of a relation
schema and a database schema from the module REL SCHEMA and
DB SCHEMA, respectively, with some well-known concepts concerning
relational database design.

REL CONSTRAINT is
abstract

X:ATTRIBUTE,
Y:VALUE

of

import
apply RELATION to X,Y
apply REL SCHEMA to X,Y

into

module
types

Rel constraint = Relation
m−→ B

288 FORMALIZATION OF RDM CONCEPTS

where inv(rc) 4
∀r1 ∈ Relation, r2 ∈ Relation ·
r1 ∈ dom rc ∧ r2 ∈ dom rc ⇒ attrs(r1) = attrs(r2)

Rel constraint set = Rel constraint-set

functions

fun dep(as1:Attr set , as2:Attr set , c:Attr set)rc:Rel constraint
pre included(as1, c) ∧ included(as2, c)
post ∀r ∈ Relation ·

(defined(rc, r) ⇔ attrs(r) = c)∧
(holds(rc, r) ⇔
∀t ∈ Tuple, t ′ ∈ Tuple ·
member(t , r) ∧member(t ′, r) ⇒
(restrict(t , as1) = restrict(t ′, as1) ⇒
restrict(t , as2) = restrict(t ′, as2)))

join dep(ass:Key set , c:Attr set)rc:Rel constraint
pre (∀as ∈ Attr set · member(as, ass) ⇒ included(as, c))∧

(∀a ∈ Attribute ·
member(a, c) ⇒
∃as ′ ∈ Attr set · member(as ′, ass) ∧member(a, as ′))

post ∀r ∈ Relation ·
(defined(rc, r) ⇔ attrs(r) = c)∧
(holds(rc, r) ⇔
∀t ∈ Tuple ·
attrs(t) = c ⇒
((∀as ∈ Attr set ·

member(as, ass) ⇒
∃t ′ ∈ Tuple ·
member(t ′, r) ∧ restrict(t ′, as) = restrict(t , as)) ⇒

member(t , r)))

dom dep(a:Attribute, d :Domain, c:Attr set)rc:Rel constraint
pre member(a, c)
post ∀r ∈ Relation ·

(defined(rc, r) ⇔ attrs(r) = c)∧
(holds(rc, r) ⇔
∀v ∈ Value · member(v , values(r , a)) ⇒ member(v , d))

key dep(as:Attr set , c:Attr set)Rel constraint
pre included(as, c)
4 fun dep(as, difference(c, as), c)

RELATION CONSTRAINTS 289

multi val dep(as1:Attr set , as2:Attr set , c:Attr set)rc:Rel constraint
pre included(as1, c) ∧ included(as2, c)
4 join dep(union(ass, ass ′), c)

where
ass:Key set 4 singleton(union(as1, as2)),
ass ′:Key set 4
singleton(union(as1, difference(c, union(as1, as2))))

holds(rc:Rel constraint , r :Relation)B
pre defined(rc, r)
4 rc(r)

defined(rc:Rel constraint , r :Relation)B
4 r ∈ dom rc

consequence(rcs:Rel constraint set , rc:Rel constraint , c:Attr set)B
pre (∀rc′ ∈ Rel constraint ·

member(rc′, rcs) ⇒ attrs(rc′) = c)∧
attrs(rc) = c

4 ∀r ∈ Relation ·
attrs(r) = c ⇒
((∀rc′ ∈ Rel constraint ·

member(rc′, rcs) ⇒ holds(rc′, r)) ⇒ holds(rc, r))

dom key normal form(rsch:Rel schema, rcs:Rel constraint set)B
pre ∀rc ∈ Rel constraint ·

member(rc, rcs) ⇒ attrs(rc) = attrs(rsch)
4 ∀rc ∈ Rel constraint ·

member(rc, rcs) ⇒
consequence(dom key deps(rsch), rc, attrs(rsch))

dom key deps(rsch:Rel schema)rcs:Rel constraint set
post ∀rc ∈ Rel constraint ·

member(rc, rcs) ⇔
member(rc, dom deps(rsch)) ∨ member(rc, key deps(rsch))

dom deps(rsch:Rel schema)rcs:Rel constraint set
post ∀rc ∈ Rel constraint ·

member(rc, rcs) ⇔
∃a ∈ Attribute ·
member(a, attrs(rsch))∧
rc = dom dep(a, domain(rsch, a), attrs(rsch))

key deps(rsch:Rel schema)rcs:Rel constraint set
post ∀rc ∈ Rel constraint ·

member(rc, rcs) ⇔
∃as ∈ Attr set ·
member(as, keys(rsch))∧
rc = key dep(as, attrs(rsch))

290 FORMALIZATION OF RDM CONCEPTS

attrs(rc:Rel constraint)as:Attr set
pre dom rc 6= { }
post ∃r ∈ Relation · r ∈ dom rc ∧ attrs(r) = as

member(rc:Rel constraint , rcs:Rel constraint set)B
4 rc ∈ rcs

end

Contrary to the usual definition of join dependency, the (equivalent) def-
inition in this module is not in terms of joins and projections; the definition
is ‘operator free’.

Because of the restriction that the cardinality of domains must be greater
than 1 (see the module TUPLE-STRUCTURE), Boyce-Codd normal
form and fourth normal form (Ullman, 1988) are implied by domain-key
normal form; projection-join normal form is implied by domain-key normal
form under some mild conditions.

The dependencies defined in the module REL CONSTRAINT can be
informally explained as follows:
• A functional dependency fun dep(as1, as2, as) is a constraint on rela-

tions with attribute set as which holds for such a relation if each two
tuples in the relation that agree on the attributes as1 also agree on the
attributes as2.

• A join dependency join dep({as1, . . . , asn}, as) is a constraint on rela-
tions with attribute set as which holds for such a relation if the relation
contains each tuple t for which there are tuples t1, . . . , tn in the relation
such that t and t1 agree on the attributes as1, t and t2 agree on the
attributes as2, . . . , t and tn agree on the attributes asn .

• A domain dependency dom dep(a, d , as) is a constraint on relations
with attribute set as which holds for such a relation if each tuple in the
relation has a value associated with the attribute a that is a member of
the domain d .

• A key dependency key dep(as ′, as) is a constraint on relations with at-
tribute set as which holds for such a relation if no two tuples in the
relation agree on the attributes as ′.

• A multi-valued dependency multi val dep(as1, as2, as) is a constraint
on relations with attribute set as which holds for such a relation if the
relation contains each two tuples t1 and t2 that can be obtained from
two tuples t ′1 and t ′2 in the relation that agree on the attributes as1 by
exchanging the values associated with the attributes as2.

11.11 Database constraints

Database constraints are maps from databases to truth values. The relation
name sets of all databases concerned have to be the same and, for each

DATABASE CONSTRAINTS 291

of the relation names, the attribute sets of the associated relations have
to be the same. A database constraint holds for a database if this map
associates with the database the truth value true. The database constraint
is only defined for databases that are in the domain of the map. A database
constraint is like a property that databases can have.

The module DB CONSTRAINT contains the definitions concern-
ing database constraints. This module is based on definitions con-
tained in the parametrized modules DATABASE, DB SCHEMA and
REL CONSTRAINT. Consequently, the appropriate applications of
these modules are imported.

Database constraints can be intra-relational or inter-relational. Only one
special kind of inter-relational constraints can be presented in a data-
base schema, namely inclusion dependencies. They are shown to be data-
base constraints of a special kind. The function incl dep express inclusion
dependencies as database constraints. The functions func dep, join dep,
dom dep, key dep and multi val dep now express functional dependen-
cies, join dependencies, domain dependencies, key dependencies and multi-
valued dependencies, respectively, as database constraints. Domain-key
normal form is also lifted to connect database schemas with database con-
straints. The function dom key normal form checks whether a database
schema is in domain-key normal form with respect to a set of database con-
straints. That is the case if each of the database constraints is a consequence
of the domain dependencies, key dependencies and inclusion dependencies
presented by the database schema.

The following functions on database constraints are also defined: holds
(checks whether a database constraint holds for a database or not), defined
(checks whether a database constraint is defined for a database or not),
consequence (checks whether a database constraint is a consequence of a
set of database constraints or not), dom deps (extracts the domain de-
pendencies presented in a database schema), key deps (extracts the key
dependencies presented in a database schema) and incl deps (extracts the
inclusion dependencies presented in a database schema).

Catalogs are maps from relation names to attribute sets. The notion of
a catalog is of an auxiliary nature. It provides the context in which de-
pendencies occur. The catalog of a database presents its relation name set
and the attribute sets of the relations associated with each of the relation
names concerned. The use of catalogs can be circumvented by introducing
the requirement that attributes must be unique within a database. How-
ever, this requirement would complicate the definitions in various preceding
modules very much. There are functions catalog to compute the catalogs
corresponding to databases, database schemas and database constraints.
In the latter two cases the common catalog of the valid instances and the
common catalog of the databases for which the constraint is defined, re-
spectively, is taken.

292 FORMALIZATION OF RDM CONCEPTS

None of the functions defined in this module is used in another one.
The module is added to connect the concept of a database schema from
the module DB SCHEMA with some well-known concepts concerning
relational database design.

DB CONSTRAINT is
abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

import
apply DATABASE to X,Y,Z
apply DB SCHEMA to X,Y,Z
apply REL CONSTRAINT to Y,Z

into

module
types

Db constraint = Database
m−→ B

where inv(dbc) 4
∀db1 ∈ Database, db2 ∈ Database ·
db1 ∈ dom dbc ∧ db2 ∈ dom dbc ⇒ catalog(db1) = catalog(db2)

Db constraint set = Db constraint-set

Catalog = Rel nm
m−→ Attr set

functions

incl dep(rnm1:Rel nm, rnm2:Rel nm, ab:Attr bij , c:Catalog)
dbc:Db constraint

pre rnm1 ∈ dom c ∧ rnm2 ∈ dom c∧
included(attrs1(ab), c(rnm1)) ∧ included(attrs2(ab), c(rnm2))

post ∀db ∈ Database ·
(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
∀t1 ∈ Tuple ·
member(t1, relation(db, rnm1)) ⇒
∃t2 ∈ Tuple ·
member(t2, relation(db, rnm2))∧
rename(restrict(t1, attrs1(ab)), ab)
= restrict(t2, attrs2(ab)))

DATABASE CONSTRAINTS 293

fun dep(rnm:Rel nm, as1:Attr set , as2:Attr set , c:Catalog)
dbc:Db constraint

pre rnm ∈ dom c∧
included(as1, c(rnm)) ∧ included(as2, c(rnm))

post ∀db ∈ Database ·
(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
fun dep(as1, as2, c(rnm))(relation(db, rnm)))

join dep(rnm:Rel nm, ass:Key set , c:Catalog)dbc:Db constraint
pre rnm ∈ dom c∧

(∀as ∈ Attr set ·
member(as, ass) ⇒ included(as, c(rnm)))∧

(∀a ∈ Attribute ·
member(a, c(rnm)) ⇒
∃as ′ ∈ Attr set · member(as ′, ass) ∧member(a, as ′))

post ∀db ∈ Database ·
(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
join dep(ass, c(rnm))(relation(db, rnm)))

dom dep(rnm:Rel nm, a:Attribute, d :Domain, c:Catalog)
dbc:Db constraint

pre rnm ∈ dom c ∧member(a, c(rnm))
post ∀db ∈ Database ·

(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
dom dep(a, d , c(rnm))(relation(db, rnm)))

key dep(rnm:Rel nm, as:Attr set , c:Catalog)dbc:Db constraint
pre rnm ∈ dom c ∧ included(as, c(rnm))
post ∀db ∈ Database ·

(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
key dep(as, c(rnm))(relation(db, rnm)))

multi val dep(rnm:Rel nm, as1:Attr set , as2:Attr set , c:Catalog)
dbc:Db constraint

pre rnm ∈ dom c∧
included(as1, c(rnm)) ∧ included(as2, c(rnm))

post ∀db ∈ Database ·
(defined(dbc, db) ⇔ catalog(db) = c)∧
(holds(dbc, db) ⇔
multi val dep(as1, as2, c(rnm))(relation(db, rnm)))

holds(dbc:Db constraint , db:Database)B
pre defined(dbc, db)
4 dbc(db)

294 FORMALIZATION OF RDM CONCEPTS

defined(dbc:Db constraint , db:Database)B
4 db ∈ dom dbc

consequence(dbcs:Db constraint set , dbc:Db constraint , c:Catalog)B
pre (∀dbc′ ∈ Db constraint ·

member(dbc′, dbcs) ⇒ catalog(dbc′) = c)∧
catalog(dbc) = c

4 ∀db ∈ Database ·
catalog(db) = c ⇒
((∀dbc′ ∈ Db constraint ·

member(dbc′, dbcs) ⇒ holds(dbc′, db)) ⇒ holds(dbc, db))

dom key normal form(dbsch:Db schema, dbcs:Db constraint set)B
pre ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇒ catalog(dbc) = catalog(dbsch)
4 ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇒
consequence(dom key incl deps(dbsch), dbc, catalog(dbsch))

dom key incl deps(dbsch:Db schema)dbcs:Db constraint set
post ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇔
member(dbc, dom deps(dbsch)) ∨
member(dbc, key deps(dbsch)) ∨
member(dbc, incl deps(dbsch))

dom deps(dbsch:Db schema)dbcs:Db constraint set
post ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇔
∃rnm ∈ Rel nm, a ∈ Attribute ·
in use(dbsch, rnm) ∧member(a, attrs(dbsch, rnm))∧
dbc = dom dep(rnm, a, domain(struct(dbsch, rnm), a),

catalog(dbsch))

key deps(dbsch:Db schema)dbcs:Db constraint set
post ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇔
∃rnm ∈ Rel nm, as ∈ Attr set ·
in use(dbsch, rnm)∧
member(as, keys(struct(dbsch, rnm)))∧
dbc = key dep(rnm, as, catalog(dbsch))

DATABASE CONSTRAINTS 295

incl deps(dbsch:Db schema)dbcs:Db constraint set
post ∀dbc ∈ Db constraint ·

member(dbc, dbcs) ⇔
∃ rnm1 ∈ Rel nm, rnm2 ∈ Rel nm, ab ∈ Attr bij ·
in use(dbsch, rnm1) ∧ in use(dbsch, rnm2)∧
member(attrs1(ab), attrs(dbsch, rnm1))∧
member(attrs2(ab), attrs(dbsch, rnm2))∧
member(mk-Inclusion(rnm1, rnm2, ab), inclusions(dbsch))∧
dbc = incl dep(rnm1, rnm2, ab, catalog(dbsch))

member(dbc:Db constraint , dbcs:Db constraint set)B
4 dbc ∈ dbcs

catalog(db:Database)c:Catalog
post rel nms(db) = dom c∧

∀rnm ∈ Rel nm ·
in use(db, rnm) ⇒ attrs(relation(db, rnm)) = c(rnm)

catalog(dbsch:Db schema)c:Catalog
post rel nms(dbsch) = dom c∧

∀rnm ∈ Rel nm ·
in use(dbsch, rnm) ⇒ attrs(dbsch, rnm) = c(rnm)

catalog(dbc:Db constraint)c:Catalog
pre dom dbc 6= { }
post ∃db ∈ Database · defined(dbc, db) ∧ catalog(db) = c

end

In this module, the concept of an inclusion dependency is formalized.
This requires that we make precise which attribute of the one relation
corresponds to which attribute of the other relation. The author could not
find definitions elsewhere that were accurate at this point.

Inclusion dependencies can be informally explained as follows. An inclu-
sion dependency incl dep(rnm1, rnm2, ab, c) is a constraint on databases
with catalog c which holds for such a database if for each tuple t in the
relation rnm1 there is a tuple t ′ in the relation rnm2 such that t and t ′

agree on the attributes associated with each other by means of the attribute
bijection ab.

The module DB CONSTRAINT is the last module that contains def-
initions concerning RDM concepts. Most of the modules presented in this
chapter are imported into modules presented in Chapters 12 and 13. In
these chapters, descriptions of an external RDBMS interface and an inter-
nal RDBMS interface, respectively, are given.

12

An External RDBMS
Interface

This chapter is the second of two chapters in which the first case study
in VVSL is presented. This case study deals with the underlying concepts
of relational database management systems and the operations for data
manipulation and data definition which can be performed by such systems.
The underlying concepts are described in Chapter 11 and the operations are
described in this chapter. The purpose of the first case study is to demon-
strate the practical usefulness of the extensions of VDM-SL for modular
structuring.

The concepts described in the previous chapter include many of the basic
concepts of the RDM. The relevant concepts cover data structure, data
manipulation and data integrity aspects. An RDBMS is a system that
supports the storage of data objects structured according to the structure
concepts of the RDM, the querying and updating of the stored data objects
according to the manipulation concepts of the RDM, and the control of the
integrity of the stored data objects according to the integrity concepts of the
RDM. Operations which can be performed by such a system are described
in the current chapter. The operations concerned make up an external
interface of an RDBMS: the operations are available directly to the users
of the system. The interface is abstract in the sense that it does not deal
with details of concrete interfaces like concrete syntax of operations, their
embedding in a host language, concrete representation of the data objects
yielded by query operations, etc.

The description of RDM concepts in the previous chapter together with
the description of operations which can be performed by an RDBMS in
this chapter give a representative picture of the relational approach to
databases. As for the RDM concepts, the description in this chapter is
mathematically precise and modularly structured. In contrast with the de-
scription of RDM concepts, more than standard mathematical notation is
needed. Special notation for describing software systems in terms of the
operations that they can perform is now needed.

298 AN EXTERNAL RDBMS INTERFACE

In connection with the criteria for the choice of modular structure men-
tioned in Section 2.2, it is worth noting the following about the description
in this chapter. The separate modules of the description of an external
RDBMS interface in this chapter are relatively simple, considering every-
thing. For example, well-formedness of queries is not really simple but this is
not exceptional for the context-sensitivity involved. A positive effect with
regard to the simplicity of the separate modules is attained by isolating
state dependent aspects in three modules. It is difficult to assess whether
the clearness of the modular structure chosen in this chapter might be
improved. As for the RDM concepts, it is clear that the chosen modu-
lar structuring aids a global understanding. Most of the modules describe
concepts of great generality and wide applicability.

The description of an external RDBMS interface begins with the presen-
tation of two parameter modules which are used in addition to the ones
presented in Chapter 11. Subsequently, there are separate sections on the
modules which constitute the description of an external RDBMS interface.
Each module is preceded by an explanation of what the module concerned
is about.

A reader who is unfamiliar with the relational approach to databases
should first study a textbook such as (Ullman, 1988) to acquire an intuitive
understanding of what is described formally in Chapter 11 and this chapter.

12.1 More assumptions

Later on modules are presented in which selection formulae, queries, re-
lation declarations and other concepts concerning the external RDBMS
interface are defined. Selection formulae are defined in terms of attributes
and value constants, queries are defined in terms of relation names, at-
tributes, value constants and selection formulae, declarations are defined
in terms of attributes and domain constructions, etc. Value constants and
domain constructions are meant to be syntactic objects denoting values
and domains, respectively. Value constants and domain constructions are
regarded as primitive objects about which it suffices to make a few assump-
tions, just like relation names, attributes and values.

The modules VAL CONST and DOMAIN CONST contain the as-
sumptions concerned. It does not suffice to assume that there are types
Val const and Domain const , respectively. It is in addition assumed that
there is a total evaluation function value for value constants yielding values
that are elements of all and a total evaluation function domain for domain
constructions yielding domains that are subsets of all . This means that
both modules are based on assumptions contained in the module VALUE.
Therefore, the parameter module X, which actualizes the assumptions, is
imported into both modules. The additional assumptions about value con-
stants and domain constructions are needed to describe the evaluation of se-

MORE ASSUMPTIONS 299

lection formulae, queries and declarations (the last denote relation schemas)
and they are consequently used in the modules SELECTION WFF,
QUERY and DECLARATION.

Most later modules are parametrized modules. In addition to the modules
REL NM, ATTRIBUTE and VALUE, the modules VAL CONST
and DOMAIN CONST are used as parameter restriction modules for
the parameters of those modules. In this way, it is made precise that they
are based on the above-mentioned assumptions about value constants and
domain constructions.

VAL CONST is

abstract

X:VALUE
of

import

X
into

module

types

Val const free

functions

value(Val const)v :Value free

pre true

post member(v , all)
end

DOMAIN CONST is

abstract

X:VALUE
of

import

X
into

module

types

Domain const free

functions

domain(Domain const)d :Domain free

pre true

post ∀v ∈ Value · member(v , d) ⇒ member(v , all)
end

300 AN EXTERNAL RDBMS INTERFACE

The next three sections present modules in which selection formulae,
queries, declarations and functions concerning their well-formedness and
evaluation are defined. The modules combined describe the state indepen-
dent aspects of the external RDBMS interface. The state dependent aspects
are treated in subsequent sections.

12.2 Selection formula

Selection formulae are composite values of several kinds. Selection formulae
are just simple formulae for stating properties of tuples. They denote tuple
predicates. However, they are abstract syntactic objects since they do not
deal with concrete representation details like the concrete symbols used
to represent operators, delimiter symbols and operator priorities to handle
syntactic ambiguities, etc. A selection formula is used as constituent of
queries in which a relation is described as a selection from another one.

The module SELECTION WFF contains the definitions concerning
selection formulae. This module is based on assumptions contained in the
modules ATTRIBUTE and VAL CONST as well as definitions con-
tained in the parametrized modules TUPLE and TUPLE STRUCT.
Therefore, X and Z, which actualize the assumptions, and the appropriate
applications of the above-mentioned parametrized modules are imported.

The principal functions defined in this module are is wf and predicate.
is wf checks whether a selection formula is well-formed or not and predicate
evaluates a selection formula (yielding a tuple predicate). As usual, evalua-
tion is only defined for well-formed syntactic objects. Both well-formedness
and evaluation are defined with respect to a given non-empty tuple struc-
ture.

There are five kinds of selection formulae: equalities, less-than-
inequalities, greater-than-inequalities, negations and disjunctions. Selection
formulae of the first three kinds, which are called atomic selection formulae,
are composite values with an attribute and a value expression as compo-
nents. Value expressions are variables and constants, which are composite
values with an attribute and a value constant, respectively, as sole compo-
nent. Negations and disjunctions are composite values with one selection
formula and two selection formulae, respectively, as components.

The constructor functions mk-Eq , mk-Less, mk-Greater , mk-Negation
and mk-Disjunction for creating formulae of the different kinds are im-
plicitly defined and so are the constructor functions mk-Variable and
mk-Constant for creating value expressions.

The module SELECTION WFF exports these constructor functions,
the well-formedness function is wf for selection formulae and the evalua-
tion function predicate for selection formulae. Note that the argument types
and result types of exported functions are always implicitly exported if it
is not done explicitly.

SELECTION FORMULA 301

The exported functions is wf and predicate are used in the module
QUERY to define the well-formedness and evaluation of queries. The con-
structor functions must be made available to allow for creating selection
formulae, which are constituents of selection queries. The remaining func-
tions, conforms and value, are regarded as being of an auxiliary nature.

The module SELECTION WFF is a higher-order parametrized mod-
ule: applying it to modules corresponding to a particular choice of attributes
and values yields another parametrized module. The latter module can be
applied to any module corresponding to a particular choice of value con-
stants for the relevant choice of values. This dependence of choices is made
precise in the parameter restriction module for Z, which could not be done
by means of first-order parametrization.

SELECTION WFF is

abstract

X:ATTRIBUTE,
Y:VALUE

of

abstract

Z: apply VAL CONST to Y
of

export

mk-Eq :Attribute ×Val expression → Eq ,
mk-Less:Attribute ×Val expression → Less,
mk-Greater :Attribute ×Val expression → Greater ,
mk-Negation:Selection wff → Negation,
mk-Disjunction:Selection wff × Selection wff → Disjunction,

mk-Variable:Attribute → Variable,
mk-Constant :Val const → Constant ,
is wf :Selection wff × Tuple struct → B,
predicate:Selection wff × Tuple struct → Tuple predicate

from

import

X
Z
apply TUPLE to X,Y
apply TUPLE STRUCT to X,Y

into

module

types

Selection wff = Eq | Less | Greater | Negation | Disjunction

302 AN EXTERNAL RDBMS INTERFACE

Eq :: Attribute Val expression
Less :: Attribute Val expression
Greater :: Attribute Val expression
Negation :: Selection wff
Disjunction :: Selection wff Selection wff

Val expression = Variable | Constant

Variable :: Attribute
Constant :: Val const

functions

% well-formedness
is wf (sf :Selection wff , tstr :Tuple struct)B
pre attrs(tstr) 6= empty
4 cases sf of

mk-Eq(a, ve) →
member(a, attrs(tstr))∧
conforms(ve, tstr , domain(tstr , a))

mk-Less(a, ve) →
member(a, attrs(tstr))∧
conforms(ve, tstr , domain(tstr , a))

mk-Greater(a, ve) →
member(a, attrs(tstr))∧
conforms(ve, tstr , domain(tstr , a))

mk-Negation(sf) →
is wf (sf , tstr)

mk-Disjunction(sf1, sf2) →
is wf (sf1, tstr) ∧ is wf (sf2, tstr)

end

conforms(ve:Val expression, tstr :Tuple struct , d :Domain)B
4 cases ve of

mk-Variable(a) →
member(a, attrs(tstr)) ∧ domain(tstr , a) = d

mk-Constant(vc) →
member(value(vc), d)

end

QUERY 303

% evaluation
predicate(sf :Selection wff , tstr :Tuple struct)tp:Tuple predicate
pre attrs(tstr) 6= empty ∧ is wf (sf , tstr)
post ∀t ∈ Tuple ·

(defined(tp, t) ⇔
attrs(t) = attrs(tstr)∧
∀a ∈ Attribute ·
member(a, attrs(t)) ⇒
member(value(t , a), domain(tstr , a)))∧

(holds(tp, t) ⇔
cases sf of

mk-Eq(a, ve) →
value(t , a) = value(t , ve)

mk-Less(a, ve) →
lt(value(t , a), value(t , ve))

mk-Greater(a, ve) →
lt(value(t , ve), value(t , a))

mk-Negation(sf) →
¬ predicate(sf , tstr)(t)

mk-Disjunction(sf1, sf2) →
predicate(sf1, tstr)(t) ∨ predicate(sf2, tstr)(t)

end)

value(t :Tuple, ve:Val expression)Value
4 cases ve of

mk-Variable(a) → value(t , a)
mk-Constant(vc) → value(vc)

end

end

The assumption made about values in the module VALUE concerning
the function lt is needed in the module SELECTION WFF to evaluate
the less-than-inequalities and greater-than-inequalities.

12.3 Query

Queries are composite values of several kinds. A query can be thought
of as an expression that denotes a relation. Just like selection formulae,
queries are abstract syntactic objects. Queries are used as arguments of
data manipulation operations.

The module QUERY contains the definitions concerning queries.
This module is based on assumptions contained in the modules
REL NM, ATTRIBUTE and VAL CONST as well as definitions con-
tained in the parametrized modules SELECTION WFF, RELATION,
DATABASE and DB SCHEMA. Therefore, X, Y and U, which ac-

304 AN EXTERNAL RDBMS INTERFACE

tualize the assumptions, and the appropriate applications of the above-
mentioned parametrized modules are imported.

The principal functions defined in this module are is wf and eval . is wf
checks whether a query is well-formed or not and eval evaluates a query
in a database (yielding a relation). As usual, evaluation is only defined
for well-formed syntactic objects. Both well-formedness and evaluation are
defined with respect to a given database schema.

There are eight kinds of queries: references, singletons, unions, differ-
ences, products, projections, selections and renamings. References are com-
posite values with a relation name as sole component. Singletons are com-
posite values with a tuple constant, which is a finite map from attributes
to value constants, as sole component. Unions, differences and products
are composite values with two queries as components. Projections are com-
posite values with a query and an attribute set as components. Selections
are composite values with a query and a selection formula as components.
Renamings are composite values with a query and an attribute bijection as
components.

The constructor functions mk-Ref ,mk-Singleton, . . . ,mk-Renaming for
creating queries of the different kinds are implicitly defined. The following
constructor functions for tuple constants are also defined: singleton (con-
verts an attribute-value-constant pair to a tuple constant) and merge (joins
two tuple constants with disjoint attribute sets).

The module QUERY exports these constructor functions as well as the
ones for selection formulae and value expressions (from the imported mod-
ule SELECTION WFF), the well-formedness function is wf for queries
and the evaluation function eval for queries.

Most of the exported functions are used later in the module
MANIPULATION to define the data manipulation operations of the ex-
ternal RDBMS interface. The constructor functions must be made available
to allow for creating queries, which are the main arguments of data ma-
nipulation operations. The hidden functions, such as conforms and struct ,
are regarded as being of an auxiliary nature.

The tuple structure of the relation denoted by a query is of utmost impor-
tance in establishing its well-formedness. In general, context information is
required for extracting this tuple structure. This complexity is due to the
singleton queries, which denote relations that consist of only one tuple. The
problem is that relation names, referring to relation schemas from which
the tuple structure can be derived, never occur in a singleton query. This
problem can be circumvented by adding to singleton queries a syntactic
object denoting its tuple structure. This solution, which is used by Date
in his definition of the RDM, is considered to deviate too much from the
nature of queries.

The function struct extracts the tuple structure of a given query accord-
ing to a certain database schema. If the query is not well-formed but all

QUERY 305

relation names occurring in it refer to relation schemas in the database
schema, then struct still yields a tuple structure. The reason is that the
well-formedness of the query can only be fully established if its tuple struc-
ture is known. So to avoid circularities, the extracted tuple structure is
based on some assumptions about the well-formedness of the query. These
assumptions are checked when the extracted tuple structure is used to es-
tablish the well-formedness by means of the function conforms. It may also
be the case that struct yields an empty tuple structure. An empty tuple
structure seems useless, since tuples with an empty domain are excluded
(in the module TUPLE). However, the empty tuple structure is used here
to indicate that a useful tuple structure could not be extracted, due to lack
of context information.

QUERY is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

abstract

U: apply VAL CONST to Z
of

export

mk-Ref :Rel nm → Ref ,
mk-Singleton:Tuple const → Singleton,
mk-Union:Query ×Query → Union,
mk-Difference:Query ×Query → Difference,
mk-Product :Query ×Query → Product ,
mk-Projection:Query ×Attr set → Projection,
mk-Selection:Query × Selection wff → Selection,
mk-Renaming :Query ×Attr bij → Renaming ,

mk-Eq :Attribute ×Val expression → Eq ,
mk-Less:Attribute ×Val expression → Less,
mk-Greater :Attribute ×Val expression → Greater ,
mk-Negation:Selection wff → Negation,
mk-Disjunction:Selection wff × Selection wff → Disjunction,

mk-Variable:Attribute → Variable,
mk-Constant :Val const → Constant ,
singleton:Attribute ×Val const → Tuple const ,
merge:Tuple const × Tuple const → Tuple const ,

306 AN EXTERNAL RDBMS INTERFACE

is wf :Query ×Db schema → B,
eval :Query ×Db schema ×Database → Relation

from

import

X
Y
U
apply apply SELECTION WFF to Y,Z to U
apply RELATION to Y,Z
apply DATABASE to X,Y,Z
apply DB SCHEMA to X,Y,Z

into

module

types

Query = Ref | Singleton | Union | Difference |
Product | Projection | Selection | Renaming

Ref :: Rel nm
Singleton :: Tuple const
Union :: Query Query
Difference :: Query Query
Product :: Query Query
Projection :: Query Attr set
Selection :: Query Selection wff
Renaming :: Query Attr bij

Tuple const = Attribute m−→ Val const

functions

% constructor functions
singleton(a:Attribute, vc:Val const)Tuple const
4 {a 7→ vc}

merge(tc1:Tuple const , tc2:Tuple const)Tuple const
pre disjoint(attrs(tc1), attrs(tc2))
4 tc1 ∪ tc2

% well-formedness
is wf (q :Query , dbsch:Db schema)B
4 ok references(q , dbsch)∧

conforms(q , dbsch, struct(q , dbsch))

QUERY 307

ok references(q :Query , dbsch:Db schema)B
4 cases q of

mk-Ref (rnm) →
in use(dbsch, rnm)

mk-Singleton(tc) →
true

mk-Union(q1, q2) →
ok references(q1, dbsch) ∧ ok references(q2, dbsch)

mk-Difference(q1, q2) →
ok references(q1, dbsch) ∧ ok references(q2, dbsch)

mk-Product(q1, q2) →
ok references(q1, dbsch) ∧ ok references(q2, dbsch)

mk-Projection(q , as) →
ok references(q , dbsch)

mk-Selection(q , sf) →
ok references(q , dbsch)

mk-Renaming(q , ab) →
ok references(q , dbsch)

end

308 AN EXTERNAL RDBMS INTERFACE

conforms(q :Query , dbsch:Db schema, tstr :Tuple struct)B
4 cases q of

mk-Ref (rnm) →
true

mk-Singleton(tc) →
tstr 6= empty ∧ attrs(tstr) = attrs(tc)∧
∀a ∈ Attribute ·
member(a, attrs(tc)) ⇒
member(value(tc, a), domain(tstr , a))

mk-Union(q1, q2) →
conforms(q1, dbsch, tstr) ∧ conforms(q2, dbsch, tstr)∧
(struct(q1, dbsch) = tstr ∨ struct(q1, dbsch) = empty)∧
(struct(q2, dbsch) = tstr ∨ struct(q2, dbsch) = empty)

mk-Difference(q1, q2) →
conforms(q1, dbsch, tstr) ∧ conforms(q2, dbsch, tstr)∧
(struct(q1, dbsch) = tstr ∨ struct(q1, dbsch) = empty)∧
(struct(q2, dbsch) = tstr ∨ struct(q2, dbsch) = empty)

mk-Product(q1, q2) →
conforms(q1, dbsch, restrict(tstr , attrs(q1, dbsch)))∧
conforms(q2, dbsch, restrict(tstr , attrs(q2, dbsch)))∧
disjoint(attrs(q1, dbsch), attrs(q2, dbsch))

mk-Projection(q , as) →
conforms(q , dbsch, struct(q , dbsch))∧
included(as, attrs(q , dbsch))

mk-Selection(q , sf) →
conforms(q , dbsch, tstr) ∧ is wf (sf , tstr)

mk-Renaming(q , ab) →
conforms(q , dbsch, rename(tstr , inverse(ab)))∧
attrs(q , dbsch) = attrs1(ab)

end

QUERY 309

struct(q :Query , dbsch:Db schema)tstr :Tuple struct
pre ok references(q , dbsch)
post cases q of

mk-Ref (rnm) →
tstr = struct(dbsch, rnm)

mk-Singleton(tc) →
tstr = empty

mk-Union(q1, q2) →
(struct(q1, dbsch) = tstr ∨ struct(q2, dbsch) = tstr)∧
(tstr = empty ⇒
struct(q1, dbsch) = empty∧
struct(q2, dbsch) = empty)

mk-Difference(q1, q2) →
(struct(q1, dbsch) = tstr ∨ struct(q2, dbsch) = tstr)∧
(tstr = empty ⇒
struct(q1, dbsch) = empty∧
struct(q2, dbsch) = empty)

mk-Product(q1, q2) →
(attrs(tstr) = attrs(mk-Product(q1, q2), dbsch)∧
struct(q1, dbsch) = restrict(tstr , attrs(q1, dbsch))∧
struct(q2, dbsch) = restrict(tstr , attrs(q2, dbsch))) ∨

(tstr = empty∧
(struct(q1, dbsch) = empty ∨
struct(q2, dbsch) = empty))

mk-Projection(q , as) →
tstr = restrict(struct(q , dbsch), as)

mk-Selection(q , sf) →
tstr = struct(q , dbsch)

mk-Renaming(q , ab) →
tstr = rename(struct(q , dbsch), ab)

end

310 AN EXTERNAL RDBMS INTERFACE

attrs(q :Query , dbsch:Db schema)as:Attr set
pre ok references(q , dbsch)
post cases q of

mk-Ref (rnm) →
as = attrs(dbsch, rnm)

mk-Singleton(tc) →
as = attrs(tc)

mk-Union(q1, q2) →
attrs(q1, dbsch) = as ∨ attrs(q2, dbsch) = as

mk-Difference(q1, q2) →
attrs(q1, dbsch) = as ∨ attrs(q2, dbsch) = as

mk-Product(q1, q2) →
∀a ∈ Attribute ·
member(a, as) ⇔
member(a, attrs(q1, dbsch)) ∨
member(a, attrs(q2, dbsch))

mk-Projection(q , as ′) →
as = as ′

mk-Selection(q , sf) →
as = attrs(q , dbsch)

mk-Renaming(q , ab) →
as = attrs2(ab)

end

QUERY 311

% evaluation
eval(q :Query , dbsch:Db schema, db:Database)Relation
pre is wf (q , dbsch) ∧ is valid instance(db, dbsch)
4 cases q of

mk-Ref (rnm) →
relation(db, rnm)

mk-Singleton(tc) →
singleton(tuple(tc))

mk-Union(q1, q2) →
union(eval(q1dbsch, db), eval(q2, dbsch, db))

mk-Difference(q1, q2) →
difference(eval(q1, dbsch, db), eval(q2, dbsch, db))

mk-Product(q1, q2) →
product(eval(q1, dbsch, db), eval(q2, dbsch, db))

mk-Projection(q , as) →
projection(eval(q , dbsch, db), as)

mk-Selection(q , sf) →
selection(eval(q , dbsch, db),

predicate(sf , struct(q , dbsch)))
mk-Renaming(q , ab) →

rename(eval(q , dbsch, db), ab)
end

tuple(tc:Tuple const)t :Tuple
post attrs(t) = attrs(tc)∧

∀a ∈ Attribute ·
member(a, attrs(t)) ⇒ value(t , a) = value(tc, a)

attrs(tc:Tuple const)Attr set
4 dom tc

value(tc:Tuple const , a:Attribute)Value
pre member(a, attrs(tc))
4 value(tc(a))

end

A large part of this module is concerned with well-formedness of queries
and only a small part with evaluation of queries. Moreover, the part that
is concerned with well-formedness is relatively complex. This is not excep-
tional. For query evaluation, extensive use is made of what is defined in the
modules concerning RDM concepts (Chapter 11), as for well-formedness of
queries no ‘foundation’ is available. In general, well-formedness tends not
to be defined in a concise way for any language.

312 AN EXTERNAL RDBMS INTERFACE

12.4 Declaration

Declarations are just composite values with a structure description, which
is a finite map from attributes to domain constructions, and a key set as
components. The domain of the structure description is called its attribute
set. A declaration can be thought of as an expression that denotes a relation
schema. Just like selection formulae and queries, declarations are abstract
syntactic objects. Declarations are the main arguments of data definition
operations.

The module DECLARATION contains the definitions concerning dec-
larations. This module is based on assumptions contained in the modules
ATTRIBUTE and DOMAIN CONST as well as definitions contained
in the parametrized modules KEY SUPPL and REL SCHEMA.
Therefore, X and Z, which actualize the assumptions, and the appropriate
applications of the above-mentioned parametrized modules are imported.

The principal functions defined in this module are is wf and schema.
is wf checks whether a declaration is well-formed or not and schema eval-
uates a declaration (yielding a relation schema). As usual, evaluation is
only defined for well-formed syntactic objects.

The constructor function mk-Declaration for creating declarations is im-
plicitly defined. The following constructor functions for structure descrip-
tions are also defined: singleton (converts an attribute-domain-construction
pair to a structure description) and merge (joins two structure descriptions
with disjoint attribute sets).

The module DECLARATION exports these constructor functions as
well as the well-formedness function is wf for declarations and the evalu-
ation function schema for declarations.

Most of the exported functions are used in the module DEFINITION
to define the data definition operations of the external RDBMS interface.
The constructor functions must be made available to allow for creating
declarations, which are the main arguments of data definition operations.
The hidden functions are regarded as being of an auxiliary nature.

DECLARATION is

abstract

X:ATTRIBUTE,
Y:VALUE

of

abstract

Z: apply DOMAIN CONST to Y
of

DECLARATION 313

export

mk-Declaration:Structure descr ×Key set → Declaration,
singleton:Attribute ×Domain const → Structure descr ,
merge:Structure descr × Structure descr → Structure descr ,

is wf :Declaration → B,
schema:Declaration → Rel schema

from

import

X
Z
apply KEY SUPPL to X
apply REL SCHEMA to X,Y

into

module

types

Declaration :: Structure descr Key set

Structure descr = Attribute m−→ Domain const

functions

% constructor functions
singleton(a:Attribute, dc:Domain const)Structure descr
4 {a 7→ dc}

merge(sd1:Structure descr , sd2:Structure descr)Structure descr
pre disjoint(dom sd1, dom sd2)
4 sd1 ∪ sd2

% well-formedness
is wf (decl :Declaration)B
4 let

mk-Declaration(sd , ks) 4 decl
in

dom sd 6= empty∧
∀as ∈ Attr set · member(as, ks) ⇒ included(as, dom sd)

314 AN EXTERNAL RDBMS INTERFACE

% evaluation
schema(decl :Declaration)rsch:Rel schema
pre is wf (decl)
post let

mk-Declaration(sd , ks) 4 decl
in

attrs(rsch) = dom sd ∧ keys(rsch) = ks∧
∀a ∈ Attribute ·
member(a, attrs(rsch)) ⇒
domain(rsch, a) = domain(sd(a))

end

The next three sections present modules in which the states of an
RDBMS and the data manipulation and data definition operations which
interrogate and modify them are defined. The modules combined describe
the state dependent aspects of the external RDBMS interface.

12.5 DBMS state

The module DBMS STATE contains the definitions concerning the
changing state of a database management system. This module is based on
definitions contained in the modules DATABASE and DB SCHEMA.
So the appropriate applications of these modules are imported.

No types and functions are defined. The concepts of a varying database
and a varying database schema are made precise with the state variables
curr database and curr dbschema. These state variables can be thought of
as taking at any point in time the current database value and the current
database schema value, respectively. Together they constitute the chang-
ing state of a database management system. The intention that the current
database and the current database schema are initially empty is made pre-
cise with an initial condition and the intention that the current database
schema always applies to the current database, is made precise with a state
invariant.

The state variables curr dbschema and curr database are used in the
module MANIPULATION as well as the module DEFINITION to
define the operations which make up the external RDBMS interface. So
these modules have state variables in common.

DBMS STATE is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

MANIPULATION 315

import

apply DATABASE to X,Y,Z
apply DB SCHEMA to X,Y,Z

into

module

state

curr dbschema:Db schema

curr database:Database

inv is valid instance(curr database, curr dbschema)
init curr dbschema = empty schema∧

curr database = empty database
end

12.6 Manipulation

The module MANIPULATION contains the definitions concerning the
data manipulation operations which can be performed by a database man-
agement system. This module is based on assumptions contained in the
module REL NM and definitions contained in the parametrized mod-
ules RELATION, QUERY and DBMS STATE. Therefore, X, which
actualizes the assumptions, and the appropriate applications of the above-
mentioned parametrized modules are imported.

The states of the database management system, with the components
curr dbschema and curr database, were already defined in the imported
module DBMS STATE. The operations defined in the current module are
SELECT (for selection of a relation that is derived from the ones stored
in the current database), INSERT , DELETE and REPLACE (for alter-
ation of one of the relations stored in the current database). Together they
constitute the data manipulation interface of a database management sys-
tem. All operations interrogate the current database schema but do not
modify it. The first operation interrogates the current database but does
not modify it. The other ones also modify the current database, unless
the modified database would no longer be a valid instance of the current
database schema.

SELECT evaluates a query in the current database (according to the cur-
rent database schema), yields the relation obtained as result and does not
change the state. INSERT evaluates a query in the current database (ac-
cording to the current database schema) and adds the tuples of the relation
obtained to a named relation in the current database. DELETE evaluates
a query in the current database (according to the current database schema)
and removes the tuples of the relation obtained from a named relation in
the current database. REPLACE evaluates a query in the current data-

316 AN EXTERNAL RDBMS INTERFACE

base (according to the current database schema), removes the tuples of the
relation obtained from a named relation in the current database, evaluates
another query in the intermediate database (according to the current data-
base schema) and adds the tuples of the relation obtained to the named
relation in the intermediate database.

The operation SELECT must be executed successfully if the query con-
cerned is well-formed with respect to the current database schema. Each
of the other operations must be executed successfully if the relation name
concerned fits in with the queries concerned (only one for INSERT and
DELETE), the relation name is in use by the current database and the
queries are well-formed with respect to the current database schema.

The module MANIPULATION exports the data manipulation oper-
ations SELECT , INSERT , DELETE and REPLACE . All types and func-
tions that were exported from the imported modules are hidden, except the
types Rel nm, Relation and Query which are implicitly exported. The state
variables curr dbschema and curr database, which were exported from the
imported module DBMS STATE, are also hidden. Interrogating or mod-
ifying them can only be done by means of the operations made available by
the interface. This is in accordance with the viewpoint that only the effect
of updates on subsequent queries really matters.

MANIPULATION is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

abstract

U: apply VAL CONST to Z
of

export

SELECT :Query ⇒ Relation,
INSERT :Rel nm ×Query ⇒,
DELETE :Rel nm ×Query ⇒,
REPLACE :Rel nm ×Query ×Query ⇒

from

import

X
apply RELATION to Y,Z
apply apply QUERY to X,Y,Z to U
apply DBMS STATE to X,Y,Z

into

MANIPULATION 317

module

operations

SELECT (q :Query)r :Relation
ext rd curr dbschema:Db schema,

rd curr database:Database
pre is wf (q , curr dbschema)
post r = eval(q , curr dbschema, curr database)

INSERT (rnm:Rel nm, q :Query)
ext rd curr dbschema:Db schema,

wr curr database:Database
pre is wf (mk-Union(mk-Ref (rnm), q), curr dbschema)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

r :Relation 4
eval(mk-Union(mk-Ref (rnm), q), dbsch, db),

db′:Database 4 update(db, rnm, r)
in

curr database
= if is valid instance(db′, dbsch) then db′ else db

DELETE (rnm:Rel nm, q :Query)
ext rd curr dbschema:Db schema,

wr curr database:Database
pre is wf (mk-Difference(mk-Ref (rnm), q), curr dbschema)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

r :Relation 4
eval(mk-Difference(mk-Ref (rnm), q), dbsch, db),

db′:Database 4 update(db, rnm, r)
in

curr database
= if is valid instance(db′, dbsch) then db′ else db

318 AN EXTERNAL RDBMS INTERFACE

REPLACE (rnm:Rel nm, q1:Query , q2:Query)
ext rd curr dbschema:Db schema,

wr curr database:Database
pre is wf (mk-Difference(mk-Ref (rnm), q1), curr dbschema)∧

is wf (mk-Union(mk-Ref (rnm), q2), curr dbschema)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

r :Relation 4
eval(mk-Difference(mk-Ref (rnm), q1), dbsch, db),

db′:Database 4 update(db, rnm, r),
r ′:Relation 4
eval(mk-Union(mk-Ref (rnm), q2), dbsch, db′),

db′′:Database 4 update(db′, rnm, r ′)
in

curr database
= if is valid instance(db′′, dbsch) then db′′ else db

end

The operation REPLACE is defined in a rather indirect way to
suggest that replacement is like deletion followed by insertion. How-
ever, REPLACE (rnm, q1, q2) does not always have the same effect as
DELETE (rnm, q1) followed by INSERT (rnm, q2). In the latter case there
may be no deletion to avoid an invalid intermediate instance of the current
database schema.

The collection of data manipulation operations defined in this module,
which reflects roughly what is offered in each of the existing RDBMSs, is
certainly not minimal. For example, the modifications that can be made
by means of the operations INSERT , DELETE and REPLACE , can also
be made by means of a single ‘relational assignment’ operation such as in
(Date, 1986, Chapter 7).

12.7 Definition

The module DEFINITION contains the definitions concerning the data
definition operations which can be performed by a database management
system. This module is based on assumptions contained in the mod-
ule REL NM and definitions contained in the parametrized modules
DECLARATION and DBMS STATE. Therefore, X, which actualizes
the assumptions, and the appropriate applications of the above-mentioned
parametrized modules are imported.

The states of the database management system, with the components
curr dbschema and curr database, were already defined in the imported
module DBMS STATE. The operations defined in the current module

DEFINITION 319

are CREATE , DESTROY and CONSTRAIN (mainly for alteration of
the current database schema). Together they constitute the data definition
interface of a database management system. All operations interrogate the
current database schema as well as the current database. The first two
operations also modify both of them, unless the modified database would
no longer be a valid instance of the modified database schema. The last
operation only modifies the current database schema, unless the current
database would no longer be a valid instance of the modified database
schema.

CREATE evaluates a declaration, adds the relation schema obtained
under a given relation name to the current database schema and adds an
empty relation under the same name to the current database. DESTROY
removes the relation schema under a given relation name (and the inclusions
referring to it) from the current database schema and removes the relation
under the same name from the current database. CONSTRAIN adds an
inclusion constraint to the current database schema.

CREATE must be executed successfully if the relation name concerned is
not in use by the current database schema and the declaration concerned
is well-formed. DESTROY must be executed successfully if the relation
name concerned is in use by the current database schema. CONSTRAIN
must be executed successfully if the inclusion concerned is applicable to
the current database schema.

The module DEFINITION exports the data definition operations
CREATE , DESTROY and CONSTRAIN . All types and functions that
were exported from the imported modules are hidden, except the types
Rel nm, Inclusion and Declaration which are implicitly exported. The state
variables curr dbschema and curr database, which were exported from the
imported module DBMS STATE, are also hidden. Interrogating or mod-
ifying them can only be done by means of the operations made available
by the interface.

DEFINITION is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

abstract

U: apply DOMAIN CONST to Z
of

320 AN EXTERNAL RDBMS INTERFACE

export

CREATE :Rel nm ×Declaration ⇒,
DESTROY :Rel nm ⇒,
CONSTRAIN : Inclusion ⇒

from

import

X
apply apply DECLARATION to Y,Z to U
apply DBMS STATE to X,Y,Z

into

module

operations

CREATE (rnm:Rel nm, decl :Declaration)
ext wr curr dbschema:Db schema,

wr curr database:Database
pre ¬ in use(curr dbschema, rnm) ∧ is wf (decl)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

rsch:Rel schema 4 schema(decl),
dbsch ′:Db schema 4 create(dbsch, rnm, rsch),
db′:Database 4 create(db, rnm)
in

curr database
= if is valid instance(db′, dbsch ′) then db′ else db∧

curr dbschema
= if is valid instance(db′, dbsch ′) then dbsch ′ else dbsch

SYSTEM 321

DESTROY (rnm:Rel nm)
ext wr curr dbschema:Db schema,

wr curr database:Database
pre in use(curr dbschema, rnm)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

dbsch ′:Db schema 4 destroy(dbsch, rnm),
db′:Database 4 destroy(db, rnm)
in

curr database
= if is valid instance(db′, dbsch ′) then db′ else db∧

curr dbschema
= if is valid instance(db′, dbsch ′) then dbsch ′ else dbsch

CONSTRAIN (incl : Inclusion)
ext wr curr dbschema:Db schema,

rd curr database:Database
pre applicable(incl , curr dbschema)
post let

dbsch:Db schema 4 ↼−−−−−−−−−−
curr dbschema,

db:Database 4 ↼−−−−−−−−−−
curr database,

dbsch ′:Db schema 4 constrain(dbsch, incl)
in

curr dbschema
= if is valid instance(db, dbsch ′) then dbsch ′ else dbsch

end

Many existing RDBMSs offer a more powerful collection of data defi-
nition operations. The rather restricted power offered by the operations
defined in this module is intentional. It is the opinion of the author that
modification of a relation schema or a database schema conflicts with the
usual intuition about schemas. Therefore we have tried to maintain their
static character as far as possible without making them impractical. For
example, the addition of new relation schemas and the removal of existing
ones is supported, but the addition of new attributes to an existing relation
schema is not supported.

12.8 System

The former modules combined cover all things relevant to the external
RDBMS interface. Therefore, the system module contains no definitions.
No new concepts are defined. Instead the relevant definitions from the pre-

322 AN EXTERNAL RDBMS INTERFACE

vious modules are combined and it is specified what, from the defined
concepts, constitutes the external RDBMS interface by making only the
names of these concepts visible.

The system module exports the constructor functions which are required
for creating all queries, declarations and inclusions, the data manipulation
operations and the data definition operations.

system is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

abstract

U: apply VAL CONST to Z,
V: apply DOMAIN CONST to Z

of

export

mk-Ref :Rel nm → Ref ,
mk-Singleton:Tuple const → Singleton,
mk-Union:Query ×Query → Union,
mk-Difference:Query ×Query → Difference,
mk-Product :Query ×Query → Product ,
mk-Projection:Query ×Attr set → Projection,
mk-Selection:Query × Selection wff → Selection,
mk-Renaming :Query ×Attr bij → Renaming ,

mk-Eq :Attribute ×Val expression → Eq ,
mk-Less:Attribute ×Val expression → Less,
mk-Greater :Attribute ×Val expression → Greater ,
mk-Negation:Selection wff → Negation,
mk-Disjunction:Selection wff × Selection wff → Disjunction,

mk-Variable:Attribute → Variable,
mk-Constant :Val const → Constant ,
mk-Declaration:Structure descr ×Key set → Declaration,
mk-Inclusion:Rel nm × Rel nm ×Key bij → Inclusion,

singleton:Attribute ×Val const → Tuple const ,
merge:Tuple const × Tuple const → Tuple const ,
singleton:Attribute ×Domain const → Structure descr ,
merge:Structure descr × Structure descr → Structure descr ,

singleton:Attribute → Attr set ,
union:Attr set ×Attr set → Attr set ,

SYSTEM 323

singleton:Attribute ×Attribute → Attr bij ,
merge:Attr bij ×Attr bij → Attr bij ,
empty : → Key set ,
singleton:Attr set → Key set ,
union:Key set ×Key set → Key set ,
SELECT :Query ⇒ Relation,
INSERT :Rel nm ×Query ⇒,
DELETE :Rel nm ×Query ⇒,
REPLACE :Rel nm ×Query ×Query ⇒,
CREATE :Rel nm ×Declaration ⇒,
DESTROY :Rel nm ⇒,
CONSTRAIN : Inclusion ⇒

from

import

X
apply RELATION to Y,Z
apply apply QUERY to X,Y,Z to U
apply apply DECLARATION to Y,Z to V
apply apply MANIPULATION to X,Y,Z to U
apply apply DEFINITION to X,Y,Z to V

into

module

end

It is worth noting that the modules MANIPULATION and
DEFINITION, which are combined in the complete specification, have
hidden state variables in common, viz. curr dbschema and curr database.
Although data manipulation operations and data definition operations are
only loosely connected, operations of both kinds interrogate or modify both
state variables.

13

An Internal RDBMS
Interface

In this chapter, the second case study in VVSL is presented. This case
study deals with the underlying concepts and operations of systems for
handling concurrent access to a relational database by multiple transac-
tions. The main purpose of the second case study is to demonstrate the
practical usefulness of the extensions of VDM-SL for specifying operations
which interfere through shared state components, but it demonstrates the
practical usefulness of the extensions for modular structuring as well.

The operations described in this chapter make up a hypothetical internal
interface of an RDBMS: the operations are not made available directly to
the users of the RDBMS. This interface, which handles concurrent access
to stored relations by multiple transactions, is meant to provide for a way
of looking at transaction management in database systems. The underlying
concepts are concepts associated with concurrency control and in-progress
transaction backup aspects of transaction management. Most of the opera-
tions can be regarded as requests on behalf of some transaction to perform
an action on a subset of a stored relation.

Transactions are the units of consistency. It is assumed that each action
which is performed on behalf of a transaction may violate database con-
sistency, but that each transaction, when executed alone, preserves data-
base consistency. An ‘Access Handler’ (AH), which supports the internal
RDBMS interface defined in this chapter, provides for interleaved perfor-
mance of actions requested by several transactions in such a manner that
each transaction sees a consistent database and produces a consistent data-
base. In this case, it is said that the requests are granted in a consistency
preserving order. The AH does so on the ground of the above-mentioned as-
sumptions; it does not know what the consistency requirements are. When
a transaction issues a request, it is never made to wait for ever for the grant-
ing of the request. Deadlock is one possible reason why a transaction might
wait for ever. The AH will reject an issued request immediately, if the re-
quest would cause deadlock. Other reasons, e.g. livelock, are prevented from

326 AN INTERNAL RDBMS INTERFACE

occurring by the way of granting requests. If a request is rejected, then the
transaction concerned usually has to stop after undoing all changes made
to the database so far. One of the operations provides for this rollback of
transactions.

The description of underlying concepts of access handlers and operations
which can be performed by such systems in this chapter gives a detailed pic-
ture of transaction management in database systems. Like the descriptions
in the previous two chapters, the description in this chapter is mathemati-
cally precise and modularly structured. In contrast with the description of
RDM concepts, more than standard mathematical notation is needed. As
for the external RDBMS interface, special notation for describing software
systems in terms of the operations that they can perform is needed. For the
internal RDBMS interface, this includes notation for describing the possi-
ble effects of performing interleaved operations which relate to interference
through shared state components. This notation was not needed for the
external RDBMS interface. It is also worth noting that in the current de-
scription existing modules (modules from Chapter 11 used in Chapter 12)
have been re-used.

In the remainder of this chapter, first the re-used modules are mentioned.
Subsequently, there are separate sections on the other modules. Each mod-
ule is preceded by an explanation of what the module concerned is about.

A reader who is unfamiliar with the relational approach to databases or
transaction management in database systems should first study a textbook
such as (Ullman, 1988) to acquire an intuitive understanding of what is
described formally in this chapter.

13.1 RDM concepts

In Chapter 11 many of the basic concepts of the RDM were defined. The
relevant concepts cover the data structure, data manipulation and data
integrity aspects of the RDM. The description given in this chapter builds
upon the description of RDM concepts in Chapter 11. That description
of RDM concepts should be repeated here. For practical reasons, only the
names of the relevant modules are given. The reader is asked to imagine
that it is repeated completely. For short informal explanations of what
these modules are about, see Section 10.4.

component

REL NM is . . .

ATTRIBUTE is . . .

VALUE is . . .

ATTR SUPPL is . . .

MORE ASSUMPTIONS 327

TUPLE is . . .

RELATION is . . .

DATABASE is . . .

TUPLE STRUCT is . . .

REL SCHEMA is . . .

DB SCHEMA is . . .

VAL CONST is . . .

13.2 More assumptions

Later on modules are presented in which simple formulae, accesses, access
tables and other concepts concerning the internal RDBMS interface are
defined. Simple formulae are defined in terms of attributes and value con-
stants, accesses are defined in terms of relation names and simple formulae,
access tables are defined in terms of transaction names and accesses, etc.
Transaction names are regarded as primitive objects about which it suffices
to make a few assumptions, in the same way as relation names, attributes,
values and values constants. Transaction names are usually identifiers.

The module TRANS NM contains the assumptions concerned. For
transaction names it suffices to assume that there is a type Trans nm with
no a priori properties.

Most modules in this chapter are parametrized ones. In addition to the
modules REL NM, ATTRIBUTE, VALUE and VAL CONST, the
module TRANS NM is used as parameter restriction modules for the
parameters of those modules. In this way, it is made precise that they are
based on the above-mentioned assumptions about transaction names.

TRANS NM is

module

types

Trans nm free

end

The next three sections present modules in which simple formulae, ac-
cesses and access tables are defined. These modules describe the concepts
according to which the internal RDBMS interface handles concurrent ac-
cess to stored relations by multiple transactions. The operations relating
to this are completed with an operation to stop a transaction that is in
progress after undoing its changes made to the database so far. The con-
cepts according to which provision is made for the in-progress transaction
backup are treated in subsequent sections.

328 AN INTERNAL RDBMS INTERFACE

13.3 Simple formula

Simple formulae are composite values of several kinds. Simple formulae are
very simple formulae for stating properties of tuples. They denote tuple
predicates. However, they are abstract syntactic objects since they do not
deal with concrete representation details. A simple formula is used as a
constituent of accesses, which present requests to perform a read or write
action on a subset of a stored relation.

The module SIMPLE WFF contains the definitions concerning simple
formulae. This module is based on assumptions contained in the modules
ATTRIBUTE and VAL CONST as well as definitions contained in the
parametrized modules TUPLE and TUPLE STRUCT. Therefore, X
and Z, which actualize the assumptions, and the appropriate applications
of the above-mentioned parametrized modules are imported.

The principal functions defined in this module are is wf and predicate.
is wf checks whether a simple formula is well-formed or not and predicate
evaluates a simple formula (yielding a tuple predicate). As usual, evaluation
is only defined for well-formed syntactic objects. Both well-formedness and
evaluation are defined with respect to a given non-empty tuple structure.

There are six kinds of simple formulae: boolean literals, equalities, less-
than-inequalities, greater-than-inequalities, negations and disjunctions.
Simple formulae of the first kind are composite values with a truth value
as sole component. Simple formulae of the next three kinds are composite
values with an attribute and a value constant as components. Simple for-
mulae of the first four kinds are called atomic simple formulae. Negations
and disjunctions are composite values with one simple formula and two
simple formulae, respectively, as components.

The constructor functions mk-Bool lit , mk-Eq , mk-Less, mk-Greater ,
mk-Negation and mk-Disjunction for creating formulae of the different
kinds are implicitly defined.

The module SIMPLE WFF exports these constructor functions, the
well-formedness function is wf for simple formulae and the evaluation func-
tion predicate for simple formulae.

The exported functions is wf and predicate are used in the module
ACCESS to define functions on accesses. The constructor functions must
be made available to allow for creating simple formulae, which are con-
stituents of accesses.

SIMPLE WFF is

abstract

X:ATTRIBUTE,
Y:VALUE

of

SIMPLE FORMULA 329

abstract

Z: apply VAL CONST to Y
of

export

mk-Bool lit :B → Bool lit ,
mk-Eq :Attribute ×Val const → Eq ,
mk-Less:Attribute ×Val const → Less,
mk-Greater :Attribute ×Val const → Greater ,
mk-Negation:Simple wff → Negation,
mk-Disjunction:Simple wff × Simple wff → Disjunction,

is wf :Simple wff × Tuple struct → B,
predicate:Simple wff × Tuple struct → Tuple predicate

from

import

X
Z
apply TUPLE to X,Y
apply TUPLE STRUCT to X,Y

into

module

types

Simple wff =
Bool lit | Eq | Less | Greater | Negation | Disjunction

Bool lit :: B
Eq :: Attribute Val const
Less :: Attribute Val const
Greater :: Attribute Val const
Negation :: Simple wff
Disjunction :: Simple wff Simple wff

330 AN INTERNAL RDBMS INTERFACE

functions

% well-formedness
is wf (sf :Simple wff , tstr :Tuple struct)B
pre attrs(tstr) 6= empty
4 cases sf of

mk-Bool lit(b) →
true

mk-Eq(a, vc) →
member(a, attrs(tstr))∧
member(value(vc), domain(tstr , a))

mk-Less(a, vc) →
member(a, attrs(tstr))∧
member(value(vc), domain(tstr , a))

mk-Greater(a, vc) →
member(a, attrs(tstr))∧
member(value(vc), domain(tstr , a))

mk-Negation(sf) →
is wf (sf , tstr)

mk-Disjunction(sf1, sf2) →
is wf (sf1, tstr) ∧ is wf (sf2, tstr)

end

ACCESS 331

% evaluation
predicate(sf :Simple wff , tstr :Tuple struct)tp:Tuple predicate
pre attrs(tstr) 6= empty ∧ is wf (sf , tstr)
post ∀t ∈ Tuple ·

(defined(tp, t) ⇔
attrs(t) = attrs(tstr)∧
∀a ∈ Attribute ·
member(a, attrs(t)) ⇒
member(value(t , a), domain(tstr , a)))∧

(holds(tp, t) ⇔
cases sf of

mk-Bool lit(b) →
b

mk-Eq(a, vc) →
value(t , a) = value(vc)

mk-Less(a, vc) →
lt(value(t , a), value(vc))

mk-Greater(a, vc) →
lt(value(vc), value(t , a))

mk-Negation(sf) →
¬ predicate(sf , tstr)(t)

mk-Disjunction(sf1, sf2) →
predicate(sf1, tstr)(t) ∨ predicate(sf2, tstr)(t)

end)
end

The simple formulae defined in the module SIMPLE WFF and the
selection formulae defined in the module SELECTION WFF are almost
the same. An atomic simple formula is a boolean literal or an atomic selec-
tion formula with a value constant as the right-hand side. The right-hand
side of an atomic selection formula may also be an attribute. This is the
main difference. Firthermore, the boolean literals are no selection formulae.

13.4 Access

Accesses are composite values with an access mode (READ, WRITE,
CREATE or DESTROY), a relation name and a simple formula as compo-
nents. The simple formula concerned has to be the boolean literal denoting
truth if the access mode is CREATE or DESTROY. An access can be thought
of as an abstraction of a request to perform an action on a subset of some
stored relation. An access presents syntactic properties of an access request
issued by some transaction. It captures all the details of the request that
can be used to grant this request amongst requests issued by other trans-
actions in a consistency preserving order. Two accesses are in conflict if it

332 AN INTERNAL RDBMS INTERFACE

cannot be determined from the syntactic properties concerned whether the
requested actions will not interfere. That is, their access modes are not both
read mode, their relation names are the same and the tuples referred to by
their simple formulae overlap. The tuples concerned are determined with
respect to a given database schema. Thus, tuples are included irrespective
of their presence in the stored relation concerned.

The module ACCESS contains the definitions concerning accesses.
This module is based on assumptions contained in the module REL NM
and definitions contained in the parametrized modules SIMPLE WFF,
RELATION and DB SCHEMA. Therefore, X, which actualizes the
assumptions, and the appropriate applications of the above-mentioned pa-
rametrized modules are imported.

The principal functions defined in this module are tuples and conflicts.
tuples determines the set of all tuples referred to by an access according to
a database schema and conflicts checks whether two accesses are in conflict
according to a database schema or not. The functions compatible, which is
also defined in this module, checks whether an access is consistent with a
database schema or not.

The constructor function mk-Access for creating accesses and the selector
functions am, rnm and sf for selecting the components of accesses are
implicitly defined.

The functions conflicts and compatible are used in the mod-
ule ACCESS TABLE to define functions to manipulate access ta-
bles. The functions tuples and mk-Access are used in the module
ACCESS HANDLING to define the operations which make up the in-
ternal RDBMS interface.

ACCESS is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

abstract

U: apply VAL CONST to Z
of

import

X
apply apply SIMPLE WFF to Y,Z to U
apply RELATION to Y,Z
apply DB SCHEMA to X,Y,Z

into

ACCESS 333

module

types

Access :: am:Access mode rnm:Rel nm sf :Simple wff
where inv(acc) 4
am(acc) = CREATE ∨ am(acc) = DESTROY ⇒
sf (acc) = mk-Bool lit(true)

Access mode = {READ, WRITE, CREATE, DESTROY}
functions

% non-constructor functions
tuples(dbsch:Db schema, acc:Access)r :Relation
pre compatible(acc, dbsch)
post let

tp:Tuple predicate 4
predicate(sf (acc), struct(dbsch, rnm(acc)))

in

∀t ∈ Tuple ·
member(t , r) ⇔ defined(tp, t) ∧ holds(tp, t)

conflicts(acc1:Access, acc2:Access, dbsch:Db schema)B
pre compatible(acc1, dbsch) ∧ compatible(acc2, dbsch)
4 let

tp1:Tuple predicate 4
predicate(sf (acc1), struct(dbsch, rnm(acc1))),

tp2:Tuple predicate 4
predicate(sf (acc2), struct(dbsch, rnm(acc2)))

in

¬ (am(acc1) = READ ∧ am(acc2) = READ)∧
rnm(acc1) = rnm(acc2)∧
∃t ∈ Tuple · defined(tp1, t) ∧ holds(tp1, t) ∧ holds(tp2, t)

compatible(acc:Access, dbsch:Db schema)B
4 in use(dbsch, rnm(acc))∧

is wf (sf (acc), struct(dbsch, rnm(acc)))
end

The definitions show that subsets of stored relations have been chosen
as the units of access. The concept of an access was originally defined in
connection with the idea of predicate locks by Eswaran, Gray, Lorie and
Traiger (1976). Although locks are not defined here, the concept of an
access is still regarded as being useful. It facilitates the description of what
is required of a scheduler for access requests issued on behalf of multiple
transactions.

334 AN INTERNAL RDBMS INTERFACE

13.5 Access table

Access tables are maps from transaction names to access records. The access
records are composite values with two disjoint sets of accesses as compo-
nents. The domain of an access table is called its transaction name set.
A transaction name is in use by an access table if it is in the transac-
tion name set of the access table. An access record with two empty sets of
accesses as components is called an empty access record. An access table
can be thought of as an abstraction of the state of a collection of trans-
actions whose actions are performed in an interleaved fashion. An access
table presents, for each active transaction, the syntactic properties of its
previously granted requests and, in case it is currently waiting, its currently
waiting request. That is, the sets of accesses from the access records present
the set of previously granted requests and the set of currently waiting re-
quests of the transactions concerned. Thus, it captures all the details of the
active transactions that can be used to grant waiting requests and coming
requests of the active transactions in a consistency preserving order.

For a given transaction, an access is in conflict with an access table if it
cannot be determined from the syntactic properties concerned whether the
requested action will not interfere with the actions that were previously
requested by another active transaction. That is, the access is in conflict
with an access from the access record associated with another transaction.
A conflicting request is not granted immediately; it becomes a waiting
request which eventually will be granted or it is rejected immediately. A
conflicting request will be rejected if it would otherwise be waiting for itself
indirectly; in which case it is called liable for deadlock. For example, the
request issued by the transaction is currently granted to another transaction
which is already waiting because of a conflict with a request currently
granted to the issuing transaction.

The module ACCESS TABLE contains the definitions concerning ac-
cess tables. This module is based on assumptions contained in the mod-
ule TRANS NM and definitions contained in the parametrized module
ACCESS. Therefore, U, which actualizes the assumptions, and the ap-
propriate application of the module ACCESS are imported.

The principal functions defined in this module are conflicts and deadlock
liable. conflicts checks whether, for a given transaction, an access is in
conflict with an access table according to a database schema or not and
deadlock liable checks whether, for a given transaction, an access is liable
for deadlock with an access table according to a database schema or not.
For access tables, the only constant is empty acctbl , the empty access table.
The following functions on access tables are defined as well: create (adds
an access record for a new transaction to an access table; the new access
record is empty), destroy (removes the access record of a transaction from
an access table), add to grants (adds an access to the granted accesses

ACCESS TABLE 335

of a transaction in an access table), add to waits (adds an access to the
waiting accesses of a transaction in an access table), in use (checks whether
a transaction name is in use by an access table or not), granted (looks up
the granted accesses of a transaction in an access table), waiting (looks
up the waiting accesses of a transaction in an access table) and compatible
(checks whether an access table is consistent with a database schema or
not). The first four functions are constructor functions for access tables.

The constructor function mk-Access record for creating access records
and the selector functions grants and waits for selecting the components of
access records are implicitly defined.

The above-mentioned functions are used in the modules AH STATE
and ACCESS HANDLING to define the states of an access handler and
the operations which make up an internal RDBMS interface.

The function add to grants is defined such that the access, which is
added to the grants of some access record, is also removed from the waits
of this access record (if present). There is no function available for remov-
ing the access from the waits without adding it to the grants. This is in
accordance with the intuitive idea that a waiting request should eventually
be granted.

The function add to waits is defined such that it does not add an access
to the waits of some access record if it is already one of the grants of this
access record. This is essentially a special provision for transactions which
inadvertently issue the same request more than once.

ACCESS TABLE is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

abstract

V: apply VAL CONST to Z
of

import

U
apply apply ACCESS to X,Y,Z to V

into

module

types

Access table = Trans nm m−→ Access record

336 AN INTERNAL RDBMS INTERFACE

Access record :: grants:Access set waits:Access set
where inv(ar) 4 grants(ar) ∩ waits(ar) = { }
Access set = Access-set

functions

% constructor functions
empty acctbl()Access table
4 { }

create(acctbl :Access table, tnm:Trans nm)Access table
pre ¬ in use(acctbl , tnm)
4 acctbl ∪ {tnm 7→ mk-Access record({ }, { })}

destroy(acctbl :Access table, tnm:Trans nm)Access table
pre in use(acctbl , tnm)
4 {tnm} −C acctbl

add to grants(acctbl :Access table, tnm:Trans nm, acc:Access)
Access table

pre in use(acctbl , tnm)
4 let

gaccs:Access set 4 grants(acctbl(tnm)),
waccs:Access set 4 waits(acctbl(tnm))
in

acctbl†
{tnm 7→ mk-Access record(gaccs ∪ {acc},waccs − {acc})}

add to waits(acctbl :Access table, tnm:Trans nm, acc:Access)
Access table

pre in use(acctbl , tnm)
4 let

gaccs:Access set 4 grants(acctbl(tnm)),
waccs:Access set 4 waits(acctbl(tnm))
in

acctbl†
{tnm 7→ mk-Access record(gaccs,waccs ∪ ({acc} − gaccs))}

% non-constructor functions
conflicts(tnm:Trans nm, acc:Access,

acctbl :Access table, dbsch:Db schema)B
pre compatible(acc, dbsch) ∧ compatible(acctbl , dbsch)
4 ∃tnm ′ ∈ Trans nm , acc′ ∈ Access ·

tnm 6= tnm ′ ∧ in use(acctbl , tnm ′)∧
requested(tnm ′, acc′, acctbl) ∧ conflicts(acc, acc′, dbsch)

ACCESS TABLE 337

deadlock liable(tnm:Trans nm, acc:Access,
acctbl :Access table, dbsch:Db schema)B

pre in use(acctbl , tnm)∧
compatible(acc, dbsch) ∧ compatible(acctbl , dbsch)

4 conflicts(tnm, acc, acctbl , dbsch)∧
waits for(tnm, tnm, add to waits(acctbl , tnm, acc), dbsch)

waits for(tnm1:Trans nm, tnm2:Trans nm,
acctbl :Access table, dbsch:Db schema)B

pre in use(acctbl , tnm1) ∧ in use(acctbl , tnm2)∧
compatible(acctbl , dbsch)

4 waits dir for(tnm1, tnm2, acctbl , dbsch) ∨
∃tnm ′ ∈ Trans nm ·
in use(acctbl , tnm ′)∧
waits dir for(tnm1, tnm ′, acctbl , dbsch)∧
waits for(tnm ′, tnm2, acctbl , dbsch)

waits dir for(tnm1:Trans nm, tnm2:Trans nm,
acctbl :Access table, dbsch:Db schema)B

pre in use(acctbl , tnm1) ∧ in use(acctbl , tnm2)∧
compatible(acctbl , dbsch)

4 tnm1 6= tnm2∧
∃acc1 ∈ Access , acc2 ∈ Access ·
waiting(tnm1, acc1, acctbl) ∧ granted(tnm2, acc2, acctbl)∧
conflicts(acc1, acc2, dbsch)

in use(acctbl :Access table, tnm:Trans nm)B
4 tnm ∈ dom acctbl

granted(tnm:Trans nm, acc:Access, acctbl :Access table)B
pre in use(acctbl , tnm)
4 acc ∈ grants(acctbl(tnm))

waiting(tnm:Trans nm, acc:Access, acctbl :Access table)B
pre in use(acctbl , tnm)
4 acc ∈ waits(acctbl(tnm))

requested(tnm:Trans nm, acc:Access, acctbl :Access table)B
pre in use(acctbl , tnm)
4 granted(tnm, acc, acctbl) ∨ waiting(tnm, acc, acctbl)

compatible(acctbl :Access table, dbsch:Db schema)B
4 ∀tnm ∈ Trans nm , acc ∈ Access ·

in use(acctbl , tnm) ∧ requested(tnm, acc, acctbl) ⇒
compatible(acc, dbsch)

end

338 AN INTERNAL RDBMS INTERFACE

Roughly speaking, the concept of an access table is a formalized in-
stance of what is described as ‘dynamic syntactic information’ (about a
transaction system) in (Kung and Papadimitriou, 1983). There is also a
strong connection between the idea of ‘superstrict’ concurrency control
from (Rosenkrantz, Stearn and Lewis, 1978) and the function conflicts on
accesses and access tables.

The next three sections present modules in which transition records,
transition logs and log tables are defined. These modules describe the con-
cepts according to which the internal RDBMS interface makes provision
for in-progress transaction backup. Together with the modules presented
in the previous three sections, they describe the state independent aspects
of the internal RDBMS interface. The state dependent aspects are treated
in subsequent sections.

13.6 Transition record

Transition records are composite values with a transition mode (NORMAL,
INIT or FINAL), a relation name and two relations, called deletion relation
and insertion relation, as components. The attribute sets of the deletion
and insertion relation have to be the same. Besides, both relations have to
be empty if the transition mode is INIT and the insertion relation is empty
if the transition mode is FINAL. A transition record is meant to reflect
the effect of a write action on some stored relation. It is used to record the
differences occurring when the stored relation is changed by performing the
write action on it. That is, the deletion relation is intended for the tuples
that were deleted and the insertion relation is intended for the tuples that
were inserted. Thus, it can provide all the details that are required to undo
the effect.

The module TRANSITION RECORD contains the definitions con-
cerning transition records. This module is based on assumptions contained
in the module REL NM and definitions contained in the parametrized
modules RELATION and DATABASE. Therefore, X, which actualizes
the assumptions, and the appropriate application of the above-mentioned
parametrized modules are imported.

The principal function defined in this module is undo. This function nor-
mally replaces the relation referred to by a transition record in a database
as follows: first it deletes the tuples of the insertion relation concerned from
the named relation and after that it inserts the tuples of the deletion rela-
tion concerned into the named relation. Herewith, the effect of the recorded
update is only undone if the deletion relation and insertion relation do not
contain tuples which were superfluous at the time of update (because they
were not relevant to the relation concerned). The function weaken removes
such superfluous tuples. In addition to the functions undo and weaken,
the following functions on transition records are defined: weaker (checks

TRANSITION RECORD 339

whether a transition record is the result of removing the tuples that would
be superfluous for some relation from another transition record or not) and
applicable (checks whether the use of transition modes and relation names
in a transition record fits in with a database or not).

The constructor function mk-Transition record for creating transition
records and the selector functions trm, rnm, del and ins for selecting the
components of transition records are implicitly defined.

The functions undo and applicable are used in the module
TRANSITION LOG to define functions on transition logs. The func-
tions weaken, weaker and mk-Transition record are used in the module
ACCESS HANDLING to define operations which make up an internal
RDBMS interface.

TRANSITION RECORD is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

import

X
apply RELATION to Y,Z
apply DATABASE to X,Y,Z

into

module

types

Transition record ::
trm:Transition mode rnm:Rel nm del :Relation ins:Relation

where inv(tr) 4
(del(tr) 6= empty ∧ ins(tr) 6= empty ⇒
attrs(del(tr)) = attrs(ins(tr)))∧

(trm(tr) = INIT ⇒ del(tr) = empty ∧ ins(tr) = empty)∧
(trm(tr) = FINAL ⇒ ins(tr) = empty)

Transition mode = {NORMAL, INIT,FINAL}

340 AN INTERNAL RDBMS INTERFACE

functions

% non-constructor functions
undo(db:Database, tr :Transition record)Database
pre applicable(tr , db)
4 let

mk-Transition record(m,nm, r ′, r ′′) 4 tr
in

if m = NORMAL
then

update(db,nm, union(difference(relation(db,nm), r ′′), r ′))
else

if m = INIT
then destroy(db,nm)
else update(create(db,nm),nm, r ′)

weaken(tr :Transition record , r :Relation)Transition record
pre applicable(tr , r)
4 mk-Transition record(trm(tr), rnm(tr), r ′, r ′′)

where

r ′:Relation 4 difference(del(tr), difference(del(tr), r)),
r ′′:Relation 4 difference(ins(tr), difference(r , del(tr)))

weaker(tr1:Transition record , tr2:Transition record)B
4 ∃r ∈ Relation · applicable(tr2, r) ∧ tr1 = weaken(tr2, r)

applicable(tr :Transition record , db:Database)B
4 (in use(db, rnm(tr)) ⇒

applicable(tr , relation(db, rnm(tr))))∧
(in use(db, rnm(tr)) ⇔ trm(tr) 6= FINAL)

applicable(tr :Transition record , r :Relation)B
4 (r 6= empty ∧ del(tr) 6= empty ⇒

attrs(r) = attrs(del(tr)))∧
(r 6= empty ∧ ins(tr) 6= empty ⇒
attrs(r) = attrs(ins(tr)))

end

In existing RDBMSs, e.g. in System R (Gray et al., 1981), a transition
record is used to record the differences occurring when a tuple of some
stored relation is changed. Because subsets of stored relations have been
chosen as the unit of access, here a generalized concept of transition record
is formalized.

TRANSITION LOG 341

13.7 Transition log

Transition logs are just sequences of transition records. A transition log is
intended as a history of some transaction. It is meant to reflect the effects
of all write actions on stored relations which have been performed on the
request of the transaction, in the order in which these effects have taken
place. The transition log of a transaction can provide all the details that
are required to undo the cumulative effect of the transaction.

The module TRANSITION LOG contains the definitions concerning
transition logs. This module is based on definitions contained in the pa-
rametrized module TRANSITION RECORD. So the appropriate ap-
plication of this module is imported.

The principal function defined in this module is undo. It successively
undoes, in reverse order, the effects of the changes made in a database which
are reflected in the transition records of a transition log. For transition
logs, the only constant is empty , the empty transition log. The following
functions on transition logs are defined as well: add (appends a transition
record to a transition log) and applicable (checks whether all transition
records of a transition log fit in with a database or not).

All functions are used in the modules LOG TABLE to define functions
on log tables. The functions add and applicable are also used in the mod-
ules AH STATE and ACCESS HANDLING to define the states of
an access handler and the operations which make up an internal RDBMS
interface.

TRANSITION LOG is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE

of

import

apply TRANSITION RECORD to X,Y,Z
into

module

types

Transition log = Transition record∗

functions

% constructor functions
empty()Transition log
4 []

342 AN INTERNAL RDBMS INTERFACE

add(trlog :Transition log , tr :Transition record)Transition log
4 trlog y [tr]

% non-constructor functions
undo(db:Database, trlog :Transition log)Database
pre applicable(trlog , db)
4 if len trlog = 0 then db else undo(undo(db, tl trlog), hd trlog)

applicable(trlog :Transition log , db:Database)B
4 ∀i ∈ N · 1 ≤ i ∧ i ≤ len trlog ⇒ applicable(trlog(i), db)

end

13.8 Log table

Log tables are just maps from transaction names to transition logs. The
domain of a log table is called its transaction name set. A transaction
name is in use by a log table if it is in the transaction name set of the
log table. A log table is intended as a collection of transaction histories,
one for each transaction from a collection of transactions whose actions are
performed in an interleaved fashion. It is meant to reflect the effects of all
write actions on stored relations which have been performed on the request
of active transactions, in the order in which these effects have taken place
and which are aggregated by the transactions. It can provide all the details
that are required to abort any of the active transactions.

The module LOG TABLE contains the definitions concerning log
tables. This module is based on assumptions contained in the mod-
ule TRANS NM and definitions contained in the parametrized module
TRANSITION LOG. Therefore, U, which actualizes the assumptions,
and the appropriate application of the module TRANSITION LOG are
imported.

The principal function defined in this module is rollback . It successively
undoes, in reverse order, the effects of the changes made in a database
which are reflected in the transition records of the transition log associated
with a transaction name in a log table. For log tables, the only constant
is empty logtbl , the empty log table. The following functions on log tables
are defined as well: create (adds a transition log for a new transaction to a
log table; the new transition log is empty), destroy (removes the transition
log of a transaction from a log table), add (adds a transition record to the
transition log of a transaction in a log table), in use (checks whether a
transaction name is in use by a log table) and log (looks up the transition
log of a transaction in a log table).

The functions defined in this module are used in the modules
AH STATE and ACCESS HANDLING to define the states of an
access handler and the operations which make up an internal RDBMS
interface.

LOG TABLE 343

LOG TABLE is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

import

U
apply TRANSITION LOG to X,Y,Z

into

module

types

Log table = Trans nm m−→ Transition log

functions

% constructor functions
empty logtbl()Log table
4 { }

create(logtbl :Log table, tnm:Trans nm)Log table
pre ¬ in use(logtbl , tnm)
4 logtbl ∪ {tnm 7→ empty}

destroy(logtbl :Log table, tnm:Trans nm)Log table
pre in use(logtbl , tnm)
4 {tnm} −C logtbl

add(logtbl :Log table, tnm:Trans nm, tr :Transition record)
Log table

pre in use(logtbl , tnm)
4 logtbl † {tnm 7→ add(log(logtbl , tnm), tr)}

% non-constructor functions
rollback(db:Database, tnm:Trans nm, logtbl :Log table)

Database
pre in use(logtbl , tnm) ∧ applicable(log(logtbl , tnm), db)
4 undo(db, log(logtbl , tnm))

in use(logtbl :Log table, tnm:Trans nm)B
4 tnm ∈ dom logtbl

344 AN INTERNAL RDBMS INTERFACE

log(logtbl :Log table, tnm:Trans nm)Transition log
pre in use(logtbl , tnm)
4 logtbl(tnm)

end

The formalized concept of a log table is based on the informal concept of
a system log described in (Gray, 1978). This formalized instance does not
support crash recovery.

The next two sections present modules in which the states of an AH
and the operations which interrogate and modify them are defined. The
modules combined describe the state dependent aspects of the internal
RDBMS interface.

13.9 AH state

The module AH STATE contains the definitions concerning the changing
state of an access handler. This module is based on definitions contained
in the modules DATABASE, DB SCHEMA, ACCESS TABLE and
LOG TABLE. So the appropriate applications of these modules are im-
ported.

No types and functions are defined. The concepts of a varying log table,
a varying access table, a varying database schema and a varying data-
base are made precise with the state variables curr logtable, curr acctable,
curr dbschema and curr database. These state variables can be thought
of as taking at any point in time the current log table value, the current
access table value, etc. Together they constitute the changing state of an
access handler.

The intention that all state variables are initially empty is made precise
with an initial condition. The following intention is made precise with the
state invariant:

1. the transaction name sets of the current log table and the current access
table are the same,

2. all transition logs of the current log table are applicable to the current
database,

3. the current access table is compatible with the current database schema,

4. the relation name set of the current database is included in the relation
name set of the current database schema.

The following intention is made precise with the dynamic constraint: for
each transaction that is active both before and after the last state change,

1. the collection of accesses granted to the transaction according to the
current access table is preserved over the last change or has accesses
added to it and

AH STATE 345

2. the transition log of the transaction in the current log table is preserved
over the last change or has a transition record added to it.

The state variables curr logtable, curr acctable, curr dbschema and
curr database are used in the module ACCESS HANDLING to define
operations which make up an internal RDBMS interface.

AH STATE is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

abstract

V: apply VAL CONST to Z
of

import

apply DATABASE to X,Y,Z
apply DB SCHEMA to X,Y,Z
apply apply ACCESS TABLE to X,Y,Z,U to V
apply LOG TABLE to X,Y,Z,U

into

module

state

curr logtable:Log table

curr acctable:Access table

curr dbschema:Db schema

curr database:Database

inv (∀tnm ∈ Trans nm ·
in use(curr logtable, tnm) ⇔
in use(curr acctable, tnm))∧

(∀tnm ∈ Trans nm ·
in use(curr logtable, tnm) ⇒
applicable(log(curr logtable, tnm), curr database))∧

compatible(curr acctable, curr dbschema)∧
(∀rnm ∈ Rel nm ·

in use(curr database, rnm) ⇒
in use(curr dbschema, rnm))

346 AN INTERNAL RDBMS INTERFACE

init curr logtable = empty logtbl∧
curr acctable = empty acctbl∧
curr dbschema = empty schema∧
curr database = empty database

dyn ∀tnm ∈ Trans nm ·
©©−©in use(curr acctable, tnm)∧
in use(curr acctable, tnm) ⇒
(∀acc ∈ Access ·
©©−©granted(tnm, acc, curr acctable) ⇒
granted(tnm, acc, curr acctable))∧

(log(curr logtable, tnm) = log(©©−©curr logtable, tnm) ∨
∃tr ∈ Transition record ·
log(curr logtable, tnm)
= add(log(©©−©curr logtable, tnm), tr))

end

One of the design objectives for the temporal sublanguage of VVSL was
the objective to obviate the need to introduce auxiliary state variables act-
ing as history variables, control variables or scheduling variables. The state
variables curr acctable and curr logtable resemble auxiliary ones acting as
history variables. This is not a weakness of the temporal language. The
necessity of auxiliary state variables has its origin in the fact that the oper-
ations which constitute the internal RDBMS interface support concurrent
execution of higher-level operations. This brings about that the relevant
history goes beyond the starting states of the individual operation execu-
tions.

13.10 Access handling

The module ACCESS HANDLING contains the definitions concern-
ing the operations which can be performed by an access handler. This
module is based on assumptions contained in the module REL NM and
TRANS NM as well as definitions contained in the parametrized mod-
ules RELATION, SIMPLE WFF and AH STATE. Therefore, X and
U, which actualize the assumptions, and the appropriate applications of
the above-mentioned parametrized modules are imported.

The states of the access handler, with the components curr logtable,
curr acctable, curr dbschema and curr database, were already defined in
the imported module AH STATE. The operations defined in the cur-
rent module are START , COMMIT , ABORT (for starting and stopping a
transaction), SELECT , INSERT , DELETE (for access to a subset of one
of the relations stored in the current database to read or to overwrite it),
CREATE and DESTROY (for access to the current database to create a
stored relation or to destroy it). Together they constitute an internal in-

ACCESS HANDLING 347

terface of a database management system. All operations interrogate and
modify the current log table and the current access table, except the oper-
ation SELECT which never interrogates or modifies the current log table.
The first three operations do not interrogate or modify other state vari-
ables, except ABORT which also interrogates and modifies the current
database. The other ones interrogate the current database schema and the
current database. They also modify the current database, except the oper-
ation SELECT which never modifies the current database. Only the first
three operations are insensitive to interference by concurrently executed
operations through shared state variables.

START adds an empty access record for a new transaction to the current
access table, adds an empty transition log for it to the current log table
and yields a fresh name for the transaction as a result. COMMIT removes
the access record for a named transaction from the current access table and
removes its transition log from the current log table. ABORT undoes the
effects of all changes made by a named transaction on the current database,
removes the access record for that transaction from the current access table
and removes its transition log from the current log table.

Immediately before SELECT terminates, it selects the tuples of a named
relation in the current database that have the property stated in a simple
formula and yields the tuples obtained as a relation and GRANTED as sta-
tus if the read access needed for this has been granted. Immediately before
INSERT terminates, it adds all tuples determined by a simple formula (ac-
cording to the current database schema) to a named relation in the current
database, appends a transition record reflecting this to the transition log
for the transaction concerned in the current log table and yields GRANTED
as status if the write access needed for this has been granted. Immediately
before DELETE terminates, it removes all tuples determined by a simple
formula (according to the current database schema) from a named relation
in the current database, appends a transition record reflecting this to the
transition log for the transaction concerned in the current log table and
yields GRANTED as status if the write access needed for this has been
granted.

Immediately before CREATE terminates, it adds a new named relation
to the current database, appends a transition record reflecting this to the
transition log for the transaction concerned in the current log table and
yields GRANTED as status if the create access needed for this has been
granted. Immediately before DESTROY terminates, it removes a named
relation from the current database, appends a transition record reflecting
this to the transition log for the transaction concerned in the current log
table and yields GRANTED as status if the destroy access needed for this
has been granted.

The operations SELECT , INSERT , DELETE , CREATE and
DESTROY are sensitive to interference and therefore they need additional

348 AN INTERNAL RDBMS INTERFACE

explanation. During execution of each of these operations the following
occurs:

1.(a) Eventually the access needed will not conflict with other granted and
waiting accesses according to the current access table. The next state
is the final state and is reached by an internal step which changes
the current database and the current log table as described above
(except for the operation SELECT) and also changes the current
access table by adding the relevant access to the granted accesses of
the transaction concerned. In this case, GRANTED will be the status.

(b) Until then all steps were external, except the initial step which only
changes (if it is not also the final step) the current access table by
adding the relevant access to the waiting accesses of the transaction
concerned.

2. Initially the access needed is liable for deadlock according to the current
access table and the initial state is also the final state (i.e. nothing is
changed). In this case, REJECTED will be the status.

So each of these operations waits until the access needed does not conflict
with other granted and waiting accesses or rejects it immediately. An ac-
cess is rejected if it would otherwise be waiting for itself indirectly. In the
inter-conditions given for the operations, the first disjunct corresponds to
1 and the second disjunct corresponds to 2. In the first disjunct, the second
argument of the temporal operator U corresponds to (a) and the first one
corresponds to (b).

Except for CREATE , the operations must be executed successfully if ini-
tially the transaction name concerned is in use, the relation name concerned
is in use and the simple formula is well-formed (all if present). CREATE
must be executed successfully if initially the transaction name concerned
is in use and the relation name concerned is not in use.

The module ACCESS HANDLING exports the access handling op-
erations START , COMMIT , ABORT , SELECT , INSERT , DELETE ,
CREATE and DESTROY . All types and functions that were exported from
the imported modules are hidden, except the types Rel nm, Trans nm,
Relation, Simple wff and Status which are implicitly exported. The state
variables which were exported from the imported module AH STATE,
are also hidden.

ACCESS HANDLING is
abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

ACCESS HANDLING 349

abstract
V: apply VAL CONST to Z

of

export
START : ⇒ Trans nm,
COMMIT :Trans nm ⇒,
ABORT :Trans nm ⇒,

SELECT :
Trans nm × Rel nm × Simple wff ⇒ Relation × Status,

INSERT :Trans nm × Rel nm × Simple wff ⇒ Status,
DELETE :Trans nm × Rel nm × Simple wff ⇒ Status,
CREATE :Trans nm × Rel nm ⇒ Status,
DESTROY :Trans nm × Rel nm ⇒ Status

from

import
X
U
apply RELATION to Y,Z
apply apply SIMPLE WFF to Y,Z to V
apply apply AH STATE to X,Y,Z,U to V

into

module
types

Status = {GRANTED, REJECTED}
operations

START ()tnm:Trans nm
ext wr curr acctable:Access table,

wr curr logtable:Log table

post ¬ in use(
↼−−−−−−−−−
curr acctable, tnm)∧

curr acctable = create(
↼−−−−−−−−−
curr acctable, tnm)∧

curr logtable = create(
↼−−−−−−−−−
curr logtable, tnm)

COMMIT (tnm:Trans nm)
ext wr curr acctable:Access table,

wr curr logtable:Log table
pre in use(curr acctable, tnm)

post curr acctable = destroy(
↼−−−−−−−−−
curr acctable, tnm)∧

curr logtable = destroy(
↼−−−−−−−−−
curr logtable, tnm)

350 AN INTERNAL RDBMS INTERFACE

ABORT (tnm:Trans nm)
ext wr curr database:Database,

wr curr acctable:Access table,
wr curr logtable:Log table

pre in use(curr acctable, tnm)

post curr database = rollback(
↼−−−−−−−−−−
curr database, tnm, curr logtable)∧

curr acctable = destroy(
↼−−−−−−−−−
curr acctable, tnm)∧

curr logtable = destroy(
↼−−−−−−−−−
curr logtable, tnm)

SELECT (tnm:Trans nm, rnm:Rel nm, sf :Simple wff)
r :Relation, st :Status

ext rd curr dbschema:Db schema,
rd curr database:Database,
wr curr acctable:Access table

pre in-use(curr acctable, tnm) ∧ in use(curr database, rnm)∧
is wf (sf , struct(curr dbschema, rnm))

post let
acc:Access 4 mk-Access(READ, rnm, sf),
r ′′:Relation 4 relation(curr database, rnm),
tp:Tuple predicate 4
predicate(sf , struct(curr dbschema, rnm))

in
(st = GRANTED ⇒ r = selection(r ′′, tp))∧
(st = GRANTED ⇔ granted(tnm, acc, curr acctable))

inter let
acc:Access 4 mk-Access(READ, rnm, sf)
in
((¬©©−©true ⇒

is-I∧
©©©(curr acctable

= add to waits(©©−©curr acctable, tnm, acc)))∧
(©©−©true ⇒ is-E)) U

(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I∧
©©©(curr acctable

= add to grants(©©−©curr acctable, tnm, acc)∧
st = GRANTED ∧ ¬©©©true)) ∨

(deadlock liable(tnm, acc, curr acctable, curr dbschema)∧
st = REJECTED ∧ ¬©©©true)

ACCESS HANDLING 351

INSERT (tnm:Trans nm, rnm:Rel nm, sf :Simple wff)st :Status
ext rd curr dbschema:Db schema,

wr curr database:Database,
wr curr acctable:Access table,
wr curr logtable:Log table

pre in-use(curr acctable, tnm) ∧ in use(curr database, rnm)∧
is wf (sf , struct(curr dbschema, rnm))

post let
acc:Access 4 mk-Access(WRITE, rnm, sf),
r :Relation 4 tuples(curr dbschema, acc),
r ′′:Relation 4 relation(curr database, rnm),
tr :Transition record 4
mk Transition record(NORMAL, rnm, empty , r)

in
(st = GRANTED ⇒
(∀t ∈ Tuple · member(t , r) ⇒ member(t , r ′′))∧
(∃tr ′ ∈ Transition record ·

weaker(tr ′, tr)∧
log(curr logtable, tnm)

= add(log(
↼−−−−−−−−−
curr logtable, tnm), tr ′)))∧

(st = GRANTED ⇔ granted(tnm, acc, curr acctable))

inter let
acc:Access 4 mk-Access(WRITE, rnm, sf)
in
((¬©©−©true ⇒

is-I∧
©©©(curr database = ©©−©curr database∧

curr logtable = ©©−©curr logtable∧
curr acctable
= add to waits(©©−©curr acctable, tnm, acc)))∧

(©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I∧
let
r :Relation 4 tuples(curr dbschema, acc),
r ′:Relation 4 relation(curr database, rnm),
tr :Transition record 4
mk-Transition record(NORMAL, rnm, empty , r)

in
©©©(curr database

= update(©©−©curr database, rnm, union(r ′, r))∧
curr acctable
= add to grants(©©−©curr acctable, tnm, acc)∧

curr logtable
= add(©©−©curr logtable, tnm,weaken(tr , r ′))∧

st = GRANTED ∧ ¬©©©true)) ∨
(deadlock liable(tnm, acc, curr acctable, curr dbschema)∧
st = REJECTED ∧ ¬©©©true)

352 AN INTERNAL RDBMS INTERFACE

DELETE (tnm:Trans nm, rnm:Rel nm, sf :Simple wff)st :Status
ext rd curr dbschema:Db schema,

wr curr database:Database,
wr curr acctable:Access table,
wr curr logtable:Log table

pre in-use(curr acctable, tnm) ∧ in use(curr database, rnm)∧
is wf (sf , struct(curr dbschema, rnm))

post let
acc:Access 4 mk-Access(WRITE, rnm, sf),
r :Relation 4 tuples(curr dbschema, acc),
r ′′:Relation 4 relation(curr database, rnm),
tr :Transition record 4
mk Transition record(NORMAL, rnm, r , empty)

in
(st = GRANTED ⇒
(∀t ∈ Tuple · member(t , r) ⇒ ¬member(t , r ′′))∧
(∃tr ′ ∈ Transition record ·

weaker(tr ′, tr)∧
log(curr logtable, tnm)

= add(log(
↼−−−−−−−−−
curr logtable, tnm), tr ′)))∧

(st = GRANTED ⇔ granted(tnm, acc, curr acctable))
inter let

acc:Access 4 mk-Access(WRITE, rnm, sf)
in
((¬©©−©true ⇒

is-I∧
©©©(curr database = ©©−©curr database∧

curr logtable = ©©−©curr logtable∧
curr acctable
= add to waits(©©−©curr acctable, tnm, acc)))∧

(©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I∧
let
r :Relation 4 tuples(curr dbschema, acc),
r ′:Relation 4 relation(curr database, rnm),
tr :Transition record 4
mk-Transition record(NORMAL, rnm, r , empty)

in
©©©(curr database

= update(©©−©curr database, rnm, difference(r ′, r))∧
curr acctable
= add to grants(©©−©curr acctable, tnm, acc)∧

curr logtable
= add(©©−©curr logtable, tnm,weaken(tr , r ′))∧

st = GRANTED ∧ ¬©©©true)) ∨
(deadlock liable(tnm, acc, curr acctable, curr dbschema)∧
st = REJECTED ∧ ¬©©©true)

ACCESS HANDLING 353

CREATE(tnm:Trans nm, rnm:Rel nm)st :Status
ext rd curr dbschema:Db schema,

wr curr database:Database,
wr curr acctable:Access table,
wr curr logtable:Log table

pre in use(curr acctable, tnm) ∧ ¬ in use(curr database, rnm)∧
in use(curr dbschema, rnm)

post let
acc:Access 4 mk-Access(CREATE, rnm,mk-Bool lit(true)),
tr :Transition record 4
mk Transition record(INIT, rnm, empty , empty)

in
(st = GRANTED ⇒
in use(curr database, rnm)∧
relation(curr database, rnm) = empty∧
log(curr logtable, tnm) = add(log(

↼−−−−−−−−−
curr logtable, tnm), tr))∧

(st = GRANTED ⇔ granted(tnm, acc, curr acctable))

inter let
acc:Access 4 mk-Access(CREATE, rnm,mk-Bool lit(true))
in
((¬©©−©true ⇒

is-I∧
©©©(curr database = ©©−©curr database∧

curr logtable = ©©−©curr logtable∧
curr acctable
= add to waits(©©−©curr acctable, tnm, acc)))∧

(©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I∧
let
tr :Transition record 4
mk-Transition record(INIT, rnm, empty , empty)

in
©©©(curr database = create(©©−©curr database, rnm)∧

curr acctable
= add to grants(©©−©curr acctable, tnm, acc)∧

curr logtable = add(©©−©curr logtable, tnm, tr)∧
st = GRANTED ∧ ¬©©©true)) ∨

(deadlock liable(tnm, acc, curr acctable, curr dbschema)∧
st = REJECTED ∧ ¬©©©true)

354 AN INTERNAL RDBMS INTERFACE

DESTROY (tnm:Trans nm, rnm:Rel nm)st :Status
ext rd curr dbschema:Db schema,

wr curr database:Database,
wr curr acctable:Access table,
wr curr logtable:Log table

pre in use(curr acctable, tnm) ∧ in use(curr database, rnm)
post let

acc:Access 4 mk-Access(DESTROY, rnm,mk-Bool lit(true)),
r :Relation 4 tuples(curr dbschema, acc),
tr :Transition record 4
mk Transition record(FINAL, rnm, r , empty)

in
(st = GRANTED ⇒
(¬ in use(curr database, rnm))∧
(∃tr ′ ∈ Transition record ·

weaker(tr ′, tr)∧
log(curr logtable, tnm)

= add(log(
↼−−−−−−−−−
curr logtable, tnm), tr ′)))∧

(st = GRANTED ⇔ granted(tnm, acc, curr acctable))

inter let
acc:Access 4 mk-Access(DESTROY, rnm,mk-Bool lit(true))
in
((¬©©−©true ⇒

is-I∧
©©©(curr database = ©©−©curr database∧

curr logtable = ©©−©curr logtable∧
curr acctable
= add to waits(©©−©curr acctable, tnm, acc)))∧

(©©−©true ⇒ is-E)) U
(¬ conflicts(tnm, acc, curr acctable, curr dbschema) ∧ is-I∧
let
r ′:Relation 4 relation(curr database, rnm),
tr ′:Transition record 4
mk-Transition record(FINAL, rnm, r ′, empty)

in
©©©(curr database = destroy(©©−©curr database, rnm)∧

curr acctable
= add to grants(©©−©curr acctable, tnm, acc)∧

curr logtable = add(©©−©curr logtable, tnm, tr ′)∧
st = GRANTED ∧ ¬©©©true)) ∨

(deadlock liable(tnm, acc, curr acctable, curr dbschema)∧
st = REJECTED ∧ ¬©©©true)

end

The inter-conditions have a common pattern, which is also illustrated
by the common explanation given above. This seems the usual experience.
However, the common pattern(s) differ from system to system.

SYSTEM 355

13.11 System

The former modules combined cover everything relevant to the internal
RDBMS interface. Therefore, the system module contains no definitions.
No new concepts are defined. Instead the relevant definitions from the pre-
vious modules are combined and it is specified what from the defined con-
cepts constitutes the internal RDBMS interface by making only the names
of these concepts visible.

The system module exports the constructor functions which are required
for creating all simple formulae and the access handling operations. The
state variables are not exported, since the idea is that interrogating or
modifying them should only be done by means of the operations made
available by the interface.

system is

abstract

X:REL NM,
Y:ATTRIBUTE,
Z:VALUE,
U:TRANS NM

of

abstract

V: apply VAL CONST to Z
of

export

mk-Bool lit :B → Bool lit ,
mk-Eq :Attribute ×Val const → Eq ,
mk-Less:Attribute ×Val const → Less,
mk-Negation:Simple wff → Negation,
mk-Disjunction:Simple wff × Simple wff → Disjunction,

START : ⇒ Trans nm,
COMMIT :Trans nm ⇒,
ABORT :Trans nm ⇒,

SELECT :
Trans nm × Rel nm × Simple wff ⇒ Relation × Status,

INSERT :Trans nm × Rel nm × Simple wff ⇒ Status,
DELETE :Trans nm × Rel nm × Simple wff ⇒ Status,
CREATE :Trans nm × Rel nm ⇒ Status,
DESTROY :Trans nm × Rel nm ⇒ Status

from

356 AN INTERNAL RDBMS INTERFACE

import

X
V
apply RELATION to Y,Z
apply apply SIMPLE WFF to Y,Z to V
apply apply ACCESS HANDLING to X,Y,Z,U to V

into

module

end

A

Glossary of Mathematical
Notation

The glossary of mathematical notation consists of two parts. Appendix A.1
provides a glossary of the general mathematical notation used in this book.
This is a glossary of familiar notation of classical first-order logic (L) and
general set theory. Appendix A.2 provides a glossary of special notation
concerning the ingredients of the mathematical basis for the semantics of
VVSL.

A.1 General mathematical notation

Naming conventions for meta-variables
x stands for a variable symbol of L
τ, τ ′ stand for terms of L
ψ, ψ′ stand for formulae of L
a, a ′, a1, . . . stand for terms denoting sets (regarded as elements)
A,A′,A1, . . . stand for terms denoting sets

τ = τ ′ equality
¬ψ negation
ψ ∧ ψ′ conjunction
ψ ∨ ψ′ disjunction
ψ ⇒ ψ′ logical implication
ψ ⇔ ψ′ logical equivalence
∀x (ψ) universal quantification
∃x (ψ) existential quantification

The logical connectives are given in decreasing order of priority.

358 GLOSSARY OF MATHEMATICAL NOTATION

a ∈ A set membership
A ⊆ A′, A′ ⊇ A set inclusion
{a1, . . . , an} set enumeration
{x | ψ} set comprehension
{ } empty set
P(A) power set
A ∪A′ set union⋃

A generalized set union
A ∩A′ set intersection⋂

A generalized set intersection
A−A′ set difference
〈a1, . . . , an〉 tuple
A1 × · · · ×An cartesian product
N natural numbers
cardA cardinality
P :A1 × · · · ×An P is a relation on A1, . . . ,An

f :A → A′ f is a function from A to A′

f (a) value of function
f (A) image under function
〈Ai〉i∈I indexed family
A∗ set of sequences

τ := τ ′ definitional equality
ψ :⇔ ψ′ definitional equivalence

A.2 Special mathematical notation

Naming conventions for meta-variables
x stands for a variable symbol of MPLω

S stands for a sort symbol of MPLω

t , t ′ stand for terms of MPLω

A,A′,A1, . . . stand for formulae of MPLω

u stands for a term of DA denoting a name
ρ, ρ′ stand for terms of DA denoting renamings
Σ ,Σ ′ stand for terms of DA denoting signatures
X ,X ′ stand for terms of DA denoting descriptions
P stands for a term of DA denoting a parameter
z stands for a lambda variable symbol of λπ-calculus
L,M stand for lambda terms of λπ-calculus

SPECIAL MATHEMATICAL NOTATION 359

MPLω

t = t ′ equality
t↓ definedness
> truth
⊥ falsity
¬A negation
A ∧ A′ conjunction
A ∨ A′ disjunction
A → A′ logical implication
A ↔ A′ logical equivalence∧

n An countably infinite conjunction∨
n An countably infinite disjunction

∀x :S (A) universal quantification
∃x :S (A) existential quantification

The logical connectives are given in decreasing order of priority.

Description Algebra

ρ • u name renaming
ρ ◦ ρ′ renaming composition
ρ • Σ signature renaming
Σ + Σ ′ signature union
Σ 2 Σ ′ signature intersection
u ∆ Σ signature deletion
Σ(X) taking the signature
ρ • X renaming
X + X ′ importing
Σ 2 X exporting
µ(X) unifying
δ(P) parameter embedding
α(P ,X ,X ′) origin substitution
ρ • P parameter renaming

λπ-calculus

(LM) application
(λz v L.M) lambda abstraction

with parameter restriction

B

Glossary of VVSL Notation

The glossary of VVSL notation consists of three parts. Appendix B.1 pro-
vides a glossary of the original VDM notation incorporated in VVSL. Ap-
pendices B.2 and B.3 provide a glossary of the additional notation for
specifying interfering operations and a glossary of the additional notation
for modular structuring of specifications, respectively.

Naming conventions for meta-variables
x , x ′, x1, x

′
1, . . . stand for value names

t , t ′, . . . , t1, t ′1, . . . , . . . stand for type names
e, e ′, e1, e

′
1, . . . stand for expressions

E ,E ′ stand for logical expressions
i , i ′ stand for arithmetic expressions
L,L′ stand for expressions of sequence type
S,S ′ stand for expressions of set type
M,M′ stand for expressions of map type
C stands for an expression of composite type
a1, . . . stand for atom names
c stands for a (composite) type constructor name
T stands for a type
v , v ′, v1, v

′
1, . . . stand for state variable names

f , s1, . . . stand for function names
P stands for a truth-valued function name
op stands for an operation name
τ, τ ′, τ1, . . . stand for temporal terms
ϕ, ϕ′ stand for temporal formulae
m,m1, . . . stand for module names
M ,M1, . . . stand for modules
S ,S1, . . . stand for signatures
R stands for a renaming
u, u1, . . . stand for typed names

mk-c is the function name that is obtained by prefixing the string mk- to the

362 GLOSSARY OF VVSL NOTATION

type constructor name denoted by the meta-variable c.

B.1 Flat VVSL, VDM notation

General

f (e1, . . . , en) function application
if E then e else e ′ conditional
let x1: t1 4 e1, . . . , xn : tn 4 en in e local definition
let x1: t1, . . . , xn : tn be s.t. E in e choice

Logic

B truth values
¬E negation
E ∧ E ′ conjunction
E ∨ E ′ disjunction
E ⇒ E ′ implication
E ⇔ E ′ equivalence
∀x ∈ t · E universal quantification
∃x ∈ t · E existential quantification
∃!x ∈ t · E unique existential quantification
e = e ′ equality

The logical connectives are given in decreasing order of priority. The scope
of the quantifiers extends as far as possible to the right.

Arithmetic

N natural numbers
Z integers
Q rational numbers
i + i ′ addition
i − i ′ subtraction
i ∗ i ′ multiplication
i / i ′ division

...
...

i < i ′ less-than comparison

Atoms

{ a1, . . . , an } enumerated type
ai atom

FLAT VVSL, VDM NOTATION 363

Sequences

t∗ sequence type construction
[] empty sequence
[e1, . . . , en] sequence enumeration
hdL sequence head
tlL sequence tail
L(i) sequence indexing
lenL length of sequence
Ly L′ concatenation
concL distributed concatenation

Sets

t-set set type construction
{ } empty set
{e1, . . . , en} set enumeration
{e | x1 ∈ t1, . . . , xn ∈ tn ; E} set comprehension
{i .. i ′} integer range
e ∈ S set membership
S ⊆ S ′ set inclusion
cardS cardinality of set
S ∪ S ′ set union
S ∩ S ′ set intersection
S − S ′ set difference⋃S distributed union

Maps

t m−→ t ′ map type construction
t m←→ t ′ one-one map type construction
{ } empty map
{e1 7→ e ′1, . . . , en 7→ e ′n} map enumeration
{e 7→ e ′ | x1 ∈ t1, . . . , xn ∈ tn ; E} map comprehension
domM domain of map
rngM range of map
M(e) map application
M†M′ map overwrite
M∪M′ map merge
S CM domain restriction
S −C M domain deletion

364 GLOSSARY OF VVSL NOTATION

Composite values

compose c of s1: t1 . . . sn : tn composite type construction
mk-c(e1, . . . , en) composite value construction
si(C) component selection
let mk-c(x1, . . . , xn)4 C in e local definition & decomposition

cases e of case distinction & decomposition
mk-t1(x11 , . . . , x1m1

) → e1

...
mk-tn(xn1 , . . . , xnmn

) → en
end

Definitions

t = T where inv(x)4E type definition (subtype)
t :: s1: t1 . . . sn : tn where inv(x)4E type definition

(subtype of composite type)
t = t1 | · · · | tn type definition (union)
t = [t1 | · · · | tn] type definition (union with nil)

f (x1: t1, . . . , xn : tn) tn+1 function definition (explicit)
pre E
4 e

f (x1: t1, . . . , xn : tn) xn+1: tn+1 function definition (implicit)
pre E
post E ′

v : t state variable definition

op(x1: t1, . . . , xn : tn) y1: t ′1, . . . , ym : t ′m operation definition
ext rd v1: t ′′1 , . . . , rd vk : t ′′k ,

wr v ′1: t
′′′
1 , . . . , wr v ′l : t

′′′
l

pre E
post E ′

inter ϕ (absent for atomic operations)

v current contents (in all conditions of operation def’s)
↼−v old contents (in post-conditions of operation def’s only)

FLAT VVSL, TEMPORAL LOGIC NOTATION 365

B.2 Flat VVSL, temporal logic notation

Temporal terms

f (τ1, . . . , τn) temporal function application
©©© τ next value
©©−© τ previous value

Temporal formulae

is-I internal transition proposition
is-E external transition proposition
P(τ1, . . . , τn) temporal predicate application
ϕ C ϕ′ chop
©©©ϕ next

2ϕ henceforth

3ϕ eventually
ϕU ϕ′ until
©©−©ϕ previous
−2ϕ always in the past
−3ϕ sometime in the past
ϕS ϕ′ since
τ = τ ′ equality
let x1: t1 4 τ1, . . . , xn : tn 4 τn in ϕ local definition

B.3 Structuring sublanguage

Modules

module T V F O end basic module ∗
import M1 . . . Mn into M import
export S from M export
rename R in M rename
abstract m1:M1, . . . ,mn :Mn of M module abstraction
apply M to M1, . . . ,Mn module application
let m1

4M1, . . . ,mn
4Mn in M local module definition

∗ T , V, F and O stand for the collections of type definitions, state variable definitions
(possibly with associated state invariant, initial condition, and dynamic constraint),
function definitions and operation definitions, respectively.

366 GLOSSARY OF VVSL NOTATION

Signatures

u1, . . . , un signature enumeration
add S1 to S2 signature union
signature M module signature

Renamings

u1 7→ i1, . . . , un 7→ in renaming †

Typed names

t typed type name
v : t typed state variable name
f : t1 × · · · × tn → tn+1 typed function name
op: t1 × · · · × tn ⇒ t ′1 × · · · × t ′m typed operation name

Specification document

component specification document
m1 is M1, . . . ,mn is Mn

system is M

† Here, i1, . . . , in stand for identifiers.

C

Summary of Notation for
Semantics, etc.

The summary of the notation used in this book for the description of the
well-formedness, syntactic properties and meaning of constructs in VVSL
consists of three parts. Appendix C.1 explains the notation used when
applying well-formedness predicates, semantic functions, etc. A summary of
the notation connected with context dependent aspects of well-formedness
and meaning is given in Appendix C.2 and a summary of the notation
connected with MPLω, DA and λπ-calculus is given in Appendix C.3.

C.1 Semantic functions, etc.

The notation used when applying well-formedness predicates, semantic
functions, etc. is explained below. The notation concerned is introduced
in Sections 5.5 to 5.9 (flat VVSL) and 8.4 and 8.5 (structuring language).

Flat VVSL

Basic modules

‘B is well-formed in N ’ indicates that the basic module B is well-formed
in a context with names and subtype declarations as given by N ;
{[B]} is the set of all names and subtype declarations introduced by the

definitions of the basic module B ;
{[B]}free is the set of all free names introduced by the definitions of the

basic module B ;
[[B]]C is the set of formulae corresponding to the basic module B in a

context with symbols as given by C .

The definition sublanguage

‘D is well-formed in N ’ indicates that the definition D is well-formed in
a context with names and subtype declarations as given by N ;

368 SUMMARY OF NOTATION FOR SEMANTICS, ETC.

{[D]} is the set of all names and subtype declarations introduced by the
definition D ;

[[D]]C is the set of formulae corresponding to the definition D in a context
with symbols as given by C .

The type sublanguage

‘T is well-formed in N ’ indicates that the type T is well-formed in a
context with names and subtype declarations as given by N ;
{[T]} is the set of all names introduced by the type T ;
[[T]]C is the set of formulae corresponding to the type T in a context with

symbols as given by C .

The expression sublanguage

‘e (or E) is well-formed in 〈N , k〉’ indicates that the expression e (or the
logical expression E) is well-formed in a context with names and subtype
declarations as given by N and k (k ∈ {0, 1, 2}) states to refer to;

‘N m̀ e ◦◦ T ’ indicates that, in the name context N , e has minimal type
T ;

[[e]]C~s,y (or [[E]]C~s,y) is a formula expressing that, in a context with symbols as
given by C , the evaluation of the expression e (or the logical expression
E) in state(s) ~s yields value (or truth value) y (~s = 〈s1, . . . , sn〉, with
n ∈ {0, 1, 2}).

The temporal formula sublanguage

‘ϕ (or τ) is well-formed in N ’ indicates that the temporal formula ϕ (or
the temporal term τ) is well-formed in a context with names and subtype
declarations as given by N ;

‘N m̀ τ ◦◦ T ’ indicates that, in the name context N , τ has minimal type
T ;

[[ϕ]]Cc,k ,y (or [[τ]]Cc,k ,y) is a formula expressing that, in a context with sym-
bols as given by C , the evaluation of the temporal formula ϕ (or the
temporal term τ) at point k in computation c yields value y .

Structuring language

Specification document

‘Z is well-formed’ indicates that the specification document Z is well-
formed;

[[Z]] is a description term representing the meaning of the specification
document Z .

CONTEXTS, TYPING, ETC. 369

The module sublanguage

‘M is well-formed in 〈N ,∆〉’ indicates that the module M is well-formed
in a context with names and subtype declarations as given by N and
lambda variables as given by ∆;

‘R is well-formed’ indicates that the renaming R is well-formed;
‘S is well-formed in ∆’ indicates that the signature S is well-formed in a

context with lambda variables as given by ∆;
〈[M]〉∆ is a signature term representing the externally visible signature of

the module M in a context with lambda variables as given by ∆;
〈[R]〉 is a signature term representing the renaming R;
〈[S]〉∆ is a signature term representing the signature S in a context with

lambda variables as given by ∆;
[[M]]CΓ is a description term representing the meaning of the module M

in a context with symbols as given by C and lambda variables (with
associated description terms) as given by Γ ;

[[R]] is a description term representing the meaning of the renaming R;
[[S]]Γ is a description term representing the meaning of the signature S in

a context with lambda variables (with associated description terms) as
given by Γ .

C.2 Contexts, typing, etc.

A summary of the notation connected with context dependent aspects of
well-formedness and meaning is given below. The notation concerned is
introduced in Sections 5.1 (name and symbol contexts), 5.2 (contexts and
typing) and 8.1 (signature and description contexts).

Name and symbol contexts

symbols(C) is the set of all symbols in the symbol context C ;
sdcls(C) is the set of all subtype declarations in the symbol context C ;
C is the name context obtained from the symbol context C by forgetting

about origins;
names(N) is the set of all names in the name context N ;
sdcls(N) is the set of all subtype declarations in the name context N ;
[type T] is the name (equivalence class) of the symbol corresponding to

the type T ;
[func f :T1× · · · ×Tn → T] is the name (equivalence class) of the symbol

corresponding to the identifier f if it is meant to refer to a function with
argument types T1, . . . ,Tn and result type T ;

370 SUMMARY OF NOTATION FOR SEMANTICS, ETC.

[var v :T] is the name (equivalence class) of the symbol corresponding to
the identifier v if it is meant to refer to a state variable of type T ;

[op op:T1× · · · ×Tn ⇒ T ′
1× · · · ×T ′

m] is the name (equivalence class) of
the symbol corresponding to the identifier op if it is meant to refer to an
operation with argument types T1, . . . ,Tn and result types T ′

1, . . . ,T
′
m ;

[val x :T] is the name (equivalence class) of the symbol corresponding to
the identifier x if it is meant to refer to a value of type T ;

[T ≤ T ′] indicates that the type T is defined as a subtype of the type T ′;

nonvars(N) is the name context N without names for state variables;

‘i is defined as a . . . name in N ’ indicates that the identifier i can be used
to refer to a . . . in the context with names as given by N ;

T1 ≤N T2 indicates that T1 is a subtype of T2 in the context with subtype
declarations as given by N ;

tC (or TC) is the symbol of symbol type sort corresponding to the type
name t (or the type T) in a context with symbols as given by C ;

f C
T1×···×Tn→T is the symbol of symbol type 〈func,TC

1 , . . . ,TC
n ,TC 〉 cor-

responding to the function name f in a context with symbols as given
by C ;

vC
T is the symbol of symbol type 〈func,State,TC 〉 corresponding to the
state variable name v in a context with symbols as given by C ;

opC
T1×···×Tn⇒T ′1×···×T ′m

is the symbol of symbol type 〈pred,TC
1 , . . . ,TC

n ,
Comp,T ′C

1 , . . . ,T ′C
m 〉 corresponding to the operation name op in a con-

text with symbols as given by C ;

xC
T is the symbol of symbol type 〈obj,TC 〉 corresponding to the value
name x in a context with symbols as given by C ;

cnvC
S1→S2

(t) is the conversion of the term t from sort S1 to sort S2 in a
context with subtype declarations as given by C ;

cnvaxC is the formula characterizing type conversions in a context with
subtype declarations as given by C .

Contexts and typing

lubN ({T1, . . . ,Tn},T) indicates that T is the least type having T1, . . . ,Tn

as subtypes in a context with subtype declarations as given by N ;

lowerN (T) is the least subtype of the type T that is comparable with all
subtypes of T in a context with subtype declarations as given by N ;

raiseN (T) is the greatest type with T as subtype that is comparable with
all types with T as subtype in a context with subtype declarations as
given by N ;

CONTEXTS, TYPING, ETC. 371

mtypingN (x ,T) (or mtypingN (v ,T)) indicates that, in a context with
names and subtype declarations as given by N , T is the minimal type
for the value name x (or state variable name v);

ftypesN (f , 〈T1, . . . ,Tn〉, 〈T ′
1, . . . ,T

′
n〉) indicates that, in a context with

names and subtype declarations as given by N , T ′
1, . . . ,T

′
n are the

expected types of the arguments of the function corresponding to the
function name f that fits minimal types T1, . . . ,Tn for the argument
expressions;

mtypingN (f , 〈T1, . . . ,Tn〉,T) indicates that, in a context with names and
subtype declarations as given by N , T is the minimal type of application
expressions of the form f (e1, . . . , en) where the argument expressions
e1, . . . , en have minimal types T1, . . . ,Tn ;

‘e is well-typed in N ’ indicates that the expression e has a minimal type
in a context with names and subtype declarations as given by N ;

‘e1 and e2 are type compatible in N ’ indicates that, in a context with
names and subtype declarations as given by N , the minimal types of the
expressions e1 and e2 have a least upper bound;

‘the minimal type of e in N ’ is the minimal type of e in a context with
names and subtype declarations as given by N .

Signature and description contexts

Γ is the signature context corresponding to the description context Γ ;
‘m is visible in ∆’ indicates that there is a lambda variable symbol corre-

sponding to the module name m in the signature context ∆;
m∆ (or mΓ) is the lambda variable symbol corresponding to the module

name m in a signature (or description) context with lambda variables
as given by ∆ (or Γ);

ncxt∆(Σ) is the name context corresponding to the module name signa-
ture that is the best statically determinable approximation of the mod-
ule name signature represented by signature term Σ , given the signature
context ∆;

atdefs(B) is the name context corresponding to the atom names and nil’s
introduced in the basic module B ;

imp(B) is the name context corresponding to the names used but not
introduced in basic module B ;

extsig(C) is the externally visible signature corresponding to a context
where we have symbols as given by C ;

intsig(C) is the internal signature corresponding to a context where we
have symbols as given by C ;

des(C) is the module description corresponding to the symbol context C ;

372 SUMMARY OF NOTATION FOR SEMANTICS, ETC.

par(C) is the module parameter corresponding to the parameter context
C ;

name(u) is the name from MNam corresponding to the typed (VVSL)
name u.

C.3 Basis for the semantics

A summary of the notation connected with MPLω, DA and λπ-calculus
is given below. The notation concerned is introduced in Sections 3.3, 4.2
and 4.5 (MPLω), 6.2 and 6.3 (DA), 6.10 and 7.3 (λπ-calculus).

MPLω

sort(t) is the sort of the term t ;

µ(Γ) is the set of formulae obtained by replacing the set of all simulta-
neous inductive definition rules contained in Γ by the corresponding set
of formulae;

Compax is a formula characterizing computations;

Varmod(v) is a formula expressing that state variable v can only be mod-
ified by operations with a modification right for v ;

Modcomp(R,W , c) is a formula expressing that c is a computation of
an operation which interrogates the state variables R ∪ W , but with
modification rights for the state variables W only;

Prefixk (c, c′) is a formula expressing that the computation c′ is the prefix
of the computation c ending with the (k + 1)-th state of c;

Suffixk (c, c′) is a formula expressing that the computation c′ is the suffix
of the computation c starting at the (k + 1)-th state of c;

axioms(S) is the set of defining formulae of all symbols associated with
the basic or constructed type corresponding to the type symbol S .

DA

ι(w), ω(w) and τ(w) are the identifier, origin and symbol type, respec-
tively, of symbol w ;

w is the name (equivalence class) with representative w ;

πω(W) is the origin partition indicating that the origins of the symbols
in W with the same name are considered equal;

ΣX is the externally visible signature of description X ;

BASIS FOR THE SEMANTICS 373

λπ-calculus

ltype(L) is the type of the lambda term L;
mτ is the lambda variable symbol of type τ with module name m.

D

Basic and Constructed
Types

The types of VVSL correspond to sort symbols of MPLω. In Section 4.5 it
was explained that there are additional symbols associated with basic and
constructed types that have identifiers that are available to the specifier, ei-
ther directly as a pre-defined name or indirectly by a type. In this appendix,
the available symbols associated with basic and constructed types and the
defining axioms of all symbols associated with these types are defined.
asymbols(S) is the set of all available symbols associated with the basic or
constructed type corresponding to the type symbol S and axioms(S) is the
set of defining axioms for all symbols associated with that type.

We use the notations B, N, Z, Q, E(A) (for any A ⊆ UIdent and finite),
L(S1), F(S1), M(S1,S2) and Cc(S1, . . . ,Sn) (for any c ∈ UIdent), where
S1, . . . ,Sn are type symbols, to denote type symbols for basic and con-
structed types. It is assumed that the denoted type symbols are such that
for all β, β′ ∈ {B, N, Z, Q}:

ι(β) ∈ PIdent, ω(β) = 〈〉, β ≡ β′ ⇔ β = β′,

for all A ⊆ UIdent and finite:

ι(E(A)) ∈ CIdent, ω(E(A)) = 〈〉, E(A) ≡ E(A′) ⇔ A = A′,

for all γ, γ′ ∈ {L,F,M} ∪ {Cc | c ∈ UIdent}:
ι(γ(S1, . . . ,Sn)) ∈ CIdent, ω(γ(S1, . . . ,Sn)) = 〈ω(S1), . . . , ω(Sn)〉,
γ(S1, . . . ,Sn) ≡ γ′(S ′1, . . . ,S

′
n′) ⇔ γ = γ′ ∧ n = n ′ ∧

n∧

k=1

(Sk ≡ S ′k).

Furthermore, we use the notation f S (for any a sequence of characters f),
where S is a type symbol, to denote function symbols associated with basic
or constructed types. It is assumed that the denoted function symbols are
such that

ι(f S) ∈ PIdent, ω(f S) = ω(S), f S ≡ f ′S
′ ⇔ f = f ′ ∧ S ≡ S ′.

376 BASIC AND CONSTRUCTED TYPES

In the defining axioms of the symbols concerned, the superscripts are
dropped when this causes no ambiguity.

The sequences of characters are sometimes of the form σ0•σ1 · · ·σn−1•σn ,
where each σi is a sequence of characters not containing •. In such cases,
we write in the defining axioms σ0 t1 σ1 · · ·σn−1 tn σn , where each ti is a
term of MPLω, instead of σ0 • σ1 · · ·σn−1 • σn(t1, . . . , tn).

In the case of unary function symbols and binary function symbols, prefix
notation and infix notation, respectively, are freely used.

The above-mentioned notations are used in Chapter 5 as well to denote
the symbols concerned.

D.1 Boolean type

Symbols:
asymbols(B) := {B, tt , ff }.

Axioms:
axioms(B) := {ϕ0, . . . , ϕ3},
where:
ϕ0 = tt↓ ∧ ff ↓,
ϕ1 = gen : I= gen(tt) ∧ gen(ff),
ϕ2 = ∀y : B(gen(y)),
ϕ3 = tt 6= ff ,

and
y is a value symbol such that τ(y) = 〈obj,B〉.

Intuition:
The type symbol B denotes a domain of exactly two elements: the
boolean values (‘true’ and ‘false’). One of these elements is denoted by
the function symbol tt and the other is denoted by the function symbol
ff .

D.2 Natural type

Symbols:
asymbols(N) :=

asymbols(B) ∪
{N, 0N, succN, predN,+N,−N, ∗N, /N, ••N

, <N,≤N, >N,≥N}.
Axioms:

axioms(N) := axioms(B) ∪ {ϕ0, . . . , ϕ13},
where:
ϕ0 = 0↓ ∧ ∀y1: N(succ(y1)↓)

INTEGER TYPE 377

ϕ1 = gen : I= gen(0) ∧ ∀y1: N(gen(y1) → gen(succ(y1))),
ϕ2 = ∀y1: N(gen(y1)),
ϕ3 = ∀y1: N(succ(y1) 6= 0) ∧

∀y1: N, y2: N(succ(y1) = succ(y2) → y1 = y2),

ϕ4 = pred : I= ∀y1: N(pred(succ(y1)) = y1),
ϕ5 = + : I= ∀y1: N, y2: N, y3: N

(y1 + 0 = y1 ∧
(y1 + y2 = y3 → y1 + succ(y2) = succ(y3))),

ϕ6 = − : I= ∀y1: N, y2: N, y3: N
(y1 − 0 = y1 ∧
(y1 − y2 = y3 → y1 − succ(y2) = pred(y3))),

ϕ7 = ∗ : I= ∀y1: N, y2: N, y3: N
(y1 ∗ 0 = 0 ∧ (y1 ∗ y2 = y3 → y1 ∗ succ(y2) = y1 + y3)),

ϕ8 = / : I= ∀y1: N, y2: N, y3: N, y4: N
(y1 = (y2 ∗ y3) + y4 ∧ y4 < y2 = tt → y1/y2 = y3),

ϕ9 = •• : I= ∀y1: N, y2: N, y3: N
(y0

1 = succ(0) ∧ (yy2
1 = y3 → ysucc(y2)

1 = y1 ∗ y3)),

ϕ10 = < : I= ∀y1: N, y2: N, b: B
(y1 < 0 = ff ∧ 0 < succ(y2) = tt ∧
(y1 < y2 = b → succ(y1) < succ(y2) = b)),

ϕ11 = ≤ : I= ∀y1: N, y2: N, b: B
(succ(y1) ≤ 0 = ff ∧ 0 ≤ y2 = tt ∧
(y1 ≤ y2 = b → succ(y1) ≤ succ(y2) = b)),

ϕ12 = ∀y1: N, y2: N(y1 > y2 = y2 < y1),
ϕ13 = ∀y1: N, y2: N(y1 ≥ y2 = y2 ≤ y1),
and
y1, . . . , y4 are distinct value symbols such that for all i = 1, . . . , 4:
τ(yi) = 〈obj,N〉,
b is a value symbol such that τ(b) = 〈obj, B〉.

Intuition:
The type symbol N denotes the domain of natural numbers. They are
generated by the functions denoted by the function symbols 0N (‘zero’)
and succN (‘successor’).

D.3 Integer type

Symbols:
asymbols(Z) :=

asymbols(N)∪

378 BASIC AND CONSTRUCTED TYPES

{Z,ªZ, 0Z, succZ, predZ,−•Z, +Z,−Z,

∗Z, /Z, ••Z
, | • |Z, <Z,≤Z, >Z,≥Z}.

Axioms:

axioms(Z) := axioms(N) ∪ {ϕ0, . . . , ϕ19},
where:
ϕ0 = ∀x1: N, x2: N((x1 ª x2)↓),
ϕ1 = gen : I= ∀x1: N, x2: N(gen(x1 ª x2)),
ϕ2 = ∀y1: Z(gen(y1)),
ϕ3 = ∀x1: N, x2: N, x3: N, x4: N

(x1 ª x2 = x3 ª x4 ↔ x1 + x4 = x3 + x2),

ϕ4 = 0 : I= 0 = 0ª 0,

ϕ5 = succ : I= ∀x1: N, x2: N(succ(x1 ª x2) = succ(x1)ª x2),
ϕ6 = pred : I= ∀x1: N, x2: N(pred(x1 ª x2) = x1 ª succ(x2)),
ϕ7 = −• : I= ∀x1: N, x2: N(−(x1 ª x2) = x2 ª x1),
ϕ8 = + : I= ∀x1: N, x2: N, x3: N, x4: N

((x1 ª x2) + (x3 ª x4) = (x1 + x3)ª (x2 + x4)),

ϕ9 = − : I= ∀x1: N, x2: N, x3: N, x4: N
((x1 ª x2)− (x3 ª x4) = (x1 + x4)ª (x2 + x3)),

ϕ10 = ∗ : I= ∀x1: N, x2: N, x3: N, x4: N
((x1 ª x2) ∗ (x3 ª x4) =
((x1 ∗ x3) + (x2 ∗ x4))ª ((x1 ∗ x4) + (x2 ∗ x3))),

ϕ11 = / : I= ∀y1: Z, y2: Z, y3: Z, y4: Z
(y1 = (y2 ∗ y3) + y4 ∧
0 ≤ y4 = tt ∧ y4 < y2 = tt → y1/y2 = y3),

ϕ12 = •• : I= ∀y1: Z, y2: Z, x1: N
(y0

1 = succ(0) ∧ (yx1
1 = y2 → ysucc(x1)

1 = y1 ∗ y2)),

ϕ13 = | • | : I= ∀x1: N(|x1 ª 0| = x1 ª 0 ∧ |0ª x1| = x1 ª 0),
ϕ14 = < : I= ∀x1: N, x2: N, x3: N, x4: N, b: B

((x1 + x4) < (x3 + x2) = b →
(x1 ª x2) < (x3 ª x4) = b),

ϕ15 = ≤ : I= ∀x1: N, x2: N, x3: N, x4: N, b: B
((x1 + x4) ≤ (x3 + x2) = b →
(x1 ª x2) ≤ (x3 ª x4) = b),

ϕ16 = ∀y1: Z, y2: Z(y1 > y2 = y2 < y1),
ϕ17 = ∀y1: Z, y2: Z(y1 ≥ y2 = y2 ≤ y1),
ϕ18 = ıN→Z : I= ∀x1: N(ıN→Z(x1) = x1 ª 0),

ϕ19 = ı−1
Z→N : I= ∀x1: N(ı−1

Z→N(x1 ª 0) = x1),

RATIONAL TYPE 379

and
x1, . . . , x4 are distinct value symbols such that for all i = 1, . . . , 4:
τ(xi) = 〈obj, N〉,
y1, . . . , y4 are distinct value symbols such that for all i = 1, . . . , 4:
τ(yi) = 〈obj,Z〉,
b is a value symbol such that τ(b) = 〈obj, B〉.

Intuition:
The type symbol Z denotes the domain of integers. They are gener-
ated from the natural numbers by the function denoted by the function
symbol ªZ (‘difference’).

D.4 Rational type

Symbols:
asymbols(Q) :=

asymbols(Z) ∪
{Q,®Q, 0Q,−•Q, •−1Q

, +Q,−Q,

∗Q, /Q, ••Q
, | • |Q, <Q,≤Q, >Q,≥Q}.

Axioms:
axioms(Q) := axioms(Z) ∪ {ϕ0, . . . , ϕ18},
where:
ϕ0 = ∀x1: Z, x2: Z(x2 6= 0 → (x1 ® x2)↓),
ϕ1 = gen : I= ∀x1: Z, x2: Z(x2 6= 0 → gen(x1 ® x2)),
ϕ2 = ∀y1: Q(gen(y1)),

ϕ3 = ∀x1: Z, x2: Z, x3: Z, x4: Z
(x2 6= 0 ∧ x4 6= 0 → (x1 ® x2 = x3 ® x4 ↔ x1 ∗ x4 = x3 ∗ x2)),

ϕ4 = 0 : I= 0 = 0® succ(0),
ϕ5 = −• : I= ∀x1: Z, x2: Z(x2 6= 0 → −(x1 ® x2) = (−x1)® x2),
ϕ6 = •−1 : I= ∀x1: Z, x2: Z(x1 6= 0 ∧ x2 6= 0 → (x1 ® x2)−1 = x2 ® x1),
ϕ7 = + : I= ∀x1: Z, x2: Z, x3: Z, x4: Z

(x2 6= 0 ∧ x4 6= 0 →
(x1 ® x2) + (x3 ® x4)
= ((x1 ∗ x4) + (x2 ∗ x3))® (x2 ∗ x4)),

ϕ8 = − : I= ∀x1: Z, x2: Z, x3: Z, x4: Z
(x2 6= 0 ∧ x4 6= 0 →
(x1 ® x2)− (x3 ® x4)
= ((x1 ∗ x4)− (x2 ∗ x3))® (x2 ∗ x4)),

ϕ9 = ∗ : I= ∀x1: Z, x2: Z, x3: Z, x4: Z
(x2 6= 0 ∧ x4 6= 0 →
(x1 ® x2) ∗ (x3 ® x4) = (x1 ∗ x3)® (x2 ∗ x4)),

380 BASIC AND CONSTRUCTED TYPES

ϕ10 = / : I= ∀x1: Z, x2: Z, x3: Z, x4: Z
(x2 6= 0 ∧ x3 6= 0 ∧ x4 6= 0 →
(x1 ® x2)/(x3 ® x4) = (x1 ∗ x4)® (x2 ∗ x3)),

ϕ11 = •• : I= ∀y1: Q, y2: Q, z : N
(y0

1 = succ(0)® succ(0) ∧
(yz−0

1 = y2 → ysucc(z)−0
1 = y1 ∗ y2) ∧

(y1 6= 0 ∧ yz−0
1 = y2 → y0−z

1 = y−1
2)),

ϕ12 = | • | : I= ∀x1: N, x2: N
(x2 6= 0 →
|(x1 ª 0)® (x2 ª 0)| = (x1 ª 0)® (x2 ª 0) ∧
|(0ª x1)® (x2 ª 0)| = (x1 ª 0)® (x2 ª 0)),

ϕ13 = < : I= ∀x1: Z, x2: Z, x3: Z, x4: Z, b: B
(x2 > 0 = tt ∧ x4 > 0 = tt →
((x1 ∗ x4) < (x3 ∗ x2) = b →
(x1 ® x2) < (x3 ® x4) = b)),

ϕ14 = ≤ : I= ∀x1: Z, x2: Z, x3: Z, x4: Z, b: B
(x2 > 0 = tt ∧ x4 > 0 = tt →
((x1 ∗ x4) ≤ (x3 ∗ x2) = b →
(x1 ® x2) ≤ (x3 ® x4) = b)),

ϕ15 = ∀y1: Q, y2: Q(y1 > y2 = y2 < y1),

ϕ16 = ∀y1: Q, y2: Q(y1 ≥ y2 = y2 ≤ y1),

ϕ17 = ıZ→Q : I= ∀x1: Z(ıZ→Q(x1) = x1 ® succ(0)),

ϕ18 = ı−1
Q→Z : I= ∀x1: Z(ı−1

Q→Z(x1 ® succ(0)) = x1),

and
x1, . . . , x4 are distinct value symbols such that for all i = 1, . . . , 4:
τ(xi) = 〈obj, Z〉,
y1, y2 are distinct value symbols such that for i = 1, 2: τ(yi) = 〈obj,Q〉,
z is a value symbol such that τ(z) = 〈obj,N〉,
b is a value symbol such that τ(b) = 〈obj, B〉.

Intuition:

The type symbol Q denotes the domain of rational numbers. They are
generated from the integers by the function denoted by the function
symbol ®Q (‘fraction’).

D.5 Enumerated type

Symbols:

asymbols(E(A)) := {E(A)}.

SEQUENCE TYPE 381

Axioms:

axioms(E(A)) := {ϕ0, . . . , ϕ3} ∪
⋃{{φA′ , ψA′} | A′ ⊆ A},

where:

ϕ0 =
∧

a∈A

(ata↓),

ϕ1 = gen : I=
∧

a∈A

(gen(ata)),

ϕ2 = ∀y : E(A)(gen(y)),

ϕ3 =
∧

a∈A

(
∧

a′∈A−{a}
(ata 6= ata′)),

φA′ = ıE(A′)→E(A) : I=
∧

a∈A′
(ıE(A′)→E(A)(ata) = ata),

ψA′ = ı−1
E(A)→E(A′) : I=

∧

a∈A′
(ı−1

E(A)→E(A′)(ata) = ata),

and
ata (a ∈ A) is the function symbol such that ι(ata) = a, ω(ata) =
ω(E(A)) and τ(ata) = 〈func, E(A)〉,
y is a value symbol such that τ(y) = 〈obj,E(A)〉.

Intuition:

The type symbol E(A) denotes a domain of cardA elements. These
elements are denoted by the function symbols ata (a ∈ A).

D.6 Sequence type

Symbols:

asymbols(L(S)) := ∗
asymbols(N) ∪ basymbols(L(S)) ∪ basymbols(L(L(S))) ∪ {concL(S)},

basymbols(L(S)) :=
{L(S), 6©L(S),⊕L(S), hdL(S), tlL(S),yL(S)

, lenL(S), •(•)L(S), [•]L(S)}.
Axioms:

axioms(L(S)) :=
axioms(N) ∪ baxioms(L(S)) ∪ baxioms(L(L(S))) ∪ {ϕ},

baxioms(L(S)) := {ϕ0, . . . , ϕ9},
where:
ϕ0 = 6©↓ ∧ ∀x1:S , y1: L(S)((x1 ⊕ y1)↓),

∗ The symbols associated with (the sequence type corresponding to) L(S) include most
symbols associated with L(L(S)), but no symbol associated with L(L(L(S))).

382 BASIC AND CONSTRUCTED TYPES

ϕ1 = gen : I= gen(6©) ∧ ∀x1:S , y1: L(S)(gen(y1) → gen(x1 ⊕ y1)),
ϕ2 = ∀y1: L(S)(gen(y1)),
ϕ3 = ∀x1:S , y1: L(S)(x1 ⊕ y1 6= 6©) ∧

∀x1:S , x2:S , y1: L(S), y2: L(S)
(x1 ⊕ y1 = x2 ⊕ y2 → x1 = x2 ∧ y1 = y2),

ϕ4 = hd : I= ∀x1:S , y1: L(S)(hd (x1 ⊕ y1) = x1),
ϕ5 = tl : I= ∀x1:S , y1: L(S)(tl (x1 ⊕ y1) = y1),

ϕ6 = y : I= ∀x1:S , y1: L(S), y2: L(S), y3: L(S)
(6©yy2 = y2 ∧
(y1
y y2 = y3 → (x1 ⊕ y1)y y2 = x1 ⊕ y3)),

ϕ7 = len : I= ∀x1:S , y1: L(S),n: N
(len 6© = 0 ∧ (len y1 = n → len (x1 ⊕ y1) = succ(n))),

ϕ8 = •(•) : I= ∀x1:S , x2:S , y1: L(S),n: N
((x1 ⊕ 6©)(succ(0)) = x1 ∧
(y1(n) = x2 → (x1 ⊕ y1)(succ(n)) = x2)),

ϕ9 = ∀x1:S ([x1] = x1 ⊕ 6©),
ϕ = conc : I= ∀y1: L(S), y2: L(S), z : L(L(S))

(conc 6© = 6© ∧
(conc z = y2 → conc (y1 ⊕ z) = y1

y y2)),
and
x1, x2 are distinct value symbols such that for i = 1, 2: τ(xi) = 〈obj,S 〉,
y1, y2, y3 are distinct value symbols such that for all i = 1, 2, 3:
τ(yi) = 〈obj,L(S)〉,
z is a value symbol such that τ(z) = 〈obj,L(L(S))〉,
n is a value symbol such that τ(n) = 〈obj, N〉.

Intuition:
The type symbol L(S) denotes the domain of all finite sequences with
elements from the domain denoted by the type symbol S . These se-
quences are generated from the values from the element domain by the
functions denoted by the function symbols 6©L(S) (‘empty sequence’)
and ⊕L(S) (‘insertion’).

D.7 Set type

Symbols:

asymbols(F(S)) := †
asymbols(B)∪asymbols(N)∪basymbols(F(S))∪basymbols(F(F(S)))∪
{⋃F(S)},

† The symbols associated with (the set type corresponding to) F(S) include most sym-
bols associated with F(F(S)), but no symbol associated with F(F(F(S))).

SET TYPE 383

basymbols(F(S)) :=
{F(S), 6©F(S),⊕F(S),∈F(S),∪F(S),∩F(S),
−F(S),⊆F(S), cardF(S), {•}F(S)}.

Axioms:

axioms(F(S)) :=
axioms(B) ∪ axioms(N) ∪ baxioms(F(S)) ∪ baxioms(F(F(S))) ∪ {ϕ},

baxioms(F(S)) := {ϕ0, . . . , ϕ10},
where:

ϕ0 = 6©↓ ∧ ∀x1:S , y1: F(S)((x1 ⊕ y1)↓),
ϕ1 = gen : I= gen(6©) ∧ ∀x1:S , y1: F(S)(gen(y1) → gen(x1 ⊕ y1)),

ϕ2 = ∀y1: F(S)(gen(y1)),

ϕ3 = ∈ : I= ∀x1:S , x2:S , y1: F(S), b: B
(x1 ∈ 6© = ff ∧ x1 ∈ (x1 ⊕ y1) = tt ∧
(x1 ∈ y1 = b ∧ x1 6= x2 → x1 ∈ (x2 ⊕ y1) = b)),

ϕ4 = ∀y1: F(S), y2: F(S)
(∀x1:S (x1 ∈ y1 = tt ↔ x1 ∈ y2 = tt) → y1 = y2),

ϕ5 = ∪ : I= ∀x1:S , y1: F(S), y2: F(S), y3: F(S)
(6©∪y2 = y2 ∧
(y1 ∪ y2 = y3 → (x1 ⊕ y1) ∪ y2 = x1 ⊕ y3)),

ϕ6 = ∩ : I= ∀x1:S , y1: F(S), y2: F(S), y3: F(S)
(6©∩y2 = 6© ∧
(y1 ∩ y2 = y3 →
(x1 ∈ y2 = tt → (x1 ⊕ y1) ∩ y2 = x1 ⊕ y3) ∧
(x1 ∈ y2 = ff → (x1 ⊕ y1) ∩ y2 = y3))),

ϕ7 = − : I= ∀x1:S , y1: F(S), y2: F(S), y3: F(S)
(6©−y2 = 6© ∧
(y1 − y2 = y3 →
(x1 ∈ y2 = ff → (x1 ⊕ y1)− y2 = x1 ⊕ y3) ∧
(x1 ∈ y2 = tt → (x1 ⊕ y1)− y2 = y3))),

ϕ8 = ⊆ : I= ∀y1: F(S), y2: F(S)
((y1 ∪ y2 = y1 → y1 ⊆ y2 = tt) ∧
(y1 ∪ y2 6= y1 → y1 ⊆ y2 = ff)),

ϕ9 = card : I= ∀x1:S , y1: F(S),n: N
(card 6© = 0 ∧
(card y1 = n ∧ x1 ∈ y1 = ff →
card (x1 ⊕ y1) = succ(n))),

ϕ10 = ∀x1:S ({x1} = x1 ⊕ 6©),

ϕ =
⋃

: I= ∀y1: F(S), y2: F(S), z : F(F(S))
(
⋃ 6© = 6© ∧ (

⋃
z = y2 →

⋃
(y1 ⊕ z) = y1 ∪ y2)),

384 BASIC AND CONSTRUCTED TYPES

and

x1, x2 are distinct value symbols such that for i = 1, 2: τ(xi) = 〈obj,S 〉,
y1, y2, y3 are distinct value symbols such that for all i = 1, 2, 3:
τ(yi) = 〈obj,F(S)〉,
z is a value symbol such that τ(z) = 〈obj,F(F(S))〉,
n is a value symbol such that τ(n) = 〈obj, N〉,
b is a value symbol such that τ(b) = 〈obj, B〉.

Intuition:

The type symbol F(S) denotes the domain of all finite sets with el-
ements from the domain denoted by the type symbol S . These sets
are generated from the values from the element domain by the func-
tions denoted by the function symbols 6©F(S) (‘empty set’) and ⊕F(S)

(‘insertion’).

D.8 Map type

Symbols:

asymbols(M(S ,S ′)) :=
asymbols(F(S)) ∪ asymbols(F(S ′))∪
{M(S ,S ′), 6©M(S ,S ′), {• 7→ •} ⊕ •M(S ,S ′)

, domM(S ,S ′), •(•)M(S ,S ′),
†M(S ,S ′),∪M(S ,S ′), CM(S ,S ′),−CM(S ,S ′), rngM(S ,S ′), {• 7→ •}M(S ,S ′)}.

Axioms:

axioms(M(S ,S ′)) := axioms(F(S)) ∪ axioms(F(S ′)) ∪ {ϕ0, . . . , ϕ11},
where:

ϕ0 = 6©↓ ∧ ∀x1:S , x ′1:S
′, y1:M(S ,S ′)(({x1 7→ x ′1} ⊕ y1)↓),

ϕ1 = gen : I= gen(6©) ∧
∀x1:S , x ′1:S

′, y1:M(S ,S ′)
(gen(y1) → gen({x1 7→ x ′1} ⊕ y1)),

ϕ2 = ∀y1:M(S ,S ′)(gen(y1)),

ϕ3 = dom : I= ∀x1:S , x ′1:S
′, y1:M(S ,S ′), z : F(S)

(dom 6© = 6© ∧
(dom y1 = z → dom ({x1 7→ x ′1} ⊕ y1) = x1 ⊕ z)),

ϕ4 = •(•) : I= ∀x1:S , x2:S , x ′1:S
′, x ′2:S

′, y1:M(S ,S ′)
(({x1 7→ x ′1} ⊕ y1)(x1) = x ′1 ∧
(y1(x1) = x ′1 ∧ x1 6= x2 →
({x2 7→ x ′2} ⊕ y1)(x1) = x ′1)),

ϕ5 = ∀y1:M(S ,S ′), y2: M(S ,S ′)
(dom y1 = dom y2 ∧
∀x1:S (x1 ∈ dom y1 = tt → y1(x1) = y2(x1)) →
y1 = y2),

MAP TYPE 385

ϕ6 = † : I= ∀x1:S , x ′1:S
′, y1:M(S ,S ′), y2:M(S ,S ′), y3:M(S ,S ′)

(y2 † 6© = y2 ∧
(y1 † y2 = y3 →
y1 † ({x1 7→ x ′1} ⊕ y2) = {x1 7→ x ′1} ⊕ y3)),

ϕ7 = ∪ : I= ∀x1:S , x ′1:S
′, y1: M(S ,S ′), y2:M(S ,S ′), y3:M(S ,S ′)

(6©∪y2 = y2 ∧
(y1 ∪ y2 = y3 ∧ x1 ∈ dom y3 = ff →
({x1 7→ x ′1} ⊕ y1) ∪ y2 = {x1 7→ x ′1} ⊕ y3)),

ϕ8 = C : I= ∀x1:S , x ′1:S
′, z : F(S), y1:M(S ,S ′), y2:M(S ,S ′)

(z C 6© = 6© ∧
(z C y1 = y2 →
(x1 ∈ z = tt →
z C ({x1 7→ x ′1} ⊕ y1) = {x1 7→ x ′1} ⊕ y2) ∧

(x1 ∈ z = ff → z C ({x1 7→ x ′1} ⊕ y1) = y2))),

ϕ9 = −C : I= ∀x1:S , x ′1:S
′, z : F(S), y1:M(S ,S ′), y2:M(S ,S ′)

(z −C 6© = 6© ∧
(z −C y1 = y2 →
(x1 ∈ z = ff →
z −C ({x1 7→ x ′1} ⊕ y1) = {x1 7→ x ′1} ⊕ y2) ∧

(x1 ∈ z = tt → z −C ({x1 7→ x ′1} ⊕ y1) = y2))),

ϕ10 = rng : I= ∀x1:S , x ′1:S
′, y1:M(S ,S ′), z ′: F(S ′)

(rng 6© = 6© ∧
(rng y1 = z ′ →
(x1 ∈ dom y1 = ff →
rng ({x1 7→ x ′1} ⊕ y1) = {x ′1} ∪ z ′) ∧

(x1 ∈ dom y1 = tt →
rng ({x1 7→ x ′1} ⊕ y1) = {x ′1} ∪ (z ′ − {y1(x1)})))),

ϕ11 = ∀x1:S , x ′1:S
′({x1 7→ x ′1} = {x1 7→ x ′1} ⊕ 6©),

and

x1, x2 are distinct value symbols such that for i = 1, 2: τ(xi) = 〈obj,S 〉,
x ′1, x

′
2 are distinct value symbols such that for i = 1, 2: τ(x ′i) = 〈obj,S ′〉,

y1, y2, y3 are distinct value symbols such that for all i = 1, 2, 3:
τ(yi) = 〈obj,M(S ,S ′)〉,
z is a value symbol such that τ(z) = 〈obj,F(S)〉,
z ′ is a value symbol such that τ(z ′) = 〈obj, F(S ′)〉.

Intuition:

The type symbol M(S ,S ′) denotes the domain of all finite maps with
domain elements from the domain denoted by the type symbol S and
range elements from the domain denoted by the type symbol S ′. These
maps are generated from the values from the domain element domain
and the range element domain by the functions denoted by the function

386 BASIC AND CONSTRUCTED TYPES

symbols 6©M(S ,S ′) (‘empty map’) and ⊕M(S ,S ′) (‘insertion’).

D.9 Composite type

Symbols:

asymbols(Cc(S1, . . . ,Sn)) :=
{Cc(S1, . . . ,Sn)} ∪ {selCc

(S1,...,Sn)
i | 1 ≤ i ≤ n}.

Axioms:

axioms(Cc(S1, . . . ,Sn)) := {ϕ0, . . . , ϕ3} ∪ {ψi | 1 ≤ i ≤ n},
where:
ϕ0 = ∀x1:S1, . . . , xn :Sn(mk(x1, . . . , xn)↓),
ϕ1 = gen : I= ∀x1:S1, . . . , xn :Sn(gen(mk(x1, . . . , xn))),
ϕ2 = ∀y : Cc(S1, . . . ,Sn)(gen(y)),
ϕ3 = ∀x1:S1, x ′1:S1, . . . , xn :Sn , x ′n :Sn

(mk(x1, . . . , xn) = mk(x ′1, . . . , x
′
n) → x1 = x ′1 ∧ . . . ∧ xn = x ′n),

ψi = sel i : I= ∀x1:S1, . . . , xn :Sn(sel i(mk(x1, . . . , xn)) = xi),
and
mk is the unique function symbol such that ι(mk) = mk(c), ω(mk) =
ω(Cc(S1, . . . ,Sn)) and τ(mk) = 〈func,S1, . . . ,Sn , Cc(S1, . . . ,Sn)〉,
x1, x ′1, . . . , xn , x ′n are distinct value symbols such that for all i = 1, . . . ,n:
τ(xi) = τ(x ′i) = 〈obj,Si〉,
y is a value symbol such that τ(y) = 〈obj,Cc(S1, . . . ,Sn)〉.

Intuition:

The type symbol Cc(S1, . . . ,Sn) denotes the domain of all composite
values with n components, one from each of the domains denoted by
the type symbols S1, . . . ,Sn , which are generated by the function mk .

D.10 Nil

Below, the nil constant symbols are introduced.
A nil function symbol is associated with each type defined as a union

extended with an option value. It is the constant symbol which corresponds
to the pre-defined name that is used to denote the option value.

For S ∈ MType, nilS is a function symbol such that

ι(nilS) ∈ PIdent, ω(nilS) = 〈〉, τ(nilS) = 〈func,S 〉,
for all f ∈ MFunc: ∀T (nilT 6= f) ⇒ ι(nilS) 6= ι(f).

E

Abbreviations

Only a kernel of VVSL is defined in Chapters 5 and 8. In this appendix,
the remainder is introduced by abbreviations.

Type definition

The following abbreviation is used for defining map types if the maps must
be one-to-one:

t = t1
m←→ t2 where inv(x) 4 E :=

t = t1
m−→ t2

where inv(x) 4 (∀y ∈ t1, y ′ ∈ t1 · x (y) = x (y ′) ⇒ y = y ′) ∧ E .

The following abbreviation is used for defining composite types:

t :: s1: t1 . . . sn : tn where inv(x) 4 E :=
t = compose t of s1: t1 . . . sn : tn where inv(x) 4 E .

Local definition

The following abbreviation is used for nested local definitions:

let x1: t1 4 e1, . . . , xn : tn 4 en in e :=
let xk(1): tk(1)

4 ek(1) in . . . let xk(n): tk(n)
4 ek(n) in e

where k is some bijection on {1, . . . ,n} such that if xk(i) occurs in ek(j)

then i < j .

The following abbreviation introduces an alternative notation for local def-
initions:

e where x1: t1 4 e1, . . . , xn : tn 4 en :=
let x1: t1 4 e1, . . . , xn : tn 4 en in e.

388 ABBREVIATIONS

Choice

The following abbreviation introduces an alternative notation for choices:

e where x1: t1, . . . , xn : tn is s.t. E :=
let x1: t1, . . . , xn : tn be s.t. E in e.

The following abbreviation is used if a choice expression is used to decom-
pose a composite value:

let mk-c(x1, . . . , xn) 4 e1 in e2 :=
let x1: t1, . . . , xn : tn be s.t. mk-c(x1, . . . , xn) = e1 in e2.

Conditional

The following abbreviation is for combined case distinction and decompo-
sition:

cases e of

mk-t1(x11 , . . . , x1m1
) → e1

...
mk-tn(xn1 , . . . , xnmn

) → en
end

:=
if ∃y ∈ t1 · y = e
then let mk-t1(x11 , . . . , x1m1

) 4 e in e1

else
...

if ∃y ∈ tn−1 · y = e
then let mk-tn−1(xn−11 , . . . , xn−1mn−1

) 4 e in en−1

else let mk-tn(xn1 , . . . , xnmn
) 4 e in en

(y is a fresh value name).

Set comprehension

An integer range is defined as an abbreviation of a set comprehension:

{e1 .. e2} := {y | y ∈ Z; e1 ≤ y ∧ y ≤ e2}

(y is a fresh value name).

ABBREVIATIONS 389

Logical expressions

Familiar logical notation is introduced by abbreviations:

E1 ∧ E2 := ¬ (¬E1 ∨ ¬E2),
E1 ⇒ E2 := ¬E1 ∨ E2,
E1 ⇔ E2 := (E1 ⇒ E2) ∧ (E2 ⇒ E1),
∀x ∈ t · E := ¬ (∃x ∈ t · ¬E),
∃!x ∈ t · E := ∃y ∈ t · (∀x ∈ t · (E ⇔ x = y)),
∃x1 ∈ t1, . . . , xn ∈ tn · E := ∃x1 ∈ t1 · (· · · · (∃xn ∈ tn · E) · · ·),
∀x1 ∈ t1, . . . , xn ∈ tn · E := ∀x1 ∈ t1 · (· · · · (∀xn ∈ tn · E) · · ·)

(y is a fresh value name).

Less familiar logical notation is also introduced by abbreviations:

e ∈ t := ∃y ∈ t · y = e,
∃mk-c(x1, . . . , xn) ∈ t · E := ∃y ∈ t · let mk-c(x1, . . . , xn) 4 y in E ,
∀mk-c(x1, . . . , xn) ∈ t · E := ∀y ∈ t · let mk-c(x1, . . . , xn) 4 y in E

(y is a fresh value name).

Temporal formulae

Familiar temporal logic notation is introduced by abbreviations:

3 ϕ := true U ϕ,

2 ϕ := ¬ (3 ¬ϕ),
−3 ϕ := true S ϕ,
−2 ϕ := ¬ (−3 ¬ϕ).

Modules

The following abbreviation is used for nested imports:

import M1 . . . Mn into M := import M1 into . . . import Mn into M .

The following abbreviation is used for nested local module definitions:

let m1
4 M1, . . . ,mn

4 Mn in M :=
let mk(1)

4 Mk(i) in . . . let mk(n)
4 Mk(n) in M

where k is some bijection on {1, . . . ,n} such that if mk(i) occurs in Mk(j)

then i < j .

The following abbreviation is used for union of module signatures:

signature M1, . . . ,Mn :=
add signature M1 to . . . add signature Mn−1 to signature Mn .

390 ABBREVIATIONS

Specification document

The following abbreviation is used for a specification document that is a
local definition module (possibly nested):

component m1 is M1 . . . mn is Mn system is M :=
system is let m1

4 M1, . . . ,mn
4 Mn in M .

Miscellaneous

For reasons of readability, the following abbreviations are described as no-
tational conventions.

Suppression of conditions in definitions

The following conditions can be suppressed:
• a type invariant where inv(x) 4 true,
• a state invariant inv true,
• an initial condition init true,
• a dynamic constraint dyn true,
• a pre-condition pre true,
• an inter-condition inter ©©©true ⇒ (is-I ∧©©©¬©©©true).

Pre-, post- and mixfix notation for function application

The usual notational conventions for application of nullary functions (omit-
ting parentheses), unary functions (prefix notation) and binary functions
(infix notation) can also be used. Mixfix notation can be used as well.
Names of the form σ0 • σ1 · · ·σn−1 • σn , where each σi is a sequence of
characters not containing •, is used for n-ary functions to indicate suitable
mixfix notation:

σ0 e1 σ1 · · ·σn−1 en σn stands for σ0 • σ1 · · ·σn−1 • σn(e1, . . . , en).

References

Astrahan, M.M. et al. (1976) System R: A relational approach to data manage-
ment. ACM Transactions on Database Systems, 1(2), 97–137.

Barringer, H., Cheng, H. and Jones, C.B. (1984) A logic covering undefinedness
in program proofs. Acta Informatica, 21, 251–269.

Barringer, H. and Kuiper, R. (1985) Hierarchical development of concurrent sys-
tems in a temporal logic framework, in Seminar on Concurrency (eds Brookes,
S.D., Roscoe, A.W. and Winskel, G.), LNCS 197, Springer-Verlag, pp. 35–61.

Bergstra, J.A. (1986) Module algebra for relational specifications. Technical Re-
port LGPS 16, University of Utrecht, Logic Group.

Bergstra, J.A., Heering, J. and Klint, P. (1989) Algebraic Specification, ACM
Press Frontier Series, Addison-Wesley.

Bergstra, J.A., Heering, J. and Klint, P. (1990) Module algebra. Journal of the
ACM, 37(2), 335–372.

Bernstein, P.A. and Goodman, N. (1981) Concurrency control in distributed data-
base systems. ACM Computing Surveys, 13(2), 186–221.

Bernstein, P.A., Shipman, D.W. and Wong, W.S. (1979) Formal aspects of se-
rializability in database concurrency control. IEEE Transactions on Software
Engineering, 5(3), 203–216.

Bjørner, D. (1982) Formalization of data models, in Formal Specification and
Software Development (eds Bjørner, D. and Jones, C.B.), Prentice Hall, Chap-
ter 12.

Brodie, M.L. and Schmidt, J.W. (1981) Final Report of the ANSI/X3/SPARC
DBS-SG Relational Database Task Group. Doc. No. SPARC-81-690.

Burstall, R.M. and Goguen, J.A. (1980) The semantics of Clear, a specifica-
tion language, in Abstract Software Specifications (ed Bjørner, D.), LNCS 86,
Springer-Verlag, pp. 292–332.

Burstall, R.M. and Goguen, J.A. (1981) An informal introduction to specifications
using Clear, in The Correctness Problem in Computer Science (eds Boyer, R.
and Moore, J.), Academic Press, Chapter 4.

Chamberlin, D.D. et al. (1976) SEQUEL 2: A unified approach to data definition,
manipulation and control. IBM Journal of Research and Development, 20(6),
560–575.

392 REFERENCES

Chamberlin, D.D. et al. (1981) A history and evaluation of System R. Commu-
nications of the ACM, 24(10), 632–646.

Cheng, J.H. (1986) A Logic for Partial Functions. Technical Report UMCS-86-
7-1, University of Manchester, Department of Computer Science.

Codd, E.F. (1970) A relational model for large shared data banks. Communica-
tions of the ACM, 13(6), 377–387.

Codd, E.F. (1972) Relational completeness of data base sublanguages, in Data
Base Systems (ed Rustin, R.), Prentice Hall, pp. 65–98.

Codd, E.F. (1979) Extending the data base relational model to capture more
meaning. ACM Transactions on Database Systems, 4(4), 397–434.

Date, C.J. (1986) Relational Database: Selected Writings, Addison-Wesley.

Ehrig, H., Feys, W. and Hansen, H. (1983) ACT ONE: An algebraic specification
language with two levels of semantics. Bericht Nr. 83-03, Technical University
of Berlin, Department of Computer Science.

Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L. (1976) The notion of
consistency and predicate locks in a database system. Communications of the
ACM, 19(11), 624–633.

Fagin, R. (1981) A normal form for relational databases that is based on domains
and keys. ACM Transactions on Database Systems, 6(3), 387–415.

Fagin, R. and Vardi, M.Y. (1986) The theory of data dependencies – a survey,
in Mathematics of Information Processing (eds Anshel, M. and Gewirtz, W.),
Symposia in Applied Mathematics 34, pp. 19–72.

Feijs, L.M.G. (1989) The calculus λπ, in Algebraic Methods: Theory, Tools and
Applications (eds Wirsing, M. and Bergstra, J.A.), LNCS 394, Springer-Verlag,
pp. 307–328.

Feijs, L.M.G. and Jonkers, H.B.M. (1992) Formal Specification and Design, Cam-
bridge Tracts in Theoretical Computer Science, Cambridge University Press.

Feijs, L.M.G., Jonkers, H.B.M., Koymans, C.P.J. and Renardel de Lavalette, G.R.
(1987) Formal definition of the design language COLD-K. Technical Report
METEOR/t7/PRLE/7, METEOR.

Fisher, M.D. (1987) Temporal logics for abstract semantics. Technical Report
UMCS-87-12-4, University of Manchester, Department of Computer Science.

Fitzgerald, J.S. and Jones, C.B. (1990) Modularizing the formal description of a
database system, in VDM ’90 (eds Bjørner, D., Hoare, C.A.R. and Langmaack,
H.), LNCS 428, Springer-Verlag, pp. 189–210.

Goguen, J.A. and Meseguer, J. (1987) Order-sorted algebra solves the
constructor-selector, multiple representation and coercion problems, in Pro-
ceedings Logic in Computer Science 1987, Computer Society Press of the IEEE,
pp. 18–29.

Gordon, M.J.C., Milner, R. and Wadsworth, C. (1979) Edinburgh LCF, LNCS 78,
Springer-Verlag.

Gray, J.N. (1978) Notes on database operating systems, in Operating Systems: An
Advanced Course (eds Bayer, R., Graham, R.M. and Seegmüller, G.), LNCS 60,
Springer-Verlag, pp. 393–481.

Gray, J.N. et al. (1981) The recovery manager of the System R database manager.
ACM Computing Surveys, 13(2), 223–242.

Gray, J.N., Lorie, R.A., Putzolu, G.R. and Traiger, I.L. (1976) Granularity of

REFERENCES 393

locks and degrees of consistency in a shared data base, in Modelling in Data
Base Management Systems (ed Nijssen, G.M.), North-Holland, pp. 365–394.

Guttag, J.V. and Horning, J.J. (1986) Report on the Larch shared language.
Science of Computer Programming, 6, 103–134.

Haerder, T. and Reuter, A. (1983) Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4), 287–317.

Hale, R. and Moskowski, B. (1987) Parallel programming in temporal logic, in
Proceedings PARLE, Volume II (eds de Bakker, J.W., Nijman, A.J. and Tre-
leaven, P.C.), LNCS 259, Springer-Verlag, pp. 277–296.

Jones, C.B. (1982) The Meta-Language, in Formal Specification and Software
Development (eds Bjørner, D. and Jones, C.B.), Prentice Hall, Chapter 2.

Jones, C.B. (1983) Specification and design of (parallel) programs, in IFIP ’83
(ed Mason, R.E.A.), North-Holland, pp. 321–332.

Jones, C.B. (1990) Systematic Software Development Using VDM, 2nd edn, Pren-
tice Hall.

Jones, C.B., Jones, K.D., Lindsay, P.A. and Moore, R. (1991) mural – A Formal
Development Support System, Springer-Verlag.

Jones, C.B. and Shaw, R.C.F. (1990) Case Studies in Systematic Software De-
velopment, Prentice Hall.

Jonkers, H.B.M. (1989a) Description algebra, in Algebraic Methods: Theory, Tools
and Applications (eds Wirsing, M. and Bergstra, J.A.), LNCS 394, Springer-
Verlag, pp. 283–305.

Jonkers, H.B.M. (1989b) An introduction to COLD-K, in Algebraic Methods: The-
ory, Tools and Applications (eds Wirsing, M. and Bergstra, J.A.), LNCS 394,
Springer-Verlag, pp. 139–205.

Karp, C. (1964) Languages with Expressions of Infinite Length, North-Holland.

Keisler, H.J. (1971) Model Theory for Infinitary Logic, North-Holland.

Kleene, S.C. (1952) Introduction to Metamathematics, North-Holland.

Koymans, C.P.J. and Renardel de Lavalette, G.R. (1989) The logic MPLω,
in Algebraic Methods: Theory, Tools and Applications (eds Wirsing, M. and
Bergstra, J.A.), LNCS 394, Springer-Verlag, pp. 247–282.

Kung, H.T. and Papadimitriou, C.H. (1983) An optimality theory of concurrency
control for databases. Acta Informatica, 19, 1–11.

Lacroix, M. and Pirotte, A. (1977) Domain oriented relational languages, in Pro-
ceedings of Third International Conference on Very Large Data Bases.

Lichtenstein, O., Pnueli, A. and Zuck, L. (1985) The glory of the past, in Pro-
ceedings Logics of Programs 1985 (ed Parikh, R.), LNCS 193, Springer-Verlag,
pp. 196–218.

Middelburg, C.A. (1988) The VIP VDM specification language, in VDM ’88
(eds Bloomfield, R., Marshall, L. and Jones, R.), LNCS 328, Springer-Verlag,
pp. 187–201.

Middelburg, C.A. (1990) Syntax and Semantics of VVSL – A Language for Struc-
tured VDM Specifications. PhD thesis, University of Amsterdam. Available
from PTT Research, Leidschendam, The Netherlands.

Middelburg, C.A. (1992a) Modular structuring of VDM specifications in VVSL.
Formal Aspects of Computing, 4(1), 13–47.

Middelburg, C.A. (1992b) Specification of interfering programs based on inter-

394 REFERENCES

conditions. Software Engineering Journal, 7(3), 205–217.

Middelburg, C.A. and Renardel de Lavalette, G.R. (1991) LPF and MPLω –
a logical comparison of VDM-SL and COLD-K, in VDM ’91, Volume 1 (eds
Prehn, S. and Toetenel, W.J.), LNCS 551, Springer-Verlag, pp. 279–308.

Neuhold, E. and Olnhoff, Th. (1980) The Vienna Development Method (VDM)
and its use for the specification of a relational data base management system,
in IFIP’80 (ed Lavington, S.H.), North-Holland.

Niemi, T. and Järvelin, K. (1984) A straigthforward formalization of the rela-
tional model. ACM SIGMOD RECORD, 14(1), 15–38.

Oliver, H.E. (1988) Formal Specification Methods for Reusable Software Compo-
nents. PhD thesis, University College of Wales, Aberystwyth.

Renardel de Lavalette, G.R. (1989) COLD-K2, the static kernel of COLD-K.
Report RP/mod-89/8, SERC, Utrecht, The Netherlands.

Reynolds, J.C. (1985) Three approaches to type structure, in Mathematical Foun-
dations of Software Development (eds Ehrig, H., Floyd, C., Nivat, M. and
Thatcher, J.), LNCS 185, Springer-Verlag, pp. 97–138.

Rosenkrantz, D.J., Stearns, R.E. and Lewis II, P.M. (1978) System level concur-
rency control for distributed database systems. ACM Transactions on Database
Systems, 3(2), 178–198.

Rosner, R. and Pnueli, A. (1986) A choppy logic, in Proceedings Logic in Com-
puter Science 1986, Computer Society Press of the IEEE, pp. 306–313.

Sannella, D. (1984) A set-theoretic semantics for Clear. Acta Informatica, 21,
443–472.

Sannella, D. and Tarlecki, A. (1985) Building specifications in an arbitrary insti-
tution, in Proceedings Symposium on Semantics of Data Types (eds Kahn, G.,
MacQueen, D.B. and Plotkin, G.), LNCS 173, Springer-Verlag, pp. 337–356.

Sannella, D. and Tarlecki, A. (1988) Towards formal development of programs
from algebraic specifications: Implementations revisited. Acta Informatica, 25,
233–281.

Schlageter, G. (1978) Process synchronization in database systems. ACM Trans-
actions on Database Systems, 3(3), 248–271.

Spivey, J.M. (1988) Understanding Z, Cambridge Tracts in Theoretical Computer
Science 3, Cambridge University Press.

Stølen, K. (1991) Development of parallel programs on shared data-structures.
Technical Report UMCS-91-1-1, University of Manchester, Department of
Computer Science.

Stonebraker, M. (1980) Retrospection on a database system. ACM Transactions
on Database Systems, 5(2), 225–240.

Stonebraker, M., Wong, E., Kreps, P. and Held, G. (1976) The design and imple-
mentation of INGRES. ACM Transactions on Database Systems, 1(3), 189–
222.

Todd, S.J.P. (1976) The Peterlee Relational Test Vehicle – a system overview.
IBM Systems Journal, 15(4), 285–308.

Tompa, F.W. (1980) A practical example of the specification of abstract data
types. Acta Informatica, 13, 205–224.

Traiger, I.L., Gray, J.N., Galtieri, C.A. and Lindsay, B.G. (1982) Transactions and
consistency in distributed database systems. ACM Transactions on Database

REFERENCES 395

Systems, 7(3), 323–342.
Turner, W.S. et al. (1987) System Development Methodology, North-Holland.
Ullman, J.D. (1988) Principles of Database and Knowledge-base Systems, Vol-

ume I, Computer Science Press.
VIP Project Team (1987) VDM extensions: Initial report. Document VIP.T.E.4.1,

VIP.
VIP Project Team (1988a) Kernel interface: Final specification. Document

VIP.T.E.8.2, VIP. Available from PTT Research, Leidschendam, The Nether-
lands.

VIP Project Team (1988b) Man machine interface: Final specification. Document
VIP.T.E.8.3, VIP. Available from PTT Research, Leidschendam, The Nether-
lands.

Wirsing, M. (1986) Structured algebraic specifications: A kernel language. The-
oretical Computer Science, 42(2), 123–249.

Wirsing, M. (1990) Algebraic specification, in Handbook of Theoretical Computer
Science, Volume B (ed van Leeuwen, J.), Elsevier, Chapter 13.

Wirsing, M. and Broy, M. (1989) A modular framework for specification and
implementation, in Proceedings TAPSOFT ’89, Volume 1 (eds Diaz, J. and
Orejas, F.), LNCS 351, Springer-Verlag, pp. 42–73.

Zloof, M.M. (1977) Query-by-Example: A data base language. IBM Systems Jour-
nal, 16(4), 324–343.

Index

· 169, 196
◦ 157
• on descriptions 158, 191, 217
• on names 157
• on parameters 167, 191, 196
• on signatures 157, 191, 217
+ on descriptions 158, 191, 217
+ on signatures 157, 191, 217, 222
2 on descriptions 159, 191, 218
2 on signatures 157, 191, 218
≡ 155
→→ 181∏

153, 155, 163∑
153, 159, 167

α 167, 191, 216, 217
γ 225
∆ 158
δ 167
µ 159, 226
µ 64, 90, 372
µX 164, 224
ν 224
π 159
πω 155, 159, 216, 225, 372
Σ 158, 191, 222
Σ∗ 189
ΣComp 62, 187

abbreviations of formulae
for implicit conversions 67
for states and computations 64

abstract description 229

abstracting operation 225
abstract meaning of description 164
access 259, 331, 334, 348
access handler 27, 325, 346
access handling 253, 260, 346
access mode 108, 331
access table 259, 334, 344, 347
admissible formula

for function 54
for predicate 52

AH see access handler
algebraic approach 12
algebraic specification 1, 12, 14, 151
algebraic system with pre-order 172,

193
application expression 81, 116, 123
application temporal term 145
assignment

in λπ-calculus 180
in MPLω 45

asymbols 69, 375
atdefs 206, 216, 371
atom 113
atomic operation 21
attribute 255, 262, 267, 278, 300, 304,

312, 328
attribute bijection 255, 264, 304
attribute set 117, 255, 264, 304
axioms 69, 90, 111, 372, 375

basic module 26, 85, 89, 215, 265
BasicModule 87, 206

INDEX 397

basic type 33, 69, 108
bctypes 76, 207
boolean type 108, 111, 376

choice expression 125, 388
chop temporal formula 141
CIdent 61, 186, 375
closed formula

in λπ-calculus 176–178, 180
in MPLω 41

closed term in λπ-calculus 175, 205
cnv 79, 124, 146, 370
cnvax 79, 90, 370
COLD-K 14
Comp 62, 76, 79, 90, 105, 187
Compax 65, 90, 372
complement preserving 52
composite type 109, 115, 386

constructor function of 115
selector functions of 115

composition operation 157
computation 22, 62, 64, 89, 104, 139,

187
computation sort symbol 62, 187
computation symbol 62, 90, 106, 142,

188
concurrency control 249, 325
concurrency transparency 249
conditional expression 116, 124, 388
conflict 331, 334, 348
consequence in MPLω 46
constant symbol 38
constraint

on database 290
on relation 286

constructed type 33, 69, 109
constructed type name 61, 186
contents expression 131
context in λπ-calculus 177, 181
continuous predicate operator 50
control constructs 238
Conv 63, 188
Conv 68, 79
Convax 68, 79
conversion function symbol 63, 188
crash recovery 249
current temporal term 147

Cxt 74, 88, 98, 111, 123, 139

DA 16, 25, 60, 150, 171, 201, 224, 238
domains of 155
operations of 155
signature of 160

DA+ see extended DA
DAα see DA with parameters
database 93, 109, 256, 275, 282, 290,

304, 314, 315, 319, 344, 347
database constraint 256, 290
database schema 93, 248, 256, 282,

291, 304, 314, 315, 319, 332, 344,
347

data definition 251, 258, 318
data manipulation 251, 258, 315
data reification 8
data representation 8
DA with parameters 166, 190

domains of 166
operations of 166

DCxt 204, 215
declaration 257, 312, 319
decomposition 150
decomposition rule 243
defined function 53
defined in name context 78, 99, 113,

123, 144, 370
defined predicate 48
defining expression 92, 101
definition 85, 91, 210
Definition 98
deletion operation 158
dependency 247, 286
derivable

in λπ-calculus 178
in MPLω 44

derivation system
of λπ[A] 177
of λπ++[M] 194
of λπ++[S] 198

des 209, 216, 371
Des 158, 190
description 150, 158
description algebra 150, 359

see also DA
description context 204

398 INDEX

deterministic expression 122, 133, 134
deterministic operation 7
disjunction expression 135
disjunction temporal formula 144
dom

of origin substitution 163, 167
of renaming 156, 230

domain
of description terms 200
of module symbol formulae 63
of module symbol terms 64
of signature terms 200

domain construction 257, 298, 312
domain in RDM 262, 278
domain-key normal form 287
DTerm 200, 204, 211, 215
dynamic constraint 23, 93, 344, 390
dynamic type checking 30, 31

EForm 64, 98
embedding operation 167
<empty> 83
entity integrity 248
enumerated type 108, 113, 380
equality

of defined functions 53
of defined predicates 49

equality expression 134
equality predicate symbol 38
equality temporal formula 140
exists expression 135
exists temporal formula 144
exporting operation 159
export module 26, 218, 301
Expression 82, 122
expression 85, 116, 210

as logical expression 133
extended DA 223

operations of 224
signature of 225

external clause 6, 94, 95, 104
external interface of RDBMS 251, 297
externally visible signature 150, 159,

164, 166, 189, 208, 215, 225, 227,
228

external step 22, 139, 348
external temporal formula 139

external transition predicate symbol
62, 187

extn 62, 140, 187, 239
extsig 207, 216, 371

fixpoint
of predicate operator 50
of tuple-of-predicates operator 56

flat term 175, 206
flat-term formula 175, 178
flat VVSL 19, 35, 59, 71, 84
Form 63, 79, 88, 111, 123, 139
formal method 2
formal specification 2, 5
formula

of λπ-calculus 176
of MPLω 39

free
in λπ-calculus 174, 206
in MPLω 41

free name 95, 106
ftypes 81, 124, 146, 371
FUNC 38
Func 153
functionality of defined predicate 49
functionality preserving 55
function definition 89

explicit 92, 101, 234, 268
implicit 92, 102, 270

function symbol 38, 153
function type 38

Gen 63, 188
generalization of λπ-calculus 193
generation predicate symbol 63, 188
genS 63, 99, 188, 207

heterogeneous algebra 171
higher type 173
HType 173, 194, 199

ı−1
S ′→S 63, 67, 99, 188, 207, 221
Ident 60, 152
identifier 60, 152
identifying operation 224
imp 207, 216, 371

INDEX 399

implementation relation 169, 171, 191
of MDA 193

implicit conversion 67, 79, 123
importing operation 158
import module 26, 217, 265
inadmissible recursion 101
inclusion

of defined functions 53
of defined predicates 49

inductive definition 48
of function 55
of predicate 52

information hiding 150
inheritance 34
initial condition 93, 314, 390
initial state symbol 62, 187
inj 156, 229
injective renaming 156
instantiation of λπ-calculus

for MDA 193
for MSA 197

instantiation of origin substitution 164
integer 112
integer type 108, 112, 377
inter-condition 21, 94, 95, 104, 348,

390
internal interface of RDBMS 252, 325
internal signature 150, 164, 208, 228
internal step 22, 139, 348
internal temporal formula 139
internal transition predicate symbol

62, 187
interpretation

in λπ-calculus 180
in MPLω 45

intersection operation on signatures
157

intn 62, 139, 187, 239
intsig 207, 216, 371
invariant

of state 93, 390
of type 91, 390

ıS→S ′ 63, 67, 99, 188, 207, 221

key set 255, 266, 280, 312

L 154, 165, 225

lambda term
of λπ[A] 174
of λπ++[M] 194, 200
of λπ++[S] 197, 200

lambda variable symbol 173, 199
language

over name signature 165
over symbol signature 154

λβ-calculus 182
liable for deadlock 334, 348
local definition expression 116, 125,

387
local definition temporal formula 145
local module definition 27, 219
locking 249
LogicalExpr 122
logical expression 85, 116, 210, 389

as expression 133
logical transaction logging 254
logic-based semantics 71, 201
log table 259, 342, 344, 347
lower 80, 126, 370
lowering of type 31, 80
λπ[M] 193
λπ++[M] 193
λπ[S] 197
λπ++[S] 197
λπ-calculus 16, 25, 166, 170, 201, 359

model of 179
reduction for 181
rules of 176
terms of 174

LPF 5, 22, 118, 231
versus MPLω 37, 233

ltype 174, 204, 218, 373
lub 80, 124, 141, 370
LVar 199, 204
LVAR 173
lvar 205
LVAR0 172

M 193
MA 151, 160
map comprehension expression 119,

129, 268, 278
map enumeration expression 119, 127
map type 109, 114, 384

400 INDEX

MComp 62, 139, 188
MDA 190, 193

domains of 190
signature of 191

MDes 190, 193, 200, 209
meaning 16, 59, 71, 73, 185, 201, 203
MFunc 61, 73, 78, 186
MIdent 186
minimal type 32, 82, 102, 141, 371
mk 61, 386
MNam 190, 206, 209
Mod 63, 188
Modcomp 66, 105, 372
model of λπ-calculus 179
model-oriented specification 1, 32, 33,

71, 150, 201
modification predicate symbol 63, 188
modification right 103
modl 63, 65, 188, 239
modular structuring 15, 24

criteria for 24, 254
goals of 15, 211

module 210, 212, 389
Module 214
module abstraction 26, 218, 265
module algebra see MA
module application 26, 219, 266
module description 190
module description algebra see MDA
module description calculus 193
module name signature 190
module parameter 190
module renaming 189
module signature 222
module signature algebra see MSA
module signature calculus 197
module symbol 63, 189
module symbol signature 63, 189
MOp 62, 73, 78, 187
most general P-unifier 164
most general unifier

of description 164
of origin partition 164

MPar 190, 193, 209
MPLω 16, 35, 150, 233, 237, 238, 359

interpretation of 44
language of 39

proof system of 42
properties of 46

MRen 190, 193, 197, 200, 220
MSA 192, 197

signature of 192
MSig 190, 193, 197, 200, 206, 208, 216,

221
MSSig 63, 189, 207
MState 62, 123, 188
MSym 63, 189, 197, 207, 220
MType 61, 73, 78, 186
mtyping 80, 81, 124, 131, 146, 371
mural 4, 9
MVal 62, 73, 78, 188
MVar 62, 73, 78, 90, 187

Nam 155, 190
name

of DA 61, 155
of MDA 190

name 209, 221, 372
name clashes 151
name context 75

notation for elements of 75, 369
name equivalence 60, 155
names 75, 89, 216, 369
name signature 157
n-ary relation 270
natural number 111
natural type 108, 111, 376
ncxt 206, 217, 371
NCxt 75, 88, 98, 110, 122, 138, 214
negation expression 134
negation temporal formula 143
next temporal formula 142
next temporal term 146
NIdent 186
nilS 101, 386
non-atomic operation 21, 94, 136
non-deterministic expression 101
non-deterministic operation 94
nonvars 76, 105, 370
normal form of lambda term 182
normal form of schema 280
normal symbol 73
NSym 73, 90, 208
numeral expression 132

INDEX 401

Obj 153
object symbol 153
OCon 60, 152, 216
old contents expression 131
OPar 153
operation decomposition 8
operation definition 89, 94, 104
operation modelling 8
operation symbol 62, 187
optimal scheduler 254
Orig 60, 153
origin 60, 153
origin consistency enforcing

description 225
origin consistent description 152, 164,

165, 223
origin constant 60, 152
origin partition 150, 153, 155
origin substitution 162
origin substitution operation 167
origin unique 167
origin variable 60, 152
OSub 162
OV 162
OVar 60, 152, 216

Par 166, 190
par 209, 216, 217, 372
parameter 166
parameter context 208, 216
parameter restriction 170, 204
parameter restriction module 26, 29,

218, 263
parameter signature 166
parametrized module 263
partial function 5, 36, 118, 268
PCTE 14
PCxt 208, 215
PIdent 61, 77, 186
post-condition

of function 92, 95, 102
of operation 5, 6, 21, 94, 95, 104

pre-condition 390
of function 92, 95, 102
of operation 5–7, 21, 94, 95, 104

Pred 153
PRED 38

pre-defined name 61, 186
predefs 77, 207
predicate lock 254, 333
predicate operator 50
predicate substitution 49
predicate symbol 38, 153
predicate type 38
Prefix 67, 142, 239, 372
previous temporal formula 143
previous temporal term 146
product of origin partitions 153
proof 43
proof assistant 9
proof obligation 5, 8

for adequacy 8
for implementibility 6

proof rules for VVSL 231
proof system

of LPF 232
of MPLω 42

proper function symbol 61, 186
property-oriented specification 1, 151
proto-context 74, 208
P-unifiable 164
P-unifier 163

QCxt 208
query 95, 109, 251, 257, 303, 315
quotient relation 253
quoting of pre- and post-conditions 7

raise 80, 134, 141, 370
raising of type 80
rational number 112
rational type 108, 112, 379
RDM concepts 250, 261
redβ 183, 200, 206
redπ 183
reduction

for λπ[A] 181
for λπ++[M] 196
for λπ++[S] 198

reference expression 132
reference module 220
referential integrity 248
refinement

of descriptions 159

402 INDEX

of origin partition 153
relation 91, 247, 255, 270, 275, 280,

286, 303, 315, 319, 331, 338, 347
relational algebra 248, 270
relational approach 245, 297
relational assignment 318
relational calculus 248
relational database 275
relation constraint 256, 286
relation name 255, 262, 275, 282, 304,

316, 319, 331, 338
relation schema 117, 248, 256, 280,

282, 287, 312, 319
Ren 156, 189, 190
renameable 168, 198, 217
renaming 156, 186, 220
Renaming 214
renaming module 26, 217
renaming of renaming 168
renaming operation

on descriptions 158
on names 157
on parameters 167
on signatures 157

result rule 9
retrieve function 8
rng of renaming 156, 230

S 197
s0 62, 90, 187
schema

of database 282
of relation 280

scxt 204
SCxt 204, 214
SDcl 73
sdcls 74, 75, 216, 369
selection formula 91, 118, 257, 300,

304
semantics

of an imperative language 238
of flat VVSL 59, 71, 233, 237
of structuring language 185, 201,

238
of VDM-SL 71
of VVSL 16

semi-abstract description 227

sequence enumeration expression 120,
126

sequence type 109, 113, 381

sequent

in λπ-calculus 177

in MPLω 42

set comprehension expression 119,
128, 270, 388

set enumeration expression 119, 127

set type 109, 114, 382

sig 39, 52, 54, 89, 229

Sig 157, 190

signature

in MPLω 38

of algebraic system with pre-order
172

Signature 214

signature context 204

signature enumeration 221

signature operation 158

simple formula 258, 328, 331, 347

simultaneous inductive definition

of functions 57

of predicates 56

since temporal formula 143

Sort 153

SORT 38

sort 39, 124, 146, 372

sort symbol 38, 153

SpecDocument 211

specialization of DA 186

specialization of λπ-calculus 192

special symbol 61

specification document 210, 212, 390

specifying interference 15, 20

SSig 154, 189

state 5, 62, 64, 92, 187

of AH 259, 344

of DBMS 257, 314

State 62, 76, 79, 90, 105, 147, 187, 238

state-based specification 14, 71, 150,
201

state invariant 23, 314

state selection function symbol 62, 187

state sort symbol 62, 187

state symbol 62, 90, 106, 188

INDEX 403

state variable 29, 65, 92, 131, 136,
150, 152, 230, 240, 314

state variable definition 89, 93, 103
state variable symbol 62, 187
STerm 200, 204, 215
sterm 200, 204
stn 62, 90, 105, 142, 187, 238
strict concurrency control 254
strongly normalizing 182
structured proof 237
structure in MPLω 44
structuring language 16, 19, 149, 185,

201
SType 60, 78, 154
sub 78
substitution

in λπ-calculus 175
in MPLω 41

subtype 30, 63, 67, 79, 91, 99
subtype declaration 73
subtype in context 78, 370
Suffix 67, 142, 239, 372
sum

of descriptions 159
of origin partitions 153

superstrict concurrency control 254,
338

sym 78
Sym 60, 154, 186
symbol 60, 154, 186
symbol context 74, 216
symbols 74, 207, 208, 216, 369
symbol signature 60, 154, 186
symbol type 60, 154
syntactic ambiguity 83
syntax notation 83
system log 252, 344

table 272
column name of 272
row of 272

temporal formula 85, 136, 210, 389
temporal logic

language of 16, 22, 346
proof system of 235

temporal reasoning 234
temporal term 136

as temporal formula 140
Term 64, 79, 123, 139
term

of λπ-calculus 174
of MPLω 39

TFormula 138
Th 154, 165, 169, 225
theory of description 150, 165, 166
ThS 165, 230
TM concepts 252
total function 92
transaction 325
transaction backup 249, 325
transaction management 246, 326
transaction name 258, 327, 334, 342,

347
transition log 259, 341, 342, 347
transition mode 338
transition record 259, 338, 341, 347
truth value 111
truth-valued expression 133
truth-valued temporal term 140
TTerm 82, 138
tuple 85, 119, 255, 267, 270, 278, 300,

328, 332, 347
tuple-of-predicates operator 56
tuple predicate 268, 300, 328
tuple structure 256, 278, 280, 300,

304, 328
two-phase locking 254
type 85, 210
Type 75, 80, 111, 122, 138
Type[A] 173
type compatible 82, 134, 141, 371
type definition 89, 91, 387

of subtype 99
of union type 99
of union type with nil 100

TypedName 209, 214
typed relation 96
type in λπ-calculus 173
type in VVSL 108
type name 116
type of defined function 53
type of defined predicate 48
type of predicate operator 50
types and modules 33

404 INDEX

type symbol 61, 186
typing of expressions 30, 78, 79, 122

UD 164
UIdent 61, 73, 80, 186
undefined function symbol 38
unfold 195
unification for origin partitions 163
unifier

of description 164
of origin partition 163

unifying operation 159
union operation on signatures 157
union signature 221
union type 91, 99
until temporal formula 142
UP 163
user-defined name 61, 186

value 255, 262, 267
value constant 257, 298, 300, 304, 328
value symbol 62, 99, 124, 140, 188
VAR 39
variable symbol

in λπ-calculus 173
in MPLω 39

Varmod 65, 104, 372
VDM 1

computer-based support for 9
extensions of 14
formal specification in 5
verified design in 8

VDM-SL 1, 16, 19, 20, 25, 30, 72
verified design 2, 8
VIP 14
visible 205
visible 205, 218, 371
VVSL 14, 19

modular structuring in 24, 245
specifying interference in 20, 245
type discipline of 30

well-formedness 30, 72, 73, 82, 191,
193, 202, 203, 205

well-formedness in MPLω 41
well-typedness 82, 124, 146, 371

Z 1, 10
ZF set theory 260

