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Abstract

Network algebra is proposed as a uniform algebraic framework for the descrip-
tion and analysis of dataflow networks. An equational theory, called BNA
(Basic Network Algebra), is presented. BNA, which is essentially a part of the
algebra of flownomials, captures the basic algebraic properties of networks. For
synchronous and asynchronous dataflow networks, additional constants and ax-
ioms for connections are given; and corresponding process algebra models are
introduced. The main difference between these models is in the interpretation
of the identity connections, called wires in dataflow networks. The process al-
gebra model for the asynchronous case is compared with previous models.
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1 Introduction

In this paper we pursue an axiomatic approach to the theory of dataflow networks.
Network algebra is presented as a general algebraic setting for the description and
analysis of dataflow networks. A network can be any labelled directed hypergraph
that represents some kind of flow between the components of a system. For example,
flowcharts are networks concerning flow of control and dataflow networks are networks
concerning flow of data. Assuming that the components have a fixed number of input
and output ports, such networks can be built from their components and (possibly
branching) connections using parallel composition (++), sequential composition (◦)
and feedback (↑). The connections needed are at least the identity (I) and transposi-
tion (X) connections, but branching connections may also be needed for specific classes
of networks – e.g. the binary ramification (∧) and identification (∨) connections and
their nullary counterparts (⊥ and >) for flowcharts.

An equational theory concerning networks that can be built using the above-
mentioned operations with only the identity and transposition constants for connec-
tions, called BNA (Basic Network Algebra), is presented. The axioms of BNA are
sound and complete for such networks modulo graph isomorphism. BNA is the core of
network algebra; for the specific classes of networks covered, there are additional con-
stants and/or axioms. Flowcharts constitute one such class. BNA is essentially a part
of the algebra of flownomials of Căzănescu and Ştefănescu [23] which was developed
for the description and analysis of flowcharts.

In addition to BNA, extensions for synchronous and asynchronous dataflow net-
works are presented. In both cases, process algebra models are given. These models
provide for a very straightforward connection between network algebra and process
algebra. Process algebra is closely related to programming, whereas network algebra
is used for describing systems as a network of interconnected components. A clear
connection between them appears to be useful. The process algebra model of asyn-
chronous dataflow networks is additionally connected with various previous models of
these networks, including Kahn’s history model [34], Broy’s oracle based models [19],
and Jonsson’s trace model [33].

For the process algebra models, ACP (Algebra of Communicating Processes) of
Bergstra and Klop [12] is used, with the silent step and abstraction, as well as the
following additional features: renaming, conditionals, iteration, prefixing and com-
munication free merge. Besides, a discrete-time extension of process algebra is used
to model synchronous dataflow networks.

There are strong connections between the work presented in this paper and other
recent work. SCAs (Synchronous Concurrent Algorithms), introduced by Thompson
and Tucker in [44], can be described in the extension of BNA for synchronous dataflow
networks. In [10], Barendregt et al. present a model of computable processes which is
essentially a model of BNA; but a slightly different choice of primitive operations and
constants is used. It is also worth mentioning that the examples of Brock and Acker-
mann [18] and Russell [40] demonstrating a time anomaly in asynchronous dataflow
networks are presented in a concise way in this paper, using network algebra for de-
scribing the networks of cells and wires and using process algebra for describing the
atomic cells.

The paper starts with an outline of network algebra (Section 2) and some process
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algebra preliminaries (Section 3). Next the signature, the axioms and two models of
BNA, including a general process algebra model, are presented (Section 4). There-
after the signature, the axioms and the process algebra models of the network algebras
for synchronous and asynchronous dataflow are presented (Section 5 and Section 6,
respectively). For synchronous dataflow networks, a more abstract model based on
stream transformers is given directly (Section 5). For asynchronous dataflow net-
works, several more abstract models are derived from the process algebra model and
compared (Section 7). The non-standard mathematical notation for sets, sequences
and tuples used in this paper is explained in an appendix.

2 Overview of network algebra

This section gives an idea of what network algebra is. The meaning of its operations
and constants is explained informally making use of a graphical representation of
networks. Besides, dataflow networks are presented as a specific class of networks
and the further subdivision into synchronous and asynchronous dataflow networks is
explained in broad outline. The formal details will be treated in subsequent sections.

2.1 General

In the first place, the meaning of the operations and constants of BNA mentioned
in Section 1 (++, ◦, ↑, I and X) is explained. Following, the meaning of the addi-
tional constants for branching connections mentioned in Section 1 (∧, ⊥, ∨ and >)
is explained.

It is convenient to use, in addition to the operations and constants of BNA, the
extensions ↑m, Im and mXn of the feedback operation and the identity and transposi-
tion constants. These extensions are defined by the axioms R5–R6, B6 and B8–B9,
respectively, of BNA (see Section 4.1, Table 1). They are called the block extensions
of the feedback operation and these constants. The block extensions of additional
constants for branching connections can be defined in the same vein.

In Figure 1, the meaning of the operations and constants of BNA (including the
block extensions) is illustrated by means of a graphical representation of networks.
We write f : k → l to indicate that network f has k input ports and l output ports;
k → l is called the sort of f . The input ports are numbered 1, . . . , k and the output
ports 1, . . . , l. In the graphical representation, they are considered to be numbered
from left to right. The networks are drawn with the flow moving from top to bot-
tom. Note that the symbols for the feedback operation and the constants fit with this
graphical representation. In Figure 2, the meaning of (block extensions of) the addi-
tional constants for branching connections mentioned in Section 1 (∧, ⊥, ∨ and >) is
illustrated by means of a graphical representation. The symbols for these additional
constants fit also with the graphical representation. The graphical representations of
⊥3 and >2 reflect to a certain extent the axioms F3 and F4, respectively, for these
constants (see e.g. Section 4.1, Table 2).

The operations and constants illustrated above allow to represent all networks
(cf. [42]). For example,

rk,l = ((◦k−1
i=1 (Ik−i ++++i f ++ Il−i)◦◦l−k

i=0(Ii ++++k f ++ Il−k−i)◦◦1i=k−1(Il−i ++++i f ++ Ik−i))◦ lXk) ↑l
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Figure 2: Additional constants for branching connections

where k < l and f : 2 → 2, represent a regular network (some abbreviations are used
here: iterated sequential composition ◦n

i=mfi = fm◦. . .◦fn and parallel composition to
the nth ++n f = f ++ . . . ++ f (n times)). The instance r3,4 is illustrated in Figure 3.

The graphical illustration of the meaning of the operations and constants of BNA
in Figure 1 gives intuitive grounds for the soundness of the axioms of BNA (see
Section 4.1, Table 1) for the intended network model. Similarly, the illustration of
the meaning of the additional constants for branching connections in Figure 2 makes
most additional axioms for these constants (see e.g. Section 4.1, Table 2) plausible.

2.2 Dataflow networks

In the case of dataflow networks, the components are also called cells. The identity
connections are called wires and the transposition connections are viewed as crossing
wires. The cells are interpreted as processes that consume data at their input ports,
compute new data, deliver the new data at their output ports, and then start over
again. The wires are interpreted as queues of some kind. The classical kinds consid-
ered are firstly queues that deliver data with a neglectible delay and never contain
more than one datum, and secondly unbounded, delaying queues. In this paper, they
are called minimal stream delayers and stream delayers, respectively. A stream is a
sequence of data consumed or produced by a component of a dataflow network. A
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Figure 3: A regular network

flow (of data) is a transformation of a tuple of streams into a tuple of streams. A
wire behaves as an identity flow. If the wire is a stream delayer, data pass through
it with a time delay. If the wire is a minimal stream delayer, data enter and leave it
with a neglectible delay – i.e. within the same time slice in case time is divided into
time slices with the length of the time unit used.

In synchronous dataflow networks, the wires are minimal stream delayers. Basic
to synchronous dataflow is that there is a global clock. On ticks of the clock, cells can
start up the consumption of exactly one datum from each of their input ports and the
production of exactly one datum at each of their output ports. A cell that started up
with that completes the production of data before the next tick, and it completes the
consumption of data as soon as a new datum has been delivered at all input ports. On
the first tick following the completion of both, the cell concerned starts up again. In
order to start the synchronous dataflow network, every cell has, for each of its output
ports, an initial datum available to deliver on the initial tick. The underlying idea of
synchronous dataflow is that computation takes a good deal of time, whereas storage
and transport of data takes a neglectible deal of time. Phrased differently, data always
pass through a wire between two consecutive ticks of the global clock. So minimal
stream delayers fit in exactly with this kind of dataflow networks. The semantics of
synchronous dataflow networks turns out to be rather simple and unproblematic.

In asynchronous dataflow networks, the wires are stream delayers. The underlying
idea of asynchronous dataflow is that computation as well as storage and transport of
data takes a good deal of time, which is sometimes more realistic for large systems.
In such cases, it is favourable to have computation driven by the arrival of the data
needed – instead of by clock ticks. Therefore, there is no global clock in an asyn-
chronous dataflow network. Cells may independently consume data from their input
ports, compute new data, and deliver the new data at their output ports. Because
it means that there may be data produced by cells but not yet consumed by other
cells, this needs wires that are able to buffer an arbitrary amount of data. So stream
delayers fit in exactly with this kind of dataflow networks. However, the semantics
of asynchronous dataflow networks turns out to be rather problematic. The main
semantic problem is a time anomaly, known as the Brock-Ackermann anomaly. With
feedback, timing differences in producing data may become important and the time
anomaly actually shows that delaying queues do not perfectly fit in with that. Besides,
the unbounded queues needed to keep an arbitrary amount of data are unrealistic.
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Note that a synchronous dataflow network can be viewed as a extreme case of an
asynchronous one, where the queues never contain more than one datum.

Dataflow networks also need branching connections. Their branching structure is
more complex than the branching structure of flowcharts. In case of flowcharts, there
is a flow of control which is always at one point in the flowchart concerned. In conse-
quence, the interpretation of the branching connections is rather obvious. However,
in case of dataflow networks, there is a flow of data which is everywhere in the net-
work. Hence, the interpretation of the branching connections is not immediately clear.
In this paper, two kinds of interpretation are considered. For the binary branching
connections, they are the copy/equality test interpretation and the split/merge inter-
pretation. The first kind of interpretation fits in with the idea of permanent flows
of data which naturally go in all directions at branchings. Synchronous dataflow re-
flects this idea most closely. The second kind of interpretation fits in with the idea
of intermittent flows of data which go in one direction at branchings. Asynchronous
dataflow reflects this idea better. In order to distinguish between the branching con-
stants with these different interpretations, different symbols for ∧m and ∨m are used:
◦∧m and ◦∨m for the copy/equality test interpretation, •∧m and •∨m for the split/merge
interpretation. Likewise, different symbols for the nullary counterparts ⊥m and >m

are used: ◦m and ◦m versus •m and •m. ◦m and •m are called sink and dummy sink,
respectively; and ◦m and •m are called source and dummy source, respectively.

In the synchronous case, with minimal stream delayers as identity connections and
the copy/equality test interpretation of the branching connections, it turns out that
two axioms from Table 2 (A3 and F5) are not valid. Fortunately the others together
with two new axioms A3◦ and F5◦ (see Section 5.1, Table 3) give a complete set of
axioms. The asynchronous case is somewhat problematic owing to the time anomaly
that occurs in the model outlined above. Several other models for asynchronous
dataflow have been proposed as alternatives, but the valid axioms differ from one
model to another. In the process algebra model presented in this paper, with stream
delayers as identity connections and the split/merge interpretation of the branching
connections, it turns out that five axioms from Table 2 (A5, A7, A10, A11 and F5)
are not valid. The question whether there is a complete set of axioms for this model is
left open. The relationship between the branching constants from both kinds remains
to be investigated as well: the copy/equality test interpretation of the branching
connections seems also meaningful in the asynchronous case.

Dataflow networks have been extensively studied, see e.g. [10, 17, 18, 19, 33, 34,
37, 40].

3 Process algebra preliminaries

This section gives a brief summary of the ingredients of process algebra which make
up the basis for the process algebra models presented in Sections 4, 5 and 6. We will
suppose that the reader is familiar with them. Appropriate references to the literature
are included.

We will make use of ACP, introduced in [12], extended with the silent step τ and
the abstraction operator τI for abstraction. Semantically, we adopt the approach to
abstraction, originally proposed for ACP in [29], which is based on branching bisim-
ulation. ACP with this kind of abstraction is called ACPτ . In ACP with abstraction,
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processes can be composed by sequential composition, written P ·Q, alternative com-
position, written P + Q, parallel composition, written P ‖ Q, encapsulation, written
∂H(P ), and abstraction, written τI(P ). We will also use the following abbreviation.
Let (Pi)i∈I be a indexed set of process expressions where I = {i1, . . . , in}. Then, we
write

∑
i∈I Pi for Pi1 + . . .+Pin if n > 0 and δ if n = 0. For a systematic introduction

to ACP, the reader is referred to [9].
Further we will use the following extensions:

renaming We need the possibility of renaming actions. We will use the renaming
operator ρf , added to ACP in [1]. Here f is a function that renames actions
into actions, δ or τ . The expression ρf (P ) denotes the process P with every
occurrence of an action a replaced by f(a). So the most crucial equation from
the defining equations of the renaming operator is ρf (a) = f(a).

conditionals We will use the two-armed conditional operator ¢¤ as in [3]. The
expression P ¢b¤Q, is to be read as if b then P else Q. The defining equations are
P ¢t¤Q = P and P ¢f¤Q = Q. Besides, we will use the one-armed conditional
operator :→ as in [3]. The expression b :→ P can only be performed if b 6= f; it
is often referred to as a guarded command. The one-armed conditional operator
is defined by b :→ P = P ¢b¤ δ.

iteration We will also use the binary version of Kleene’s star operator ∗, added to
ACP in [11], with the defining equation P ∗Q = P · (P ∗Q)+Q. The behaviour
of P ∗ Q is zero or more repetitions of P followed by Q.

early input and process prefixing We will additionally use early input action pre-
fixing and the extension of this binding construct to process prefixing, both
added to ACP in [4]. Early input action prefixing is defined by the equation
eri(x) ; P =

∑
d∈D ri(d) · P [d/x]. We use the extension to processes mainly to

express parallel input: (er1(x1) ‖ . . . ‖ ern(xn)) ; P . We have:

(er1(x1) ‖ er2(x2)) ; P =
∑

d1∈D

r1(d1) · (er2(x2) ; P [d1/x1])

+
∑

d2∈D

r2(d2) · (er1(x1) ; P [d2/x2])

(er1(x1) ‖ er2(x2) ‖ er3(x3)) ; P =
∑

d1∈D

r1(d1) · ((er2(x2) ‖ er3(x3)) ; P [d1/x1])

+
∑

d2∈D

r2(d2) · ((er1(x1) ‖ er3(x3)) ; P [d2/x2])

+
∑

d3∈D

r3(d3) · ((er1(x1) ‖ er2(x2)) ; P [d3/x3])

etc.

communication free merge We will not only use the merge operator (‖) of ACP,
but also the communication free merge operator (|||). The communication free
merge operator can be viewed as a special instance of the synchronisation merge
operator ‖H of CSP, also added to ACP in [4], viz. the instance for H = ∅. It
is defined by P ||| Q = P bbb Q + Q bbb P , where bbb is defined as bb except that
a · P bbb Q = a · (P ||| Q). Communication free merge can also be expressed in
terms of parallel composition, encapsulation and renaming.
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discrete time We need a discrete time extension of ACP with relative timing. We
will use the extension introduced in [5], called ACPdrt, with abstraction as added
to it in [6]. Here we give a brief summary. We refer to [5] and [6] for further
details on ACPdrt and ACPτ

drt, respectively.

Time is divided into slices indexed by natural numbers. These time slices repre-
sent time intervals of a length which corresponds to the time unit used. We will
use the constants a, a (for each a in some given set of actions), τ and δ, as well
as the delay operator σrel. The process a is a performed in any time slice and a
is a performed in the current time slice. Similarly, τ is a silent step performed
in the current time slice and δ is a deadlock in the current time slice. The
process σrel(P ) is P delayed one time slice. In this paper, we use the notations
from [2]. In [5], the notations ats(a), cts(a) and cts(δ) are used instead of a,
a and δ, respectively. Likewise, in [6], the notation cts(τ) is used instead of τ .
The process a is defined in terms a and σrel by the equation a = a + σrel(a). In
a parallel composition P1 ‖ . . . ‖ Pn the transition to the next time slice is a
simultaneous transition of each of the Pis. For example, δ ‖ σrel(b) will never
perform b because δ can neither be delayed nor performed, so δ ‖ σrel(b) = δ.
However, a ‖ σrel(b) = a · σrel(b).

We will also use the above-mentioned extensions of ACP in the setting of ACPdrt.
The integration of renaming, conditionals, iteration and communication free
merge in the discrete time setting is obvious. The integration of early input and
process prefixing may seem less clear at first sight, but the relevant equations
are simply er

i
(x) ; P =

∑
d∈D r

i
(d) · P [d/x] and σrel(P ) ; Q = σrel(P ; Q).

4 Basic network algebra

BNA is essentially the part of the algebra of flownomials [23] that is common to various
classes of networks. In particular, it is common to flowcharts and dataflow networks.
The additional constants, needed for branching connections, differ however from one
class to another. In this section, BNA is presented. First of all, the signature and
axioms of BNA are given. The extension of BNA to the algebra of flownomials is also
addressed here. In addition, two models of BNA are described: a data transformer
model and a process algebra model. In subsequent sections, extensions of BNA for
synchronous and asynchronous dataflow networks are provided.

4.1 Signature and axioms of BNA

Signature

In network algebra, networks are built from other networks – starting with atomic
components and a variety of connections. Every network f has a sort k → l, where
k, l ∈ N, associated with it. To indicate this, we use the notation f : k → l. The
intended meaning of the sort k → l is the set of networks with k input ports and l
output ports. So f : k → l expresses that f has k input ports and l output ports.

The sorts of the networks to which an operation of network algebra is applied
determine the sort of the resulting network. In addition, there are restrictions on the
sorts of the networks to which an operation can be applied. For example, sequential
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composition can not be applied to two networks of arbitrary sorts because the number
of output ports of one should agree with the number of input ports of the other.

The signature of BNA is as follows:

Name Symbol Arity

Operations:

parallel composition ++ (k → l)× (m → n) → (k + m → l + n)

sequential composition ◦ (k → l)× (l → m) → (k → m)

feedback ↑ (m + 1 → n + 1) → (m → n)

Constants:

identity I 1 → 1

transposition X 2 → 2

Here k, l, m, n range over N. This means, for example, that there is an instance of the
sequential composition operator for each k, l,m ∈ N.

As mentioned in Section 2, we will also use the block extensions of feedback,
identity and transposition. The arity of these auxiliary operations and constants is
as follows:

Symbol Arity

↑l (m + l → n + l) → (m → n)

Im m → m

mXn m + n → n + m

Axioms

The axioms of BNA are given in Table 1. The axioms B1–B6 for ++, ◦ and Im define

B1 f ++ (g ++ h) = (f ++ g) ++ h R1 g ◦ (f ↑m) = ((g ++ Im) ◦ f) ↑m

B2 I0 ++ f = f = f ++ I0 R2 (f ↑m) ◦ g = (f ◦ (g ++ Im)) ↑m

B3 f ◦ (g ◦ h) = (f ◦ g) ◦ h R3 f ++ (g ↑m) = (f ++ g) ↑m

B4 Ik ◦ f = f = f ◦ Il R4 (f ◦ (Il ++ g)) ↑m= ((Ik ++ g) ◦ f) ↑n

B5 (f ++ f ′) ◦ (g ++ g′) = (f ◦ g) ++ (f ′ ◦ g′) for f : k + m → l + n, g : n → m
B6 Ik ++ Il = Ik+l R5 f ↑0= f
B7 kXl ◦ lXk = Ik+l R6 (f ↑l) ↑k= f ↑k+l

B8 kX0 = Ik
B9 kXl+m = (kXl ++ Im) ◦ (Il ++ kXm)
B10 (f ++ g) ◦ mXn = kXl ◦ (g ++ f) F1 Ik ↑k= I0

for f : k → m, g : l → n F2 kXk ↑k= Ik

Table 1: Axioms of BNA

a strict monoidal category; and together with the additional axioms B7–B10 for mXn,
they define a symmetric strict monoidal category (ssmc for short). The remaining
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axioms R1–R6 and F1–F2 characterize ↑l. The axioms R5–R6, B6 and B8–B9 can be
regarded as the defining equations of the block extensions of ↑, I and X, respectively.

The axioms of BNA are sound and complete for networks modulo graph isomor-
phism (cf. [42]). Using the graphical representation of Section 2.1, it is easy to see that
the axioms in Table 1 are sound. By means of the axioms of BNA, each expression
can be brought into a normal form

((Im ++ x1 ++ . . . ++ xk) ◦ f) ↑m1+...+mk

where the xi : mi → ni (i ∈ [k]) are the atomic components of the network and
f : m+n1+. . .+nk → n+m1+. . .+mk is a bijective connection. A network is uniquely
represented by a normal form expression up to a permutation of x1, . . . , xk. The
completeness of the axioms of BNA now follows from the fact that these permutations
in a normal form expression are deducible from the axioms of BNA as well.

As a first step towards the stream transformer and process algebra models for
dataflow networks described in Sections 5 and 6, a data transformer model and a
process algebra model of BNA are provided immediately after the connection with
the algebra of flownomials has been addressed.

Extension to the algebra of flownomials

The algebra of flownomials is essentially1 a conservative extension of BNA. Recall
that the algebra of flownomials was not developed for dataflow networks, but for
flowcharts. The signature of the algebra of flownomials is obtained by extending the
signature of BNA as follows with additional constants for branching connections:

Name Symbol Arity Instances

Additional constants:

ramification ∧k 1 → k

{ ∧ := ∧2

⊥ := ∧0

identification ∨k k → 1
{ ∨ := ∨2

> := ∨0

We will restrict our attention to the instances for k = 0 and k = 2, i.e. ∧, ⊥, ∨ and
>. The other instances can be defined in terms of them:

∧k+1 = ∧ ◦ (∧k ++ I)

∨k+1 = (∨k ++ I) ◦ ∨

It follows from these definitions, together with the axioms A3 and A7 of the algebra
of flownomials (see Table 2), that ∧1 = ∨1 = I.

We will use the block extensions of ∧, ⊥, ∨ and >. The arity of these auxiliary
constants is as follows:

1For naming ports, an arbitrary monoid is used in the algebra of flownomials whereas the monoid
of natural numbers is used in BNA.
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Symbol Arity

∧m m → 2m

⊥m m → 0

∨m 2m → m

>m 0 → m

The axioms for the additional constants of the algebra of flownomials are given in
Table 2. These axioms where chosen in order to describe the branching structure of

A1 (∨m ++ Im) ◦ ∨m = (Im ++ ∨m) ◦ ∨m A5 ∧m ◦ (∧m ++ Im) = ∧m ◦ (Im ++ ∧m)
A2 mXm ◦ ∨m = ∨m A6 ∧m ◦ mXm = ∧m

A3 (>m ++ Im) ◦ ∨m = Im A7 ∧m ◦ (⊥m ++ Im) = Im
A4 ∨m ◦ ⊥m = ⊥m ++ ⊥m A8 >m ◦ ∧m = >m ++ >m

A9 >m ◦ ⊥m = I0
A10 ∨m ◦ ∧m = (∧m ++ ∧m) ◦ (Im ++ mXm ++ Im) ◦ (∨m ++ ∨m)
A11 ∧m ◦ ∨m = Im

A12 >0 = I0 A16 ⊥0 = I0
A13 >m+n = >m ++ >n A17 ⊥m+n = ⊥m ++ ⊥n

A14 ∨0 = I0 A18 ∧0 = I0
A15 ∨m+n = (Im ++ nXm ++ In) ◦ (∨m ++ ∨n) A19 ∧m+n = (∧m ++ ∧n) ◦ (Im ++ mXn ++ In)

F3 ∨m ↑m= ⊥m F4 ∧m ↑m= >m

F5 ((Im ++ ∧m) ◦ (mXm ++ Im) ◦ (Im ++ ∨m)) ↑m= Im

Table 2: Additional axioms for flowcharts

flowcharts. The axioms A12–A19 can be regarded as the defining equations of the
block extentions of ∧, ⊥, ∨ and >.

The standard model for the interpretation of flowcharts is the model IRel(D) of
relations over a set D (cf. [23, 41]). All axioms of the algebra of flownomials (Tables 1
and 2) hold in this model. The algebraic structure defined by the axioms of BNA
(Table 1) was introduced in [42] under the name of biflow. In [43] it is called aα-
ssmc with feedback. The algebraic structure defined by the axioms of the algebra of
flownomials (Tables 1 and 2) is called dδ-ssmc with feedback in [43].

4.2 Data transformer model of BNA

In this subsection, a data transformer model is described. A parallel data transformer
f : m → n acts on an m-tuple of input data and produces an n-tuple of output
data. Parallel composition, sequential composition and feedback operators as well as
identity and transposition constants are defined on parallel data transformers. All
axioms of BNA (Table 1) hold in the resulting model.

Definition 4.1 (data transformer model of BNA)
A parallel data transforming relation f ∈ Rel(S)(m,n) is a relation

f ⊆ Sm × Sn

10



where S is a set of data. Rel(S) denotes the indexed family of data transforming
relations (Rel(S)(m,n))N× N.

The operations and constants of BNA are defined on Rel(S) as follows:

Name Notation

parallel composition f ++ g ∈ Rel(S)(m + p, n + q) for f ∈ Rel(S)(m, n), g ∈ Rel(S)(p, q)

sequential composition f ◦ g ∈ Rel(S)(m, p) for f ∈ Rel(S)(m, n), g ∈ Rel(S)(n, p)

feedback f ↑p ∈ Rel(S)(m,n) for f ∈ Rel(S)(m + p, n + p)

identity In ∈ Rel(S)(n, n)

transposition mXn ∈ Rel(S)(m + n, n + m)

Definition

f ++ g = {〈x_y, z_w〉 | x ∈ Sm, y ∈ Sp, z ∈ Sn, w ∈ Sq, 〈x, z〉 ∈ f ∧ 〈y, w〉 ∈ g}
f ◦ g = {〈x, y〉 | x ∈ Sm, y ∈ Sp, ∃z ∈ Sn · 〈x, z〉 ∈ f ∧ 〈z, y〉 ∈ g}
f ↑p = {〈x, y〉 | x ∈ Sm, y ∈ Sn, ∃z ∈ Sp · 〈x_z, y_z〉 ∈ f}

In = {〈x, x〉 | x ∈ Sn}
mXn = {〈x_y, y_x〉 | x ∈ Sm, y ∈ Sn}

2

These definitions are very straightforward. Note that this data transformer model
has a global crash property: if a component of a network fails to produce output, the
whole network fails to produce output.

Theorem 4.2 (Rel(S), ++, ◦, ↑, I, X) is a model of BNA.

Proof: The proof is a matter of straightforward calculation using only elementary
set theory. 2

Additional branching constants can be defined such that the resulting expanded
model satisfies most axioms of the algebra of flownomials (Tables 1 and 2). One such
set of branching constants is closely related to the one that is used in the design of
(nondeterministic) SCAs [44]. The corresponding expanded model is principally the
stream transformer model for synchronous dataflow networks described in Section 5
where an abstraction is made from the internals of the transformers: arbitrary data
is transformed instead of streams of data. However, >m must be interpreted like
◦

m in this data transformer model, to keep up relationships with SCAs, whereas it is
interpreted as •m in the stream transformer model for synchronous dataflow networks.

11



4.3 Process algebra model of BNA

Network algebra can be regarded as being built on top of process algebra.
Let D be a fixed, but arbitrary, set of data. D is a parameter of the model. The

processes use the standard actions ri(d), si(d) and ci(d) for d ∈ D only. They stand
for read, send and communicate, respectively, datum d at port i. On these actions,
communication is defined such that ri(d) | si(d) = ci(d) (for all i ∈ N and d ∈ D). In
all other cases, it yields δ.

We write H(i), where i ∈ N, for the set {ri(d) | d ∈ D} ∪ {si(d) | d ∈ D} and
I(i) for {ci(d) | d ∈ D}. In addition, we write H(i, j) for H(i) ∪ H(j), H(i + [k])
for H(i + 1) ∪ . . . ∪ H(i + k) and H(i + [k], j + [l]) for H(i + [k]) ∪ H(j + [l]). The
abbreviations I(i, j), I(i + [k]) and I(i + [k], j + [l]) are used analogously.

in(i/j) denotes the renaming function defined by

in(i/j)(ri(d)) = rj(d) for d ∈ D
in(i/j)(a) = a for a /∈ {ri(d) | d ∈ D}

So in(i/j) renames port i into j in read actions. out(i/j) is defined analogously, but
renames send actions. We write in(i+[k]/j+[k]) for in(i+1/j+1)◦. . .◦in(i+k/j+k)
and in([k]/j + [k]) for in(0 + [k]/j + [k]). The abbreviations out(i + [k]/j + [k]) and
out([k]/j + [k]) are used analogously.

Definition 4.3 (process algebra model of BNA)
A network f ∈ Proc(D)(m, n) is a triple

f = (m, n, P )

where P is a process with actions in {ri(d) | i ∈ [m], d ∈ D}∪ {si(d) | i ∈ [n], d ∈ D}.
Proc(D) denotes the indexed family of sets (Proc(D)(m,n))N× N.

A wire is a network I = (1, 1, w1
1), where w1

1 satisfies:

for all networks f = (m,n, P ) and u, v > max(m,n),

(P1) τI(u,v)(∂H(v,u)(w
u
v ‖ wv

u)) ||| P = P

(P2) τI(u,v)(∂H(u,v)((ρin(i/u)(P ) ||| wi
v) ‖ wv

u)) = P for all i ∈ [m]

(P3) τI(u,v)(∂H(u,v)((ρout(j/v)(P ) ||| wu
j ) ‖ wv

u)) = P for all j ∈ [n]

where wu
v = ρin(1/u)(ρout(1/v)(w

1
1))

The operations and constants of BNA are defined on Proc(D) as follows:

Name Notation

parallel composition f ++ g ∈ Proc(D)(m + p, n + q) for f ∈ Proc(D)(m, n), g ∈ Proc(D)(p, q)

sequential composition f ◦ g ∈ Proc(D)(m, p) for f ∈ Proc(D)(m, n), g ∈ Proc(D)(n, p)

feedback f ↑p ∈ Proc(D)(m,n) for f ∈ Proc(D)(m + p, n + p)

identity In ∈ Proc(D)(n, n)

transposition mXn ∈ Proc(D)(m + n, n + m)

12



Definition

(m,n, P ) ++ (p, q,Q) = (m + p, n + q,R) where R = P ||| ρin([p]/m+[p])(ρout([q]/n+[q])(Q))

(m,n, P ) ◦ (n, p, Q) = (m, p,R) where, for u = max(m, p), v = u + n,
R = τI(u+[n],v+[n])(∂H(u+[n],v+[n])((ρout([n]/u+[n])(P ) ||| ρin([n]/v+[n])(Q)) ‖ wu+1

v+1 ‖ . . . ‖ wu+n
v+n ))

(m + p, n + p, P ) ↑p = (m,n,Q) where, for u = max(m,n), v = u + p,

Q = τI(u+[p],v+[p])(∂H(u+[p],v+[p])(ρin(m+[p]/v+[p])(ρout(n+[p]/u+[p])(P )) ‖ wu+1
v+1 ‖ . . . ‖ wu+p

v+p ))

In = (n, n, P ) where P = w1
1 ||| . . . ||| wn

n if n > 0
τI(1,2)(∂H(1,2)(w

1
2 ‖ w2

1)) otherwise

mXn = (m + n, n + m, P ) where P = w1
n+1 ||| . . . ||| wm

n+m ||| wm+1
1 ||| . . . ||| wm+n

n if m + n > 0
τI(1,2)(∂H(1,2)(w

1
2 ‖ w2

1)) otherwise

2

The conditions (P1)–(P3) are rather obscure at first sight, but see the remark at the
end of this section. The definitions of sequential composition and feedback illustrate
clearly the differences between the mechanisms for using ports in network algebra and
process algebra. In network algebra the ports that become internal after composition
are hidden. In process algebra based models these ports are still visible; a special
operator must be used to hide them. For typical wires, τI(1,2)(∂H(1,2)(w

1
2 ‖ w2

1)) equals
δ, τ · δ or τ · δ (the latter only in case ACPτ

drt is used).
In the description of a process algebra model of BNA given above, all constants and

operators used are common to ACPτ and ACPτ
drt or belong to a few of their mutual

(conservative) extensions mentioned in Section 3 (viz. renaming and communication
free merge). As a result, we can specialize this general model for a specific kind of
networks using either ACPτ or ACPτ

drt; with further extensions at need. On the other
hand, we can obtain general results on these process algebra models: results that
only depend on properties that are common to ACPτ and ACPτ

drt or properties of the
mutual extensions used above.

Theorem 4.4 (Proc(D), ++, ◦, ↑, I, X) is a model of BNA.

Proof: According to [43], there is an algebra equivalent to BNA (the algebra of LR-
flow over IBi), but having two renumbering operations, for (bijectively) renumbering
input ports and output ports, instead of the transposition constant and the sequential
composition operation of BNA. Renumbering is just renaming in the corresponding
process algebra model. The crucial axioms concerning the constant In in the equational
theory of that algebra follow immediately from the conditions (P1)–(P3) on wires in
Definition 4.3. For quite a few axioms from this equational theory, the proof that
they are satisfied by the process algebra model is a matter of simple calculation
using only elementary properties of renaming, communication free merge, or parallel
composition and renaming. For the remaining axioms, reminiscent of the axioms R1–
R4 of BNA, the proof is a matter of straightforward calculation using in addition
properties of parallel composition and encapsulation or abstraction. All properties
concerned are common to ACPτ and ACPτ

drt or properties of the mutual extensions
used in Definition 4.3. 2
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So if we select a specific wire, such as msd1
1 in Section 5 and sd1

1 in Section 6, we
have obtained a model of BNA if the conditions (P1)–(P3) are satisfied by the wire
concerned. It is worth mentioning that the conditions (P1)–(P3) are equivalent to
the axioms B2 and B4 of BNA: (P1) corresponds to I0 ++ f = f = f ++ I0, (P2) to
Im ◦ f = f , and (P3) to f = f ◦ In.

5 Synchronous dataflow networks

In this section, an extension of BNA for synchronous dataflow networks is presented.
In the first place, the additional constants and axioms for synchronous dataflow are
given. After that, the adaptation of the data transformer model of Section 4.2 to syn-
chronous dataflow networks, resulting in a stream transformer model for synchronous
dataflow, is described. Finally, the specialization of the process algebra model of
Section 4.3 for synchronous dataflow networks is described.

5.1 Additional constants and axioms

The signature of the extension of BNA for synchronous dataflow networks is obtained
by extending the signature of BNA as follows with additional constants for branching
connections:

Name Symbol Arity

Additional constants:

copy ◦∧m m → 2m

sink ◦m m → 0

equality test ◦∨m 2m → m

dummy source •
m 0 → m

The symbols ◦∧m, ◦m and ◦∨m indicate that the copy/equality test interpretation is
intended here. For technical reasons, which are explained at the end of Section 5.2,
•

m is used instead of ◦m.
The axioms for these additional constants are given in Table 3. These axioms

agree with those for the additional constants of the algebra of flownomials (Table 2)
with two exceptions: A3 and F5 are replaced by A3◦ and F5◦.

In the next two subsections, the models introduced in Section 4 are specialized to
describe the semantics of the synchronous dataflow networks.

5.2 Stream transformer model for synchronous dataflow

In this subsection, an adaptation of the data transformer model of BNA (Section 4.2)
for synchronous dataflow is given.

In Section 4.2, no assumptions about the nature of the transformers were made.
Here the nature of the transformers needed for synchronous dataflow networks is made
precise, resulting in the definition of quasiproper stream transformers. The feedback
operation is adapted to reflect a special characteristic of feedback in synchronous
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A1 (◦∨m ++ Im) ◦ ◦∨m = (Im ++ ◦∨m) ◦ ◦∨m A5 ◦∧m ◦ (◦∧m ++ Im) = ◦∧m ◦ (Im ++ ◦∧m)
A2 mXm ◦ ◦∨m = ◦∨m A6 ◦∧m ◦ mXm = ◦∧m

A3◦ (•m ++ Im) ◦ ◦∨m = ◦m ◦ •m A7 ◦∧m ◦ (◦m ++ Im) = Im
A4 ◦∨m ◦ ◦m = ◦m ++ ◦m A8 •

m ◦ ◦∧m = •
m ++ •

m

A9 •
m ◦ ◦m = I0

A10 ◦∨m ◦ ◦∧m = (◦∧m ++ ◦∧m) ◦ (Im ++ mXm ++ Im) ◦ (◦∨m ++ ◦∨m)
A11 ◦∧m ◦ ◦∨m = Im

A12 •
0 = I0 A16 ◦0 = I0

A13 •
m+n = •

m ++ •
n A17 ◦m+n = ◦m ++ ◦n

A14 ◦∨0 = I0 A18 ◦∧0 = I0
A15 ◦∨m+n = (Im ++ nXm ++ In) ◦ (◦∨m ++ ◦∨n) A19 ◦∧m+n = (◦∧m ++ ◦∧n) ◦ (Im ++ mXn ++ In)

F3 ◦∨m ↑m= ◦m F4 ◦∧m ↑m= •
m

F5◦ ((Im ++ ◦∧m) ◦ (mXm ++ Im) ◦ (Im ++ ◦∨m)) ↑m= ◦m ◦ •m

Table 3: Additional axioms for synchronous dataflow networks

dataflow networks: data in the feedback loop produced in one time slice is not used
to produce new data before the next time slice.

The model Rel(S) of Section 4.2 is a general model. In case of dataflow, streams
of data are transformed. This means that

S = (D ∪ {√})∞ = N→ (D ∪ {√})

for some set of data D,
√

/∈ D. For a stream x ∈ S and k ∈ N, x(k) is the datum
occurring in that stream on the k-th tick of the global clock if x(k) ∈ D. The absence
of a datum is represented by

√
; so x(k) =

√
indicates that no datum occurs in

stream x on the k-th tick. This may happen, for example, with the equality test

◦∨1: no datum is delivered on the k-th tick unless equal data are offered at its input
ports on that tick. Owing to this approach to deal with the absence of data, it is
quite natural in case of synchronous dataflow to look at finite streams as infinite ones
where no datum occurs from a certain tick. This point of view has the additional
advantage that the relevant definitions can be kept simple. However, it is unnatural
to uphold this view-point for asynchronous dataflow.

The stream transformers used to model the cells in synchronous dataflow net-
works have a “dependency on the past” property which is captured by the following
definition.

Definition 5.1 (proper stream transformer)
A stream transformer f ∈ Rel(S)(m,n) is proper (or determined by the past) if

∀x ∈ Sm · ∀x′ ∈ Sm·
{y(0) | y ∈ Sn, 〈x, y〉 ∈ f} = {y′(0) | y′ ∈ Sn, 〈x′, y′〉 ∈ f}∧
∀k ∈ N · x(0..k) = x′(0..k) ⇒
{y(0..k + 1) | y ∈ Sn, 〈x, y〉 ∈ f} = {y′(0..k + 1) | y′ ∈ Sn, 〈x′, y′〉 ∈ f}

2

15



Note that this property reduces at the beginning to a “constant output initially”
property.

The proper stream transformers fail to include constants for connections such as
I, X, ◦∧ and ◦∨, because their intended meaning is to let data pass through them with
a neglectible delay. Because at least the constants I and X are necessary in order to
define a network algebra, stream transformers built from proper stream transformers
and stream transformers with input and output ports that are directly connected
must be allowed. The resulting stream transformers are called quasiproper stream
transformers. A similar notion is used in [10].

Definition 5.2 (direct connection)
Two ports i ∈ [m] and j ∈ [n] are directly connected via a stream transformer f ∈
Rel(S)(m,n) if

∀(x1, . . . , xm) ∈ Sm · ∀(y1, . . . , yn) ∈ Sn·
〈(x1, . . . , xm), (y1, . . . , yn)〉 ∈ f ⇒ xi = yj

We write dc(f) for the set {(i, j) | i is directly connected with j via f}
A stream transformer f ∈ Rel(S)(m,n) is a direct connection if

∀i ∈ [m] · ∃j ∈ [n] · (i, j) ∈ dc(f) ∧ ∀j ∈ [n] · ∃i ∈ [m] · (i, j) ∈ dc(f)

2

Definition 5.3 (quasiproper stream transformer)
A stream transformer in Rel(S)(m,n) is quasiproper if it can be described by an
expression of the form

h ◦ (Ik ++ ◦∧m−(k+l) ++ Il) ◦ (f ++ g) ◦ (Ik′ ++ ◦∨n−(k′+l′) ++ Il′) ◦ h′

where f ∈ Rel(S)(m−l, n−l′) is a proper stream transformer, g ∈ Rel(S)(m−k, n−k′)
is a direct connection, and h ∈ Rel(S)(m, m) and h′ ∈ Rel(S)(n, n) are bijective direct
connections. The constants ◦∧n ∈ Rel(S)(n, n+n) and ◦∨n ∈ Rel(S)(n+n, n) used here
are the ones defined below in Definition 5.4. The restriction of Rel(S) to quasiproper
stream transformers is denoted by QRel(S). The further restriction of QRel(S) to
functions is denoted by QFn(S). 2

With QFn(S) only deterministic dataflow networks can be modelled, while QRel(S)
covers non-deterministic dataflow as well. If S is a set of streams of data, i.e.
S = (D ∪ {√})∞ for some set of data D, the constants of BNA as defined on Rel(S)
in Section 4.2 are quasiproper functions. So the identity and transposition constants
are in QFn(S) and QRel(S). In addition, both QFn(S) and QRel(S) are closed under
the parallel and sequential composition operations as defined on Rel(S). As men-
tioned before, the feedback operation as defined on Rel(S) does not model feedback
in synchronous dataflow networks properly. A related problem is that QFn(S) is not
closed under this feedback operation. All this means that only a more appropriate
feedback operation and the additional constants for synchronous dataflow have to be
defined.
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Definition 5.4 (stream transformer model for synchronous dataflow)
The parallel and sequential composition operations on QRel(S) are the restrictions of
the parallel and sequential composition operations on Rel(S) to QRel(S). The identity
and transposition constants in QRel(S) are the ones in Rel(S).

The feedback operation is redefined on QRel(S) as follows:

Name Notation

feedback f ↑p ∈ QRel(S)(m,n) for f ∈ QRel(S)(m + p, n + p)

Definition

f ↑1 = {〈x, y〉 | x ∈ Sm, y ∈ Sn, ∃z ∈ S · 〈x_z, y_z〉 ∈ f} if (m + 1, n + 1) /∈ dc(f)
(Im ++ •

1) ◦ f ◦ (In ++ ◦1) otherwise

for p 6= 1, ↑p is defined by the equations occurring as axioms R5–R6 of BNA.

The constants •n ∈ QRel(S)(0, n) and ◦n ∈ QRel(S)(n, 0) used here are the ones
defined right away.

The additional constants for synchronous dataflow are defined on QRel(S) as fol-
lows:

Name Notation

copy ◦∧n ∈ QRel(S)(n, n + n)

sink ◦n ∈ QRel(S)(n, 0)

equality test ◦∨n ∈ QRel(S)(n + n, n)

source •
n ∈ QRel(S)(0, n)

Definition

◦∧n = {〈x, x_x〉 | x ∈ Sn}

◦n = {〈x, ()〉 | x ∈ Sn}

◦∨n = {〈(x1, . . . , xn, y1, . . . , yn), (x1 & y1, . . . , xn & yn)〉 | (x1, . . . , xn) ∈ Sn, (y1, . . . , yn) ∈ Sn}
where (x & y)(k) = x(k) if x(k) = y(k) and (x & y)(k) =

√
otherwise

•
n = {〈(), (√∞

, . . . ,
√∞)〉}

2

In Definition 4.1, the feedback operation was defined such that, for each data trans-
former f , the feedback loop behaves as the greatest fixpoint of f relative to the input
stream of f ↑. In case of proper stream transformers, there is always a unique fixpoint
provided the transformer is a function or a continuous relation (with respect to the
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prefixes of streams). It means that the feedback loop is also the least fixpoint. This is
needed to model feedback in synchronous dataflow networks properly; for otherwise
it does not agree with the operational understanding that it is iteratively feeding the
network concerned with data produced by it in the previous step. The adaptation
of the feedback operation given in Definition 5.4 is needed to get a unique fixpoint
in case of quasiproper stream transformers as well. It also guarantees that QFn(S)
is closed under feedback. Because ◦∧ ↑ now produces a dummy stream, it equals the
dummy source. For this reason, • is used instead of ◦ as constant for synchronous
dataflow. Note that this stream transformer model does not have the global crash
property of the data transformer model from Section 4.2: if a component of a network
fails to produce output on some tick of the global clock, the effect is merely that the
components connected to the port(s) concerned will fail to produce output on some
future tick.

Theorem 5.5 (QFn(S), ++, ◦, ↑, I, X) is a model of BNA. The constants ◦∧, ◦ , ◦∨, •
satisfy the additional axioms for synchronous dataflow networks (Table 3).

Proof: For the first part, it is enough to prove R1–R4 and F1–F2. According
to [21, 22], it suffices to prove R1–R4 for m = 1, and R4 additionally for k = l = 1
and g = 1X1. The proofs concerned are straightforward proofs by case distinction –
the cases depending on whether the ports relevant to the feedback loop are directly
connected or not. The second part is a matter of tedious, but simple calculation. 2

5.3 Process algebra model for synchronous dataflow

In this subsection, the specialization of the process algebra model of BNA (Section 4.3)
for synchronous dataflow networks is given. In this case, we will make use of ACPτ

drt.
Recall that ACPτ

drt is ACPdrt – the discrete relative time extension of ACP – extended
with abstraction based on branching bisimulation.

In Section 4.3, only a few assumptions about wires and atomic cells were made.
Here it is first explained how these ingredients are actualized for synchronous dataflow
networks. Because of the crucial role of the time slices determined by the ticks of a
global clock, discrete-time process algebra is used.

Definition 5.6 (wires and atomic cells in synchronous dataflow networks)
In the synchronous case, the identity constant, called the minimal stream delayer, is
the wire I1 = (1, 1, msd1

1) where msd1
1 is defined by

msd1
1 = τ · (er1(x) ; s

1
(x)) · σrel(msd

1
1)

The constants In, for n 6= 1, and mXn are defined by the equations occurring as axioms
B6 and B8–B9, respectively, of Table 1.

In the synchronous case, the deterministic cell computing a function f : Dm →
Dn, and having ~a = (a1, . . . , an) ∈ Dn as its initial output tuple, is the network
Cf (~a) = (m,n, Pf (~a)) where Pf is defined by

Pf (~a) = τ · (Out(~a) ||| ((er1(x1) ‖ . . . ‖ erm(xm)) ; σrel(Pf (f(x1, . . . , xm)))))

where Out(~a) = s
1
(a1) ‖ . . . ‖ s

n
(an)
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The non-deterministic cell computing a (finitely branching) relation R ⊆ Dm × Dn,
and having A ⊆ Dn as its set of possible initial output tuples, is the network CR(A) =
(m,n, PR(A)) where PR is defined by

PR(A) = τ · (Out(A) ||| ((er1(x1) ‖ . . . ‖ erm(xm)) ; σrel(PR(R(x1, . . . , xm)))))

where Out(A) = τ ¢A = ∅¤
∑

(a1,...,an)∈A

(s
1
(a1) ‖ . . . ‖ s

1
(an))

The restriction of Proc(D) to the processes that can be built under this actualiza-
tion is denoted by SProc(D). 2

The definition of msd1
1 expresses the following. The process msd1

1 waits until a datum
is offered at its input port. When a datum is available at the input port, msd1

1 delivers
the datum at its output port in the same time slice. From the next time slice, it
proceeds with repeating itself.
The definition of Pf expresses the following. In the current time slice Pf (~a) produces
the data a1, . . . , an at the output ports 1, . . . , n, respectively. In parallel, Pf (~a) waits
until one datum is offered at each of the input ports 1, . . . , m. The waiting may last
into subsequent time slices. When data are available at all input ports, Pf (~a) proceeds
with repeating itself from the next time slice with a new output tuple, viz. the value
of the function f for the consumed input tuple. The non-deterministic case (PR) is
similar.

For SProc(D), the operations and constants of BNA as defined on Proc(D) can
be taken with msd1

1 as wire. This means that only the additional constants for syn-
chronous dataflow have to be defined.

Definition 5.7 (process algebra model for synchronous dataflow)
The operations ++, ◦, ↑n on SProc(D) are the instances of the ones defined on Proc(D)
for msd1

1 as wire. Analogously, the constants In and mXn in SProc(D) are the instances
of the ones defined on Proc(D) for msd1

1 as wire.
The additional constants in SProc(D) are defined as follows:

Name Notation

copy ◦∧1 ∈ SProc(D)(1, 2)

sink ◦1 ∈ SProc(D)(1, 0)

equality test ◦∨1 ∈ SProc(D)(2, 1)

dummy source •
1 ∈ SProc(D)(0, 1)
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Definition

◦∧1 = (1, 2, copy1) where copy1 = τ · (er1(x) ; (s
1
(x) ‖ s

2
(x))) · σrel(copy1)

◦1 = (1, 0, sink1) where sink1 = τ · (er1(x) ; τ) · σrel(sink1)

◦∨1 = (2, 1, eq1) where eq1 = τ · (er1(x1) ; P2(x1) + er2(x2) ; P1(x2))
and Pi(x) = σrel(eq1) + er

i
(y) ; (s

1
(x) ¢x = y¤ τ) · σrel(eq1) for i ∈ [2]

•
1 = (0, 1, source1) where source1 = τ · δ

for n 6= 1, these constants are defined by the equations occurring as axioms A12–A19 in Table 3.

2

The equality test ◦∨1 does not necessarily perform one test per time slice; it does so
in order not to cause a time delay. The definition of eq1 expresses the following. The
process eq1 waits until a datum is offered at one of its input ports. When a datum
is available at one input port, it waits till the end of the time slice concerned for a
datum at the other port. If this happens, it tests the equality of the data, delivers
either in case the test succeeds, and then proceeds with repeating itself from the next
time slice. Otherwise, it skips the equality test and proceeds with repeating itself
from the next time slice.

The simpler equality test ◦∨1 = (2, 1, eq1), where

eq1 = τ · ((er1(x) ‖ er2(y)) ; (s
1
(x) ¢x = y¤ τ) · σrel(eq1))

is not appropriate. This equality test does not let data always pass through it with
a neglectible delay. This means that it does not behave properly if the feedback
operation is applied; ◦∨1 ↑1 is the process that deadlocks after having read one datum
– it is a kind of dummy sink. This failure to consume data does not fit in with the
idea of permanent flows of data which underlies synchronous dataflow.

Lemma 5.8 The wire I1 = (1, 1, msd1
1) gives an identity flow of data, i.e. for all

f = (m,n, P ) in SProc(D), Im ◦ f = f = f ◦ In.

Proof: It suffices to show that these equations hold for the atomic cells and the
constants. The result then follows by induction on the construction of a network in
SProc(D). In ◦ In = In and mXn ◦ In = mXn = Im ◦mXn follow trivially from I1 ◦ I1 = I1.
For a proof of I1 ◦ I1 = I1, we refer to [7]. So the asserted equations hold for In and
mXn. The proof for the remaining constants and the atomic cells is a laborious piece
of work in the same style. 2

Theorem 5.9 (SProc(D), ++, ◦, ↑, I, X) is a model of BNA. The constants ◦∧, ◦ , ◦∨, •
satisfy the additional axioms for synchronous dataflow networks (Table 3).

Proof: A simple calculation shows that I0 ++ f = f = f ++ I0 for all f ∈ SProc(D).
The first part then follows immediately from Theorem 4.4 and Lemma 5.8. The proof
of the second part is a matter of tedious, but unproblematic calculation in the style
of [7] (see also the remark after Theorem 6.4). 2
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Theorem 5.10 The axioms in Table 3 are complete for closed terms.

Proof: For the proof of this theorem, we refer to [15]. 2

Queues that deliver data with a neglectible delay and never contain more than
one datum are an idealized concept; they do not occur in practice. More practical
are wires that are interpreted as bounded queues. It seems that bounded queues are
most easily modelled as components of asynchronous dataflow networks.

6 Asynchronous dataflow networks

In this section, an extension of BNA for asynchronous dataflow networks is presented.
In the first place, the additional constants and axioms for asynchronous dataflow are
given. After that, the specialization of the process algebra model of Section 4.3 for
asynchronous dataflow networks is described. The adaptation of the data transformer
model of Section 4.2 to asynchronous dataflow networks is not described here. Instead,
the problem with this model and its proposed solutions are outlined. In Section 7.1,
a stream transformer model for the asynchronous case is derived from the process
algebra model described in this section – some related models that have been proposed
as alternatives are derived there as well.

Various models for asynchronous dataflow have been proposed (see also Section 7)
and the valid axioms differ from one model to another. The axioms given here are
valid in the presented process algebra model for asynchronous dataflow in case the
split/merge interpretation is used for the branching connections. We stress here on
the point that we do not present axioms valid in all proposed models for asynchronous
dataflow. Neither do we claim completeness with respect to the presented model.

6.1 Additional constants and axioms

The signature of the extension of BNA for asynchronous dataflow networks is obtained
by extending the signature of BNA as follows with additional constants for branching
connections:

Name Symbol Arity

Additional constants:

split •∧m m → 2m

sink ◦m m → 0

merge •∨m 2m → m

dummy source •
m 0 → m

asynchronous copy ◦∧m m → 2m

asynchronous equality test ◦∨m 2m → m

The symbols •∧m, •∨m, indicating the split/merge interpretation, as well as the symbols
◦∧m and ◦∨m, indicating the copy/equality test interpretation, are used here. Although
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the former interpretation seems more close to asynchronous dataflow than the latter
interpretation, both are found in asynchronous dataflow.

In Table 4, axioms for the additional constants •∧m, ◦m, •∨m and •
m are given.

These axioms agree with those for the additional constants of the algebra of flowno-

A1 (•∨m ++ Im) ◦ •∨m = (Im ++ •∨m) ◦ •∨m A5 (*)
A2 mXm ◦ •∨m = •∨m A6 •∧m ◦ mXm = •∧m

A3 (•m ++ Im) ◦ •∨m = Im A7 (*)
A4 •∨m ◦ ◦m = ◦m ++ ◦m A8 •

m ◦ •∧m = •
m ++ •

m

A9 •
m ◦ ◦m = I0

A10 (*)
A11 (*)

A12 •
0 = I0 A16 ◦0 = I0

A13 •
m+n = •

m ++ •
n A17 ◦m+n = ◦m ++ ◦n

A14 •∨0 = I0 A18 •∧0 = I0
A15 •∨m+n = (Im ++ nXm ++ In) ◦ (•∨m ++ •∨n) A19 •∧m+n = (•∧m ++ •∧n) ◦ (Im ++ mXn ++ In)

F3 •∨m ↑m= ◦m F4 •∧m ↑m= •
m

F5 (*)

Table 4: Additional axioms for asynchronous dataflow networks

mials (Table 2) with five exceptions: A5, A7, A10, A11 and F5 – they all concern the
split constant. We consider the axioms in Table 4 desired axioms for asynchronous
dataflow networks. They are all valid in the process algebra model described below,
but not in some other models. For example, axiom A3 is not valid in Broy’s oracle
based models [19] (but A5 is valid in these models). The axioms for the constants
◦∧, ◦ , ◦∨ and • are the same as the ones in case of synchronous dataflow networks
(Table 3).

In the next subsection, the process algebra model introduced in Section 4 is spe-
cialized to describe the semantics of the asynchronous dataflow networks.

6.2 Process algebra model for asynchronous dataflow

In this subsection, the specialization of the process algebra model of BNA (Section 4.3)
for asynchronous dataflow networks is given. In this case, we will make use of ACPτ .
Recall that ACPτ is ACP extended with abstraction based on branching bisimulation.

In Section 4.3, only a few assumption about wires and atomic cells were made. In
Section 5.3, these ingredients were actualized for synchronous dataflow networks. Here
it is explained how they are actualized for asynchronous dataflow networks. Different
from the synchronous case, discrete-time process algebra is not needed.

Definition 6.1 (wires and atomic cells in asynchronous dataflow networks)
In the asynchronous case, the identity constant, now called the stream delayer, is the
wire I1 = (1, 1, sd1

1(ε)), where sd1
1 is defined by

sd1
1(σ) = er1(x) ; sd1

1(σx) + |σ| > 0 :→ s1(hd(σ)) · sd1
1(tl(σ))
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The constants In, for n 6= 1, and mXn are defined by the equations occurring as axioms
B6 and B8–B9, respectively, of Table 1.

In the asynchronous case, the deterministic cell computing a function f : Dm →
Dn is the network Cf = Im ◦ (m,n, Pf ) ◦ In where Pf is defined by

Pf = ((er1(x1) ‖ . . . ‖ erm(xm)) ; s1(f1(x1, . . . , xm)) ‖ . . . ‖ sn(fn(x1, . . . , xm))) ∗ δ

where, for i ∈ [n], fi(x1, . . . , xm) = yi if f(x1, . . . , xm) = (y1, . . . , yn).

The non-deterministic cell computing a (finitely branching) relation R ⊆ Dm×Dn is
the network CR = Im ◦ (m, n, PR) ◦ In where PR is defined by

PR = ((er1(x1) ‖ . . . ‖ erm(xm)) ;

τ ¢R(x1, . . . , xm) = ∅¤
∑

(a1,...,an)∈R(x1,...,xm)

(s1(a1) ‖ . . . ‖ sn(an))) ∗ δ

The restriction of Proc(D) to the processes that can be built under this actualiza-
tion is denoted by AProc(D). 2

The definition of sd1
1 simply expresses that it behaves as a queue. The definition of

Pf expresses the following. Pf waits until one datum is offered at each of the input
ports 1, . . . , m. When data is available at all input ports, Pf proceeds with producing
data at the output ports 1, . . . , n. The datum produced at the i-th output port is the
i-component of the value of the function f for the consumed input tuple. When data
is delivered at all output ports, Pf proceeds with repeating itself.

For AProc(D), the operations and constants of BNA as defined on Proc(D) can
be taken with sd1

1 as wire. This means that only the additional constants for asyn-
chronous dataflow have to be defined.

Definition 6.2 (process algebra model for asynchronous dataflow)
The operations ++, ◦, ↑n on AProc(D) are the instances of the ones defined on Proc(D)
for sd1

1 as wire. Analogously, the constants In and mXn in AProc(D) are the instances
of the ones defined on Proc(D) for sd1

1 as wire.
The additional constants in AProc(D) are defined as follows:

Name Notation

split •∧1 ∈ AProc(D)(1, 2)

sink ◦1 ∈ AProc(D)(1, 0)

merge •∨1 ∈ AProc(D)(2, 1)

dummy source •
1 ∈ AProc(D)(0, 1)

asynchronous copy ◦∧1 ∈ AProc(D)(1, 2)

asynchronous equality test ◦∨1 ∈ AProc(D)(2, 1)

23



Definition

•∧1 = I1 ◦ (1, 2, split1) ◦ I2 where split1 = (er1(x) ; (s1(x) + s2(x))) ∗ δ

◦1 = I1 ◦ (1, 0, sink1) where sink1 = (er1(x) ; τ) ∗ δ

•∨1 = I2 ◦ (2, 1,merge1) ◦ I1 where merge1 = ((er1(x) + er2(x)) ; s1(x)) ∗ δ

•
1 = (0, 1, source1) ◦ I1 where source1 = δ

◦∧1 = I1 ◦ (1, 2, acopy1) ◦ I2 where acopy1 = (er1(x) ; (s1(x) ‖ s2(x))) ∗ δ

◦∨1 = I2 ◦ (2, 1, aeq1) ◦ I1 where aeq1 = ((er1(x1) ‖ er2(x2)) ; s1(x1) ¢x1 = x2¤ s1(
√

)) ∗ δ

for n 6= 1, these constants are defined by the equations occurring as axioms A12–A19 in Table 4
(for split, sink, merge and dummy sink) or Table 3 (for asynchronous copy and equality test).

2

The asynchronous versions of the constants sink, dummy source and copy given here
agree with the synchronous versions given in Section 5.3. The asynchronous version
of the equality test does not agree with its synchronous version. It agrees with the
simpler equality test (◦∨), also mentioned in Section 5.3, which is not appropriate in
the synchronous case. In order to be fully precise, we have to adapt the definitions
given in Section 4.3 in the case of asynchronous dataflow with the equality test as
additional constant: all occurrences of the condition d ∈ D have to be replaced by
d ∈ D ∪ {√}.
Lemma 6.3 The wire I1 = (1, 1, sd1

1) gives an identity flow of data, i.e. for all f =
(m,n, P ) in AProc(D), Im ◦ f = f = f ◦ In.

Proof: For I1, it is well known that I1 ◦ I1 = I1 (see e.g. [28]). In ◦ In = In and
mXn ◦ In = mXn = Im ◦ mXn follow trivially from I1 ◦ I1 = I1. So the asserted equations
hold for In and mXn. Due to the pre- and postfixing with identities in the definitions of
the remaining constants and the atomic cells, it follows trivially that these equations
hold also for them. The result then follows by induction on the construction of a
network in AProc(D). 2

Theorem 6.4 (AProc(D), ++, ◦, ↑, I, X) is a model of BNA. The constants •∧, ◦ , •∨, •
satisfy the additional axioms for asynchronous dataflow networks (Table 4). The
constants ◦∧, ◦ , ◦∨, • satisfy the additional axioms for synchronous dataflow networks
(Table 3).

Proof: A simple calculation shows that I0 ++ f = f = f ++ I0 for all f ∈ AProc(D).
The first part then follows immediately from Theorem 4.4 and Lemma 6.3. The proof
of the second and third part is a matter of tedious, but unproblematic calculation in
the style of, for example, [30, 38]. 2

We do not provide a detailed proof of the second and third part of Theorem 6.4 for
various reasons. Different strategies for such a proof are possible, but for each of
them the proof will turn out to be a long listing of rather uninteresting calculations.
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The principal degree of freedom lies in the fraction of formal equational reasoning
from axioms versus semantic work directly in the model of process graphs modulo
branching bisimulation. A proof within this model will be rather unreadable and still
informal. If a proof using equational reasonong is made, one needs a proof system
such as the one for µCRL [31] and a systematic use of the conditional alphabet axioms
introduced in [8]. This kind of proofs can be found in [30, 38]. There the proofs have
been worked out to the level of detail that they can be formalized in the underlying
type theory of the proof assistant Coq (see e.g. [25]) and automatically checked. This
approach will work as well for the second and third part of Theorem 6.4, i.e. for the
network algebra axioms concerned. We have not followed this approach because fully
formal proofs would in this case not increase the plausibility of the axioms concerned.

Note that the third part of Theorem 6.4 expresses that the algebraic structure of
the synchronous dataflow networks is preserved in the asynchronous setting. That is,
the asynchronous dataflow networks built using copy and equality test – instead of
split and merge – as branching constants, satisfy the same axioms as the synchronous
dataflow networks.

6.3 More abstract models for asynchronous dataflow

Just like for synchronous dataflow networks, a more abstract model based on stream
transformers can be given for deterministic asynchronous dataflow networks. A result
of Kahn [34] shows that this model is compositional. As shown by Brock and Ack-
ermann [18], and Keller [35], the model is not compositional in the nondeterministic
case. Some networks that are equivalent – realize the same relation between their
input and output streams – can not be substituted for each other in a larger network
because equivalence will get lost.

This deviation, known as the Brock-Ackermann anomaly and the merge anomaly,
is a time anomaly. It is related to the feedback operation. Consider an arbitrary
deterministic dataflow network with a feedback loop. If the network gets data faster
from its feedback loop, the additional data do not change at any moment the prefix of
the streams being produced because the network is deterministic. So only the relation
between the input and output streams matters. However, in the nondeterministic case,
the timing differences in producing the data that is fed back become important. The
Brock-Ackermann example relies on such timing differences to show that the feedback
of certain networks with the same relation between its input and output streams are
different.

One may try to solve the anomaly in two ways:

(1) weaken the abstract model,
(2) strengthen the operational model.

On the lines of (1), several models have been proposed [18, 19, 33, 37]. The general
approach of these proposals can be described as follows: add more detail to the model,
but keep unchanged the operational interpretation of wires as unbounded queues. In
this way the simple stream transformer model is sacrificed and other models emerge:
trace models giving global time information by merging all the local streams into one
trace, oracle based models reducing nondeterministic behaviour to deterministic be-
haviour up to certain oracles and using the compositionality of the stream transformer
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model for deterministic dataflow networks, etc. The stream transformer model and
some of these more detailed models are the subject of Section 7. The stream trans-
former model for asynchronous dataflow is commonly referred to as the history model.

7 Related models for asynchronous dataflow

In this section, several different models for asynchronous dataflow are explained from
the angle of the process algebra model presented above. First of all, Kahn’s history
model [34], Broy’s oracle based models [19] and Jonsson’s trace model [33] are derived
from the process algebra model presented in Section 6.2. Next, the time anomaly,
which may occur in the history model, is explained using the Brock-Ackermann ex-
ample. After that, the derived models are broadly compared with each other. Finally,
a different process algebra model, based on guess-and-borrow queues, is outlined.
With this new operational model, the time anomaly disappears.

7.1 Derivation of related models

In this subsection, the derivation of several models from the process algebra model
for asynchronous dataflow is described. Connecting the process algebra model with
the history model and the oracle based models, requires a somewhat unnatural recon-
struction of these models. We provide a description of it below, but we agree that it
does not go smoothly.

In asynchronous dataflow, consumption and production of data is not driven by
clock ticks. This means that it is unnatural to uphold the view-point concerning
streams taken in Section 5.2 for synchronous dataflow. More precisely, in this section
a stream is considered to be an element of Dω, i.e. a finite or infinite sequence of data.

In order to be able to use well-known models of process algebra in the derivation
of the history model, and the oracle based models using the history model, the input
streams of a network have to be represented by networks. These input networks are
then composed with the original network.

Definition 7.1 (input network)
Let σ be a stream. The input network associated with σ is the network SOURCE1(σ) =
(0, 1, τ · source1(σ)) where

source1(σ) = |σ| > 0 :→ s1(hd(σ)) · source1(tl(σ))

Let f : m → n be a network and σ1, . . . , σm be streams. The network f(σ1, . . . , σm)
is defined by

f(σ1, . . . , σm) = (SOURCE1(σ1) ++ . . . ++ SOURCE1(σm)) ◦ f

2

For given input streams, the output streams can be reconstructed from the complete
traces of the process corresponding to the composed network as described above. We
write trace(P ), where P is a process, for the set of complete traces of P . What we are
talking about here is the union of the complete traces of P as defined in [14], the traces
of P that become complete if we identify livelock nodes (i.e. nodes that only permit
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an infinite path of silent steps) with deadlock nodes, and the infinite traces of P .
trace(P ) is formally defined in [27], where it is called the set of fair traces of P . Note
however that the distinction between successful termination and deadlock/livelock
made in such traces is irrelevant here because the processes modeling asynchronous
dataflow networks do not include successfully terminating processes.

Definition 7.2 (stream extraction)
Let β be a trace over {si(d) | i ∈ [m], d ∈ D} ∪ {rj(d) | j ∈ [n], d ∈ D}. We
write streamin

i (β) for the stream of data obtained by first removing all actions that
are not of the form ri(d) and after that replacing each action of the form ri(d) by d.
Analogously, we write streamout

i (β) for the stream of data obtained by first removing
all actions that are not of the form si(d) and after that replacing each action of the
form si(d) by d. 2

For a network f : m → n and an m-tuple of streams (σ1, . . . , σm), the possible n-tuples
of output streams can now be obtained from the traces of the process corresponding
to the network f(σ1, . . . , σm) using stream extraction.

Definition 7.3 (history relation)
We write trace(f), where f = (m,n, P ) is a network, for trace(P ). The input-output
history relation of a network f : m → n, written [f ], is defined by

[f ](σ1, . . . , σm) = {(streamout
1 (β), . . . , streamout

n (β)) | β ∈ trace(f(σ1, . . . , σm))}

2

The associated equivalence on networks corresponds to Kahn’s history model [34].
Hence the following definition.

Definition 7.4 (≡history)
The history equivalence ≡history on asynchronous dataflow networks is defined by
f ≡history g iff [f ] = [g]. 2

Broy’s oracle based models [19], which are closely related to Kahn’s history model,
may be derived from the process algebra model as well. To this end we consider the
following merge and split using oracles.

Definition 7.5 (split and merge with oracles)
Let α ∈ {1, 2}∞ be an oracle. The split and merge constants with oracles are defined
on AProc(D) as follows:

Name Notation

split with oracle •∧1(α) ∈ AProc(D)(1, 2)

merge with oracle •∨1(α) ∈ AProc(D)(2, 1)
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Definition

•∧1(α) = I1 ◦ (1, 2, split1(α, 0)) ◦ I2
where split1(α, i) = (er1(x) ; s1(x) ¢α(i) = 1¤ s2(x)) · split1(α, i + 1)

•∨1(α) = I2 ◦ (2, 1, merge1(α, 0)) ◦ I1
where merge1(α, i) = (er1(x) ¢α(i) = 1¤ er2(x) ; s1(x)) ·merge1(α, i + 1)

2

Definition 7.6 (≡broy and ≡broy-fair)
Let α1, . . . , αk ∈ {1, 2}∞ be oracles and let f(α1 . . . αk) be the network obtained form
f by replacing each occurrence of •∧1 and •∨1 by •∧1(αi) and •∨1(αi), respectively, where
i is a unique index for the occurrence concerned in f .

Let f, g : m → n be networks, and let 1, . . . , k and 1, . . . , l be the indices for the
occurrences of •∧1 and •∨1 in f and g, respectively. f and g are Broy equivalent, written
f ≡broy g, iff for all oracles α1, . . . , αk ∈ {1, 2}∞, there exists oracles β1, . . . , βl ∈
{1, 2}∞ such that

(∗) [f(α1, . . . , αk)] = [g(β1, . . . , βl)]

holds and reverse, for all oracles β1, . . . , βl ∈ {1, 2}∞, there exists oracles α1, . . . , αk ∈
{1, 2}∞ such that (∗) holds.

f and g are Broy-fair equivalent, written f ≡broy-fair g, iff f ≡broy g and all α’s and
β’s are fair. An oracle α ∈ {1, 2}∞ is fair iff |α−1(1)| = |α−1(2)|.

In Section 7.3, we will write [f ]broy(σ1, . . . , σm) for
⋃{[f(α1, . . . , αk)](σ1, . . . , σm) |

α1, . . . , αk ∈ {1, 2}∞}. 2

Various interesting models for process algebra are obtained by defining equivalence
relations on process graphs. For a systematic treatment of most of these equivalence
relations, the reader is referred to [9]. We mention:

≡ct completed trace equivalence,
↔w weak bisimulation equivalence,
↔b branching bisimulation equivalence.

Weak and branching bisimulation were introduced, in the setting of ACP, in [13]
and [29], respectively. P ≡ct Q iff trace(P ) = trace(Q). The above-mentioned equiva-
lences on process graphs naturally induce corresponding equivalences on asynchronous
dataflow networks. For example, the equivalence induced by ≡ct corresponds to Jon-
sson’s trace model [33].

Definition 7.7 (≡trace)
Let f = (m,n, P ) and g = (p, q, Q) be two networks. f and g are trace equivalent,
written f ≡trace g, iff m = p, n = q and P ≡ct Q. 2

Another interesting equivalence on asynchronous dataflow networks induced by the
above-mentioned equivalences on process graphs is the following.

Definition 7.8 (≡bisim)
Let f = (m, n, P ) and g = (p, q, Q) be two networks. f and g are bisimulation
equivalent, written f ≡bisim g, iff m = p, n = q and P↔b Q. 2

After the next subsection, which explains the time anomaly in the history model, the
models derived in this subsection are related to each other.
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7.2 Time Anomaly

In this subsection, the time anomaly is illustrated by means of two examples: the
Brock-Ackermann example [18] and an example originating from Russell [40].

Example 7.9 (Brock-Ackermann example)
The Brock-Ackermann example is depicted in Figure 4. Here •∨1 and ◦∧1 are the merge
and copy constants for asynchronous dataflow networks defined in Section 6.2. The
atomic cells used in this example are:

SUC = (1, 1, (er1(x) ; s1(x + 1)) ∗ δ)
DUP = (1, 1, (er1(x) ; s1(x) · s1(x)) ∗ δ)
2BUF = (1, 1, ((er1(x) · er1(y)) ; (s1(x) · s1(y))) ∗ δ)

The following networks are built from these atomic cells:

f = (DUP ++ SUC ◦ DUP) ◦ •∨1 ◦ 2BUF ◦ ◦∧1

f ′ = (DUP ++ SUC ◦ DUP) ◦ •∨1 ◦ I1 ◦ ◦∧1

It is easy to see that the networks f and f ′ realize the same relation between their
input and output streams, i.e. f ≡history f ′ (notice that 2BUF ≡history I1). However, f
and f ′ can not always be substituted for each other in a larger network. Consider, for
instance, the networks f ↑1 and f ′ ↑1. The stream 1223 . . . is in [f ′ ↑1](1) but not in
[f ↑1](1) because 2BUF must have consumed both 1’s yielded by the duplication of the
input before the feedback loop can contribute to the output. So f ↑1 6≡history f ′ ↑1. 2
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Figure 4: Brock-Ackermann example

Example 7.10 (Russell’s example)
In the previous example, the atomic cells were all deterministic. The merge constant
introduced nondeterminism in that example. Russell’s example shows that the time
anomaly may also occur by nondeterministic atomic cells. Consider the following
atomic cells:

g = (1, 1, ((er1(x) ; s1(0) · s1(1)) + s1(0) · (er1(x) ; s1(0))) ∗ δ)

g′ = (1, 1, ((er1(x) ; s1(0) · s1(1)) + s1(0) · (er1(x) ; s1(0)) +
s1(0) · (er1(x) ; s1(1))) ∗ δ)
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It is easy to see that the atomic cells g and g′ realize the same relation between
their input and output streams, i.e. g ≡history g′. Note further that the possible
output streams are independent of the input streams. However, the stream 01 . . . is
contained in [(g′ ◦ ◦∧1) ↑1]() but not in [(g ◦ ◦∧1) ↑1](), because g must already have
produced one datum before it can contribute a 0 followed by a 1 to the output. So
(g ◦ ◦∧1) ↑1 6≡history (g′ ◦ ◦∧1) ↑1. 2

7.3 Comparison of models

We have defined the following equivalences on networks in the process algebra model
for asynchronous dataflow:

≡history history equivalence,
≡broy Broy equivalence,
≡broy-fair Broy-fair equivalence,
≡trace trace equivalence,
≡bisim bisimulation equivalence.

The process algebra model modulo the first four equivalences yields Kahn’s history
model [34], Broy’s oracle-based models [19] and Jonsson’s trace model [33], respec-
tively. Thus, we know from the relevant literature that the first of these equivalences
is not a congruence (in [18] is shown that the history model is not compositional) and
that the others are congruences (in [19] and [33] is shown that the Broy models and
the trace model are compositional). In [33], it is further shown that the trace model
is fully abstract with respect to the history model. The bisimulation equivalence cor-
responds to the process algebra model itself – where processes are considered to be
equal iff they are branching bisimulation equivalent. The following summarizes how
the above-mentioned equivalences are related (thus showing the connections between
the various models):

≡bisim

(1)

6⊆
6⊇ ≡broy

(2)

6⊆
6⊇ ≡broy-fair, ≡bisim

(3)⊂ ≡trace, ≡broy

(4)⊂ ≡trace

(5)⊂ ≡history

The incomparibilities (1) and (2) are shown in Example 7.11 and Example 7.12,
respectively. The inclusion (3) follows trivially from the inclusion of the corresponding
equivalences for processes (see e.g. [27]). It is obvious from the definition of ≡broy

that ≡broy ⊆ ≡history. Because of the compositionality of the Broy model and the full
abstractness of the trace model, the inclusion (4) follows then immediately, except
for its strictness. In Example 7.13 is shown that the inclusion (4) is strict. The
full abstractness of the trace model with respect to the history model and the non-
compositionality of the history model entail directly the strict inclusion (5). The
proofs below are quite sketchy. In the case of equivalences like ≡broy in Example 7.11,
such statements require a further formal proof using invariants that we have not
included. For use of invariants in the process algebra setting, we refer to [16, 32].

Example 7.11 (≡broy and ≡bisim are incomparable)
First, we give an example of two networks which are bisimulation equivalent, but not
Broy equivalent. The following atomic cells occur in the networks concerned:
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SOURCE(i) = (0, 1, τ · (s1(i)
∗ δ))

FILTER 0 = (1, 1, τ · (er1(x) ; (s1(0) ¢x = 0¤ τ)) ∗ δ)

Let f = SOURCE(0) and g = (SOURCE(0) ++ SOURCE(1)) ◦ •∨1 ◦ FILTER 0. Then (i)
f 6≡broy g and (ii) f ≡bisim g. For (i), we see that [f ]broy() = {0∞} and [g]broy() =
{0∞, ε} (g produces the ε output for the completely unfair oracle α = 2∞). For (ii),
notice that the corresponding processes are branching bisimilar because: (a) in each
state after a number of τs an output is generated and (b) no other outputs may be
generated.

Next, we give an example of networks which are Broy equivalent, but not bisimu-
lation equivalent. Let f = •∧1 ◦ (I1 ++ •∧1) and g = •∧1 ◦ (•∧1 ++ I1). Then (i) f ≡broy g
and (ii) f 6≡bisim g. For (i), we see that for each pair of oracles for f one may find a
pair of oracles for g which produces the same output stream as f and conversely. For
(ii), we see that the branching structure of f and g differ. 2

Example 7.12 (≡broy and ≡broy-fair are incomparable)
The first example from 7.11 provides two networks which are Broy-fair equivalent,
but not Broy equivalent. For the reversed non-inclusion, we use an additional atomic
cell STOP AT 1 = (1, 1, stop at 1) where

stop at 1 = τ · (r1(0) · s1(0) · stop at 1 + r1(1) · (er1(x) ; τ) ∗ δ)

Let f = SOURCE(0)◦ •∧1◦(◦1 ++ I1) and g = (SOURCE(0) ++ SOURCE(1))◦ •∨1◦STOP AT 1.
Then f ≡broy g, but f 6≡broy-fair g. 2

The following example conforms the remark in [20] that ≡broy is not fully abstract,
in view of the fact that ≡trace is fully abstract, cf. e.g. [33].

Example 7.13 (≡broy is strictly included in ≡trace)
Let f = •∧1 ◦ •∨1 and f ′ = •∧1 ◦ (2BUF ++ f)◦ •∨1 (2BUF is the component that appears in
Example 7.9). Then, for D = {0, 1}, (i) f 6≡broy f ′ and (ii) f ≡trace f ′. For f we need
two oracles αs, αm ∈ {1, 2}∞ for the split and the merge components, respectively;
and for f ′ we need two more oracles α′s, α

′
m ∈ {1, 2}∞ for the additional components.

For (i), we see that the function computed by f ′ for oracles α′s and α′m with the
prefix 11 can not be computed by f for any two oracles αs and αm. Suppose the
contrary. Then there are two oracles αs = s0s1s2 . . . and αm = m0m1m2 . . . such
that [f(αs, αm)](0) = {ε} and [f(αs, αm)](01) = {01}. Since [f(αs, αm)](0) = {ε},
s0 6= m0. So for the input 01 two cases are left, s1 6= m0 and s1 = m0, which both
lead to contradiction: [f(αs, αm)](01) = {ε} if s1 6= m0, and [f(αs, αm)](01) = {1} or
[f(αs, αm)](01) = {10} (depending on m1) if s1 = m0. For (ii), we see immediately
that each trace of f is a trace of f ′ as well. And conversely, we see that every trace
w of f ′ has the property that, for all d ∈ D and n ∈ N, card{i | i ≤ n,wi = s1(d)} ≤
card{i | i ≤ n, wi = r1(d)}. Now, every trace with this property is a trace of f
because: (a) the split component may deliver all 0s to the “left” and all 1s to the
“right” and (b) the merge component may always consume from the left if a 0 is
necessary to produce a trace with the property above and from the right if a 1 is
necessary. 2

Note the following. Let αs = (12)∞ and αm = (21)∞ be oracles for the split
connection and the merge connection of the network f in Example 7.13 above. Then
[f(αs, αm)](d2d1d4d3 . . .) = [2BUF](d1d2d3d4 . . .). Hence, if D has only one element,
e.g. D = {0}, then f and f ′ are Broy (and Broy-fair) equivalent.
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7.4 Guess-and-borrow queues

Different from a synchrononous dataflow network, an asynchronous one may delay the
use of its resources. In case asynchronism is exploited fully, it should also be possible
to use the resources in advance.

In the Brock-Ackermann example (Example 7.9) [f ′ ↑1](1) contains 1223 . . ., which
is not in [f ↑1](1) under the interpretation of dataflow networks where wires are treated
as unbounded queues. With a more powerful kind of identity connections, viz. guess-
and-borrow queues, this anomaly disappears.

A guess-and-borrow queue may deliver any number of arbitrary data to a cell while
it is empty. However, if this turns out not to be in agreement with the actual data
subsequently received, the cell has to drop the computation based on the wrong data.

In the Brock-Ackermann example, 1223 . . . is a common output stream of f ↑1

and f ′ ↑1 if the identity connections are interpreted as (unbounded) guess-and-borrow
queues. One only needs such a queue before the 2BUF cell; which now may borrow
the necessary data in order to annihilate the differences between the 2BUF cell and an
identity connection. More generally, one may see that f ↑1 and f ′ ↑1 compute the same
input-output relation on streams with this more powerful operational interpretation
for the identity connections. A similar simple argument works in the case of Russell’s
example as well.

We now briefly outline the construction of a process algebra model which can be
regarded as the operational model of asynchronous dataflow networks with guess-and-
borrow queues. In the style of Parrow [39], we use as processes pairs (p, U) with p a
process modulo↔b∆ (divergence sensitive branching bisimulation)2 and U a collection
of admissible complete traces for p. The process algebra operators are to be extended
to the trace set component. This is straightforward, except for the point that in X ‖ Y
complete traces must be formed by merging complete traces for both X and Y in such
a way that all actions are “used”. We also define trace(p, U) = trace(p) ∩ U . With
these ingredients we may give a process algebra definition of the identity constant as
a guess-and-borrow queue as follows. The identity constant, called stream retimer, is
the wire I1 = (1, 1, sr1

1), where sr1
1 = (p, U) and

p = (
∑

d∈D

r1(d) +
∑

d∈D

s1(d)) ∗ δ

U = {α | α is complete trace over {r1(d), s1(d) | d ∈ D}, streamin
1 (α) = streamout

1 (α)}

It can be shown that I1 ◦ I1 = I1, so I1 is an identity flow. However, this identity flow
allows to shift a stream forward and backward in time.

The feedback operation in the outlined operational model of asynchronous dataflow
networks with guess-and-borrow queues corresponds to the greatest fixpoint approach
– applied in Definition 4.1 – in the stream transformer model for this kind of dataflow.
The equation ◦∧m ↑m= ◦

m, where ◦n = {〈(), x〉 | x ∈ Sn}, now holds.

2In case of divergence sensitive bisimulation, if two nodes are related by a bisimulation and one
node permits an infinite path of silent steps, the other node must also permit an infinite path of
silent steps. Divergence sensitive bisimulation was introduced in [14].
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8 Closing remarks

Concerning connections with earlier work on dataflow some additional remarks are in
order.

In [10] a model for synchronous dataflow networks is presented. Our Section 5.2
on a stream transformer model for synchronous dataflow can be seen as a rephrasing
of this work. We consider the stream transformer model described in Section 5.2 to
be more denotational and the process algebra model described in Section 5.3 to be
more operational.

The model presented in [10] is essentially a BNA model, although it has some
slightly different operations and constants. For example, it has “left-feedback” (∗)
instead of “right-feedback” (see also the table below) and “input sharing” ( ∧ ) in-
stead of the constants ◦∧ and X. However, the constants and operations of BNA are
definable in terms of the ones of this model and vice versa. The setting of [10] may
be obtained from our general network algebra setting by taking BNA with the follow-
ing parameters: (1) the set of data D is N; (2) the atomic cells are “successor” and
“conditional”; (3) the additional constants for branching connections are ◦∧, ◦ and

◦∨. Kahn’s history model [34] is also essentially a BNA model (with ◦∧, ◦ and • as
additional constants) and so are Broy’s oracle based models [19].

The SCAs [44] require for each internal stream in a network an initial value. We
have taken that viewpoint as well and this leads to a major distinction between our
process algebra models for synchronous and asynchronous dataflow networks.

Both the left- and right-feedback can be used. The left-feedback can be defined in
terms of the right-feedback as follows:

↑p (f) = (pXm ◦ f ◦ pXn) ↑p, f : p + m → p + n

Other proposed feedback-like operators can be defined in terms of left- or right-
feedback:

Symbol Name Network algebra specification In
∗ feedback f∗ =↑1 f, f : 1 + m → 1 + n [10]
µ feedback µf = (f ◦ ∧m) ↑m, f : n + m → m [20]
∗ (unary) star f∗ = ∧1 ◦ (I1 ++ (∨1 ◦ f ◦ ∧1) ↑1) ◦ ∨1, f : 1 → 1 [24]
† iteration f† =↑m (∨m ◦ f), f : m → m + n [26]
∗ (binary) star f∗g = ∧1 ◦ (I1 ++↑1 (∨1 ◦ f ◦ ∧1)) ◦ ∨1 ◦ g, f, g : 1 → 1 [36]
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Appendix

We write [n], where n ∈ N, for {1, . . . , n}.
We use the following notation for sequences:

ε the empty sequence;
x the sequence having x as sole element;
σ1σ2 the concatenation of the sequences σ1 and σ2;
|σ| the length of the sequence σ;
hd(σ) the head of the sequence σ;
tl(σ) the tail of the sequence σ;
σ(n) the element of the sequence σ with index n;
σ(0..n) the prefix of the sequence σ with length n + 1.

Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be tuples. We write:

x_y for (x1, . . . , xm, y1, . . . , yn);

x(n), where x is a tuple of sequences, for (x1(n), . . . , xm(n));

x(0..n), where x is a tuple of sequences, for (x1(0..n), . . . , xm(0..n)).
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Furthermore, we sometimes use 〈x, y〉 instead of (x, y).
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