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Abstract

A new semantics of an interesting subset of the specification language SDL
is given by a translation to a discrete-time variant of process algebra in
the form of ACP extended with data as in µCRL. The strength of the
chosen subset, called ϕSDL, is its close connection with full SDL, despite
its dramatically reduced size. Thus, we are able to concentrate on solving
the basic semantic issues without being in danger of having to turn the
results inside out in order to deal with full SDL. Novel to the presented
semantics is that it relates the time used with timer setting to the time
involved in waiting for signals and delay of signals.
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1 Introduction

A process algebra semantics of ϕSDL is presented. ϕSDL is roughly a subset of
Basic SDL.1 The following simplifications have been made:

• blocks are removed and consequently channels and signal routes are merged
– making channel to route connections obsolete;

• variables are treated more liberal: all variables are revealed and they can
be viewed freely;

• timer setting is regarded as just a special use of signals;

• timer setting is based on discrete time.

Besides, ϕSDL does not deal with the specification of abstract data types. An
algebraic specification of all data types used in an ϕSDL specification is assumed
as well as an initial algebra semantics for it. The pre-defined data types Boolean

and Natural, with the obvious interpretation, should be included; and besides,
PId and Time should be included as copies of Natural.

We decided to focus in ϕSDL on the behavioural aspects of SDL. We did so
for the following two reasons. Firstly, the structural aspects of SDL are mostly
of a static nature and therefore not very relevant from a semantic point of view.
Secondly, the part of SDL that deals with the specification of abstract data types
is well understood – besides, it can easily be isolated and treated as a parameter.2

Because it will largely be a routine matter, we also chose to postpone the addition
of procedures, syntypes with a range condition and process types with a bound
on the number of instances that may exist simultaneously. For similar reasons,
the any expression is omitted. Services are not supported by ϕSDL for other
reasons: the semantics of services is hard to understand, ETSI forbids for this
reason their use in European telecommunication standards (see [19]), and the
SDL community currently discusses its usefulness (see [16]).

Apart from the data type definitions, all SDL system definitions without
usage of procedures, services, syntypes with a range condition, process types with
a bound on the number of instances that may exist simultaneously, and the any

expression can be transformed to ϕSDL system definitions. The transformation
concerned has, apart from some minor adaptations, already been given. The
first part of the transformation is the mapping for the shorthand notations of
SDL which is given informally in the ITU/TS Recommendation Z.100 [21] and
defined in a fully precise manner in its Annex F.2 [23]. The second and final part
is essentially the mapping extract-dict which is defined in its Annex F.3 [24];
ϕSDL system definitions can actually be viewed as textual presentations of the

1This subset is called ϕSDL, where ϕ stands for flat, as it does not cover the structural
aspects of SDL. Throughout the paper, we will write SDL for the version of SDL defined in [21],
the ITU/TS Recommendation Z.100 published in 1992.

2The following is also worth noticing: (1) ETSI discourages the use of abstract data types
other than the pre-defined ones in European telecommunication standards (see [19]); (2)
ASN.1 [20] is widely used for data type specification in the telecommunications field, and there
is an emerging ITU/TS Recommendation, Z.105, for combining SDL and ASN.1 (see [25]).
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extracted Entity-dicts which are interpreted instead of the SDL system definitions
proper.

The semantics of ϕSDL agrees with the semantics of SDL as far as reasonably
possible. This means in the first place that obvious errors in [24] have not been
taken over. For example, the intended effect of SDL’s create and output actions
may sometimes be reached with interruption according to [24] – allowing amongst
other things that a process ceases to exist while a signal is sent to it without any
delay. Secondly, the way of dealing with time is considered to be unnecessarily
complex and inadequate in SDL and has been adapted as explained below.

In SDL,Time and Duration, the pre-defined sorts of absolute time and relative
time, are both copies of the pre-defined sort Real (intended to stand for the
real numbers, but in fact standing for the rational numbers, see [22]). When a
timer is set, a real expiration time must be given. However, the time considered
is the system time which proceeds actually in a discrete manner: the system
receives ticks from the environment which increase the system time with a certain
amount (how much real time they represent is left open). Therefore, the timer
is considered to expire when the system receives the first tick that indicates that
its expiration time has passed. So nothing is lost by adopting in ϕSDL a discrete
time approach, using copies of Natural for Time and Duration, where the time unit
can be viewed as the time between two ticks but does not really rely upon the
environment. This much simpler approach also allows us to remove the original
inadequacy to relate the time used with timer setting to the time involved in
waiting for signals by processes and in delay of signals in channels.

We had to make our own choices with respect to time in ϕSDL, because
the time related aspects of SDL are virtually left out completely in the ITU/TS
recommendation Z.100. Our choices were based on communications with vari-
ous practitioners from the telecommunications field using SDL. In particular the
communications with Leonard Pruitt [18] provided convincing practical justifi-
cation for the premise of our choices: provided time is divided into sufficiently
large time slices, an SDL process will only enter a next time slice if there are no
more signals to consume for it in the current time slice. Ease of adaptation to
other viewpoints on time in SDL is guaranteed relatively well by using a discrete-
time variant of process algebra, essentially ACPdt (see [2]), as the basis of the
presented semantics.

The language ϕSDL and the presented semantics for it are primarily intended
for work on advanced analysis tools for systems modelled using SDL. However,
it can also serve to gain a better insight into the semantic aspects of proposed
simplifications, and other future changes, of SDL.

The structure of this paper is as follows. First of all, we give an overview of
ϕSDL (Section 2). Next, we give a brief summary of the ingredients of process
algebra which make up the basis for the semantics of ϕSDL presented in this
paper (Section 3). Then, we describe specifics on the operator used to formalize
execution of a process in a state (Section 4). After that, we present the process
algebra semantics of ϕSDL (Section 5). Finally, we make some additional re-
marks about the work reported on in this paper as well as some remarks about
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related work (Section 6). Besides, there are appendices about notational conven-
tions used (Appendix A) and details about the contexts used to model scope in
the presented semantics (Appendix B).

2 Overview of ϕSDL

This section gives an overview of ϕSDL. Its syntax is described by means of
production rules in the form of an extended BNF grammar (the extensions are
explained in Appendix A). The meaning of the language constructs of the vari-
ous forms distinguished by these production rules is explained informally. Some
peculiar details, inherited from full SDL, are left out to improve the compre-
hensibility of the overview. These details will, however, be made mention of in
Section 5, where a process algebra semantics of ϕSDL is presented.

2.1 System definition

First of all, the ϕSDL view of a system is explained in broad outline.
Basically, a system consists of processes which communicate with each other

and the environment by sending and receiving signals via signal routes. A process
proceeds in parallel with the other processes in the system and communicates
with these processes in an asynchronous manner. This means that a process
sending a signal does not wait until the receiving process consumes it, but it
proceeds immediately. A process may also use local variables for storage of
values. A variable is associated with a value that may change by assigning a new
value to it. A variable can only be assigned new values by the process to which it
is local, but it may be viewed by other processes. Processes can be distinguished
by unique addresses, called pid values (process identification values), which they
get with their creation.

A signal can be sent from the environment to a process, from a process to
the environment or from a process to a process. A signal may carry values to be
passed from the sender to the receiver; on consumption of the signal, these values
are assigned to local variables of the receiver. A signal route is a unidirectional
connection between the processes of two types, or between the processes of one
type and the environment, for conveying signals. A signal route may contain
a channel.3 Signals that must pass through a channel are delayed, but signals
always leave a channel in the order in which they have entered it. Thus a signal
route is a communication path for sending signals, with or without a delay, from
the environment to a process, from one process to another process or from a
process to the environment. If a signal is sent to a process via a signal route that
does not contain a channel, it can be instantaneously delivered to that process.
Otherwise there can be an arbitrary delay. A channel may be contained in more
than one signal route.

3The original channels have been merged with signal routes, but the term channel is reused
in ϕSDL (see also Section 2.4).
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Syntax:

<system definition> ::=
system<system nm> ; {<definition>}+ endsystem ;

<definition> ::=
dcl <variable nm><sort nm> ;

| signal<signal nm> [ ( <sort nm> {, <sort nm>}∗ ) ] ;
| channel<channel nm> ;

| signalroute<signalroute nm>

from {<process nm> | env} to {<process nm> | env}
with<signal nm> {,<signal nm>}∗ [ delayed by<channel nm> ] ;

| process<process nm> (<natural ground expr> ) ;

[ fpar<variable nm> {, <variable nm>}∗ ; ]
start ;<transition> {<state def>}∗

endprocess ;

A system definition consists of definitions of the types of processes present in
the system, the local variables used by the processes for storage of values, the
types of signals used by the processes for communication, the signal routes via
which the signals are conveyed and the channels contained in signal routes to
delay signals.

A variable definition dcl vT; defines a variable v that may be assigned values
of sort T.

A signal definition signal s(T1, . . . ,Tn); defines a type of signals s of which the
instances carry values of the sorts found in T1, . . . ,Tn. If (T1, . . . ,Tn) is absent,
the signals of type s do not carry any value.

A channel definition channel c defines a channel that delays signals that pass
through it.

A signal route definition signalroute r from X1 to X2 with s1, . . . ,sn; defines a sig-
nal route r that delivers without a delay signals sent by processes of type X1 to
processes of type X2, for signals of types found in s1, . . . ,sn. The process types
X1 and X2 are called the sender type of r and the receiver type of r, respec-
tively. A signal route from the environment can be defined by replacing from X1

by from env. A signal route to the environment can be defined analogously. A
signal route delivering signals with an arbitrary delay can be defined by adding
delayed by c, where c is the channel causing the delay.

A process definition process X(k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess; de-
fines a type of processes X of which k instances will be created during the start-up
of the system. On creation of a process of type X after the start-up, the cre-
ating process passes values to it which are assigned to the local variables found
in v1, . . . ,vm. If fpar v1, . . . ,vm is absent, no values are passed on creation. The
process body start; tr d1, . . . ,dn describes the behaviour of the processes of type
X in terms of states and transitions (see further Section 2.2). Each process will
start by making the transition tr, called its start transition, to enter one of its
states. The state definitions found in d1 . . . dn define all the states in which the
process may come while it proceeds.
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2.2 Process behaviours

First of all, the ϕSDL view of a process is briefly explained.
To begin with, a process is either in a state or making a transition to another

state. Besides, when a signal arrives at a process, it is put into the unique input
queue associated with the process until it is consumed by the process. The states
of a process are the points in its behaviour where a signal may be consumed.
However, a state may have signals that have to be saved, i.e. withhold from being
consumed in that state. The signal consumed in a state of a process is the first
one in its input queue that has not to be saved for that state. If there is no signal
to consume, the process waits until there is a signal to consume. So if a process
is in a state, it is either waiting to consume a signal or consuming a signal.

A transition from a state of a process is initiated by the consumption of a
signal, unless it is a spontaneous transition. The start transition is not initiated
by the consumption of a signal either. A transition is made by performing certain
actions: signals may be sent, variables may be assigned new values, new processes
may be created and timers may be set and reset. A transition may at some stage
also take one of a number of branches, but it will eventually come to an end and
bring the process to a next state or to its termination.

A timer can be set which sends at its expiration time a signal to the process
setting it. A timer is identified with the type and carried values of the signal it
sends on expiration. Thus an active timer can be set to a new time or reset; if this
is done between the sending of the signal noticing expiration and its consumption,
the signal is removed from the input queue concerned. A timer is de-activated
when it is reset or the signal it sends on expiration is consumed.

Syntax:

<state def> ::=
state <state nm> ;

[ save<signal nm> {, <signal nm>}∗ ; ] {<transition alt>}∗

<transition alt> ::=
{<input guard> | input none ;}<transition>

<input guard> ::=
input<signal nm> [ ( <variable nm> {, <variable nm>}∗ ) ] ;

<transition> ::=
{<action>}∗ {nextstate<state nm> | stop |<decision>} ;

<action> ::=
output<signal nm> [ ( <expr> {,<expr>}∗ ) ]

[ to<pid expr> ] via<signalroute nm> {, <signalroute nm>}∗ ;
| set (<time expr> , <signal nm> [ ( <expr> {, <expr>}∗ ) ] ) ;
| reset ( <signal nm> [ ( <expr> {, <expr>}∗ ) ] ) ;
| task<variable nm> :=<expr> ;
| create<process nm> [ ( <expr> {, <expr>}∗ ) ] ;

5



<decision> ::=
decision {<expr> | any} ;

( [<ground expr> ] ) : <transition>

{( [ <ground expr> ] ) : <transition>}+

enddecision

A state definition state st; save s1, . . . ,sm;alt1 . . . altn defines a state st in which
certain signals may be consumed and subsequently certain transitions must be
made. The signals of the types found in s1, . . . ,sm are saved for the state. Each
input guard occurring in alt1 . . . altn gives a type of signals that may be con-
sumed in the state; the corresponding transition is the one that is initiated on
consumption of a signal of that type. The transitions with input none; instead
of an input guard are the spontaneous transitions that may be made from the
state. No signals are saved for the state if save s1, . . . ,sm; is absent.

An input guard input s(v1, . . . ,vn); may consume a signal of type s and, on
consumption, it assigns the carried values to the variables found in v1, . . . ,vn. If
the signals of type s carry no value, (v1, . . . ,vn) is left out.

A transition a1 . . . an nextstate st; performs the actions found in a1 . . . an in
sequential order and ends with entering the state st. Replacing nextstate st by
the keyword stop yields a transition ending with process termination. Replacing
it by the decision dec leads instead to transfer of control to one of two or more
transition branches.

An output action output s(e1, . . . ,en) to e via r1, . . . ,rm; sends a signal of type s
carrying the current values of the expressions in e1, . . . ,en to the process with the
current (pid) value of the expression e as its address, via one of the usable signal
routes found in via r1, . . . ,rm. If the signals of type s carry no value, (e1, . . . ,en)

is left out. If to e is absent, the signal is sent via one of the signal routes found
in via r1, . . . ,rm to an arbitrary process of its receiver type. The output action is
called an output action with explicit addressing if to e is present. Otherwise, it
is called an output action with implicit addressing.

A set action set (e,s(e1, . . . ,en)); sets a timer that expires, unless it is set again
or reset, at the current (time) value of the expression e with sending a signal of
type s that carries the current values of the expressions in e1, . . . ,en.

A reset action reset (s(e1, . . . ,en)); de-activates the timer identified with the
signal type s and the current values of the expressions in e1, . . . ,en.

An assignment task action task v:=e; assigns the current value of the expres-
sion e to the local variable v.

A create action create X(e1, . . . ,en); creates a process of type X and passes the
current values of the expressions in e1, . . . ,en to the newly created process. If no
values are passed on creation of processes of type X, (e1, . . . ,en) is left out.

A decision decision e;(e1):tr1 . . . (en):trn enddecision transfers control to the tran-
sition branch tri (1≤i≤n) for which the value of the expression ei equals the
current value of the expression e. Non-existence and non-uniqueness of such a
branch result in an error. A non-deterministic choice can be obtained by re-
placing the expression e by the keyword any and removing all the expressions
ei.
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2.3 Values

The value of expressions in ϕSDL may vary according to the last values assigned
to variables, including local variables of other processes. It may also depend on
the system state, e.g. on timers being active or the system time.

Syntax:

<expr> ::=
<operator nm> [ (<expr> {, <expr>}∗ ) ]
| if <boolean expr> then <expr> else<expr> fi

|<variable nm>

| view (<variable nm> ,<pid expr> )

| active ( <signal nm> [ ( <expr> {, <expr>}∗ ) ] )
| now | self | parent | offspring | sender

An operator application op(e1, . . . ,en) evaluates to the value yielded by ap-
plying the operation op to the current values of the expressions in e1, . . . ,en.

A conditional expression if e1 then e2 else e3 fi evaluates to the current value of
the expression e2 if the current (Boolean) value of the expression e1 is true, and
the current value of the expression e3 otherwise.

A variable access v evaluates to the current value of the local variable v of
the process evaluating the expression.

A view expression view (v,e) evaluates to the current value of the local variable
v of the process with the current (pid) value of the expression e as its address.

An active expression active (s(e1, . . . ,en)) evaluates to the Boolean value true
if the timer identified with the signal type s and the current values of the expres-
sions in e1, . . . ,en is currently active, and false otherwise.

The expression now evaluates to the current system time.
The expressions self, parent, offspring and sender evaluate to the pid values of

the process evaluating the expression, the process by which it was created, the
last process created by it, and the sender of the last signal consumed by it.

2.4 Differences with SDL

Syntactically, ϕSDL is not exactly a subset of SDL. The syntactic differences are
as follows:

• variable definitions occur at the system level instead of inside process def-
initions;

• signal route definitions and process definitions occur at the system level
instead of inside block definitions;

• channel paths in channel definitions are absent;
• the option delayed by c in signal route definitions is new;
• formal parameters in process definitions are variable names instead of pairs

of variable names and sort names;
• signal names are used as timer names.
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These differences are all due to the simplifications mentioned in Section 1.
Recall that channels and signal routes have been merged. Because the re-

sulting communication paths connect processes with one another or with the
enviroment, like the original signal routes, we chose to call them signal routes as
well. However, the new signal routes may have delaying parts which are reminis-
cent of the original channels. Therefore, we chose to reuse their name for these
delaying parts.

3 Process algebra preliminaries

This section gives a brief summary of the ingredients of process algebra which
make up the basis for the semantics of ϕSDL presented in Section 5. We will
suppose that the reader is familiar with them. Appropriate references to the
literature are included.

We will make use of the Algebra of Communicating Processes (ACP),4 in-
troduced in [8], extended with the silent step τ and the abstraction operator τI

for abstraction. Semantically, we adopt the approach to abstraction, originally
proposed for ACP in [9], which is based on weak bisimulation due to Milner [15].
For a systematic introduction to ACP, the reader is referred to [5].

Further we will use the following extensions:

state operator We will use the state operator λS, added to ACP in [1]. This
operator formalizes execution of a process in a state. Basic is the execution
of actions: the action a′ that occurs as the result of executing an action
a in a state S, and the state S ′ that results when executing a in S. This
leads to defining equations of the form λS(a · P ) = a′ · λS′(P ).

process creation We will also use the process creation mechanism, added to
ACP in [6]. The process creation operator Eφ introduced there allows,
given a mapping φ from process names to process expressions, the use of
actions of the form cr(X) to create processes φ(X). The most crucial
equation from the defining equations of this operator is Eφ(cr(X) · P ) =
cr(X) · Eφ(φ(X) ‖ P ). Note that the process creation operator leaves a
trace of actions of the form cr(X).

conditionals Besides, we will use the one-armed conditional operator :→ as
in [3]. The expression b :→ P , is to be read as if b then P ; it can only be
performed if b 6= false. It is often referred to as a guarded command.

iteration We will also use the binary version of Kleene’s star operator ∗, added
to ACP in [7], with the defining equation P ∗ Q = P · (P ∗ Q) + Q. The
behaviour of P ∗ Q is zero or more repetitions of P followed by Q.

discrete time We need a relative time version of discrete time process algebra
in the form of ACP. We will use the extension of ACP that can be found

4We will actually use ACP without communication, also known as PAδ.
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in [2], which is quite similar to ATP [17]. Here we briefly survey discrete
time processes in an informal way.

Time is divided into slices indexed by natural numbers. These time slices
represent time intervals of a length which corresponds to the time unit
used. If the current time is t, t ∈ R≥0, the current time slice is the time
interval [btc, btc + 1) (where btc denotes the floor of t). We will use the
constants a (one for each action a) and δ,5 as well as the delay operator σrel.
a is a performed within the current time slice and σrel(P ) is P delayed till
the next time slice. In a parallel composition P1 ‖ . . . ‖ Pn the transition
to the next time slice is a simultaneous transition of each of the Pis. For
example, δ ‖ σrel(b) will never perform b because δ can neither be delayed
nor performed, so δ ‖ σrel(b) = δ. However, a ‖ σrel(b) = a · σrel(b).

summation over data domains We will in addition use actions parametrized
by data and summation over a data domain as in µCRL [13, 14]. The
notation a(t1, . . . , tn), where the tis denote data values, is used for instances
of parametrized actions. In

∑
x:D P , the scope of the variable x is exactly

P . The behaviour of
∑

x:D P is a choice between the instances of P for the
different values that x can take, i.e. the values from the data domain D.

The above-mentioned extensions of ACP with a state operator and a process
creation mechanism are also presented in [5]. In ACP with abstraction, the
operators λS and Eφ can be defined.

We will also use some abbreviations. Let (Pi)i∈I be a indexed set of process
expressions where I = {i1, . . . , in}. Then, we write:

∑
i∈I Pi for Pi1 + . . . + Pin

‖i∈I Pi for Pi1 ‖ . . . ‖ Pin

Let P be a process expression and let n ∈ N. Then, we write:

‖n P for P ‖ . . . ‖ P︸ ︷︷ ︸
n×

If conditionals are present, the definition of the state operator needs in ad-
dition an evaluation function evalS. The additional equation is λS(b :→ P ) =
evalS(b) :→ λS(P ). Thus, execution of P is disabled in state S if b evaluates to
false in S. The state operator used for the semantics of ϕSDL is a slight adap-
tation of the state operator described in [1], due to the highly state dependent
nature of the SDL mechanisms for storage, communication, timing and process
creation. Actions parametrized by domains that are built on expressions denot-
ing values, in contrast with values, are needed as state transforming actions. The
reason for this is that, in general, the values concerned depend on the state in
which the actions are executed. Consequently, the equations become somewhat
more involved than suggested above, as is witnessed by Section 4. The evaluation
function evalS is also needed in these equations.

5In [4], a revision of [2], a different notation for a is used, viz. cts(a).
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The process creation operator used for the semantics of ϕSDL is a slight
adaptation of the process creation operator described in [6], due to the following
details of the process creation mechanism of SDL:

• formal parameters are local variables and parameter passing amounts to
assigning initial values to local variables of a newly created process when
its execution starts;

• the pid value of the creating process is passed to a newly created process
when its execution starts.

Consequently, the process creation action needs, in addition to the name of a
process type, parameters to be used by the state operator described in Section 4.
So the defining equations have to be reformulated. This is, however, trivial
because these additional parameters of the process creation action are ignored
by the process creation operator. For example, the most crucial equation becomes

Eφ(cr(X, 〈v1, . . . , vn〉, 〈u1, . . . , un〉, i) · P ) =
cr(X, 〈v1, . . . , vn〉, 〈u1, . . . , un〉, i) · Eφ(φ(X) ‖ P )

where v1, . . . , vn are the formal parameters and u1, . . . , un are the corresponding
actual parameters.

4 Processes with states

The input guards, the SDL actions and the terminator stop constitute the SDL
mechanisms for storage, communication, timing and process creation. In the
process algebra semantics of ϕSDL, which will be presented in Section 5, the
state operator mentioned in Section 3 is used to describe these mechanisms in
whole or in part. This means that input guards, SDL actions and stop correspond
to ACP actions that interact with a global state. In this section, we will describe
the state space, the actions that transform states, and the result of executing
processes, built up from these actions, in a state from this state space.

4.1 Preliminaries

We mentioned before that ϕSDL does not deal with the specification of abstract
data types. We assume a fixed algebraic specification covering all data types used
and an initial algebra semantics, denoted by A, for it. We will write SortA and
OpA for the set of all sort names and the set of all operation names, respectively,
in the signature of A. We will write U for

⋃
T∈sort(A) TA, where TA is the

interpretation of the sort name T in A. We will assume that nil 6∈ U . In the
sequel, we will use for each op ∈ OpA an extension to U , also denoted by op,
such that op(t1, . . . , tn) = nil if at least one the tis is not of the appropriate sort.
Thus, we can change over from the many-sorted case to the one-sorted case for
the description of the meaning of ϕSDL constructs. We can do so without loss
of generality, because it can (and should) be statically checked that only terms
of appropriate sorts occur.
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Uncustomary notation concerning sets, functions and sequences, used in this
section, is explained in Appendix A.

4.2 Basic domains and functions, the state space

The state space, used to describe the meaning of system definitions, depends
upon the specific variables, types of signals, channels and types of processes in-
troduced in the system definition concerned. They largely make up the contex-
tual information extracted from the system definition by means of the function
{[•]} defined in Appendix B. For convenience, we define these state space pa-
rameters for arbitrary contexts κ (the notation concerning contexts introduced
in Appendix B is used):

V κ = vars(κ)
Sκ = sigs(κ)
C κ = chans(κ)
Pκ = procs(κ)

First, we define the set Sigκ of signals and the set ExtSigκ of extended signals,
which fit into the picture of the communication mechanism. A signal consist of
the name of its type and the sequence of values that it carries. An extended
signal contains, in addition to a signal, the pid values of its sender and receiver.
The pid value of the sender is needed seeing that the identity of the sender may
otherwise get lost; a delivered signal need not be consumed immediately, but
may be put into an input queue instead. In case a signal must pass through a
channel, the pid value of the receiver is also essential because of the possible loss
of identity due to queueing or delaying.

Sigκ = Sκ ×U ∗
ExtSigκ = Sigκ × N× N

We write snm(sig) and vals(sig), where sig = (s, vs) ∈ Sigκ, for s and vs,
respectively. We write sig(esig), where esig = (sig , i, i′) ∈ ExtSigκ, for sig .

The local state of a process includes a storage which associates local variables
with the values assigned to them, an input queue where delivered signals are kept
until they are consumed, and a component keeping track of the expiration times
of active timers. We define the set Stgκ of storages, the set InpQκ of input queues
and the set Timersκ of timers as follows:

Stgκ =
⋃

V⊆Vκ
(V

fin→ U )

InpQκ = ExtSigκ
∗

Timersκ =
⋃

T⊆Sigκ
(T

fin→ N ∪ {nil})

We will follow the convention that the domain of a function from Stgκ does not
contain variables with which no value is associated because a value has never been
assigned to them. Consequently, the absence of a value need not to be represented
by nil. We will also follow the convention that the domain of a function from
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Timersκ contains precisely the active timers. While an expired timer is still
active, its former expiration time will be replaced by nil. The basic operations
on Stgκ and Timersκ are general operations on functions: function application,
overriding (⊕) and domain subtraction (−¢). Overriding and domain subtraction
are defined in Appendix A. In so far as the communication mechanism of SDL
is concerned, the basic operations on InpQκ are the functions

getnxt : InpQκ ×Pfin(Sκ) → ExtSigκ ∪ {nil},
rmvfirst : InpQκ × Sigκ → InpQκ,
merge : Pfin(InpQκ) → Pfin(InpQκ)

defined below. The value of getnxt(σ, ss) is the first (extended) signal in σ that is
of a type different from the ones in ss. The value of rmvfirst(σ, sig) is the input
queue σ from which the first occurrence of the signal sig has been removed. Both
functions are used to describe the consumption of signals by SDL processes. The
function getnxt is recursively defined by

getnxt(〈 〉, ss) = nil
getnxt((sig , i, i′) & σ, ss) = (sig , i, i′) if snm(sig) 6∈ ss
getnxt((sig , i, i′) & σ, ss) = getnxt(σ, ss) if snm(sig) ∈ ss

and the function rmvfirst is recursively defined by

rmvfirst(〈 〉, sig) = 〈 〉
rmvfirst((sig , i, i′) & σ, sig) = σ
rmvfirst((sig , i, i′) & σ, sig ′) = (sig , i, i′) & rmvfirst(σ, sig ′) if sig 6= sig ′

For each process, sequences of signals coming from different channels as well
as signals noticing timer expiration have to be merged when time progresses to
the next time slice. The function merge is used to describe this precisely. It is
inductively defined by

σ ∈ merge({σ})
〈 〉 ∈ merge({〈 〉, 〈 〉})
σ ∈ merge({σ1, σ2}) ⇒ (sig , i, i′) & σ ∈ merge({(sig , i, i′) & σ1, σ2})
σ ∈ merge({σ1, σ2}) ∧ σ2 ∈ merge(Σ) ⇒ σ ∈ merge({σ1} ∪ Σ)

We define now the set Lκ of local states. The local state of a process contains,
in addition to the above-mentioned components, the name of its type. Thus, the
type of the process concerned will not get lost. This is important, because a
signal may be sent to an arbitrary process of a process type.

Lκ = Stgκ × InpQκ × Timersκ × Pκ

We write stg(L), inpq(L), timers(L) and ptype(L), where L = (ρ, σ, θ, X) ∈ Lκ,
for ρ, σ, θ and X, respectively.

The global state of a system contains, besides a local state for each existing
process, components keeping track of the system time and the pid value issued
last, and also a queue for each channel where signals presented to the channel
are kept until it is their turn to pass through it. To keep track of the system
time and the pid value issued last, natural numbers suffice. We define the set
ChQκ of channel queues as follows:
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ChQκ = (ExtSigκ × N)∗

Each element in a channel queue contains, in addition to an (extended) signal, a
natural number presenting the duration of the delay that it experiences when it
does pass through the channel; the arbitrary choice between all possible durations
of this delay is made before the signal is put into the channel queue – by means of
alternative composition. Global states can be transformed by actions as well as
by progress of time. As mentioned above, there may be signals leaving channels
and entering the input queues of processes when time progresses to the next time
slice, and there may be timers expiring and corresponding signals entering the
input queues as well. In so far as channels are concerned, the functions that are
used to describe this precisely are the following ones:

unitdelay : ChQκ → ChQκ,
arriving : ChQκ × N→ InpQκ,
coming : ChQκ → ChQκ

The value of unitdelay(γ) is the channel queue γ in which the delay duration of
the first signal is decreased by one time unit. The value of arriving(γ, i) is the
longest prefix of γ that consists of signals with delay duration zero, weeded of
signals with other receivers than i and stripped of delay durations. The value of
coming(γ) is the longest suffix of γ that does not start with a signal with delay
duration zero. These functions are used to describe the delivery of signals by
channels. The function unitdelay is defined by the following equations:

unitdelay(〈 〉) = 〈 〉
unitdelay(((sig , i, i′), 0) & γ) = ((sig , i, i′), 0) & γ

unitdelay(((sig , i, i′), d + 1) & γ) = ((sig , i, i′), d) & γ

The function arriving and coming are recursively defined by

arriving(〈 〉, i) = 〈 〉
arriving(((sig , i, i′), 0) & γ, i′) = (sig , i, i′) & arriving(γ, i′)
arriving(((sig , i, i′), 0) & γ, j′) = arriving(γ, j′) if i′ 6= j′

arriving(((sig , i, i′), d + 1) & γ, j′) = 〈 〉

coming(〈 〉) = 〈 〉
coming(((sig , i, i′), 0) & γ) = coming(γ)
coming(((sig , i, i′), d + 1) & γ) = ((sig , i, i′), d + 1) & γ

We define now a set Mκ of global states which contains proper as well as
improper states. Recall that the global state of a system contains a component
keeping track of the pid value issued last, a component keeping track of the
system time, a channel queue for each channel and a local state for each existing
process. The channel queues are indexed by the fixed set of channel names and
the local states are indexed by a variable set of pid values, which contains the
pid values of the currently existing processes. The improper states are the ones
that does not keep the last issued pid value up to date.
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Mκ = N× N× (C κ
fin→ ChQκ)×⋃

I⊆N1
(I → Lκ)

We write cnt(G), now(G), chs(G) and lsts(G), where G = (c, n, Γ, Σ) ∈Mκ, for
c, n, Γ and Σ, respectively. Note that the local states are indexed by a subset of
N1. This means that 0 will never serve as the pid value of a process that exists
within the system. But 0 is not excluded from being used as a pid value; it is
reserved for the environment.

Last, we define the state space Gκ:

Gκ = {G ∈Mκ | ∀i ∈ dom(lsts(G)) · i ≤ cnt(G)}

We write exists(i, G), where i ∈ N and G ∈ Gκ, for i ∈ dom(lsts(G)). The state
space Gκ consists exactly of the proper states in Mκ.

4.3 Actions

In this subsection, we will introduce the actions that are used for the semantics
of ϕSDL. We will make a distinction between the state transforming actions and
the actions that do not transform states. For each action a from the latter kind,
the action that appears as the result of executing a in a state is always the action
a itself; i.e. λG(a · P ) = a · λG(P ). These actions are called inert actions.

We mentioned before that we will use actions parametrized by domains that
are built on expressions denoting values, in contrast with values, as state trans-
forming actions. These expressions are needed because, in general, the values
concerned depend on the state in which the actions are executed. The syntax of
these expressions, called value expressions, is as follows:

<vexpr> ::=
<operator nm> [ (<vexpr> {, <vexpr>}∗ ) ]
| cond (<boolean vexpr> , <vexpr> , <vexpr> )
| value ( <variable nm> , <pid vexpr> )
| active ( <signal nm> [ (<vexpr> {, <vexpr>}∗ ) ] )
|now
|<value nm>

|<vexpr>=<vexpr>

| cnt
|waiting (<signal nm> {, <signal nm>}∗ , <pid vexpr> )
| type ( <pid vexpr> )
| hasinst ( <process nm> )

We assume a fixed set of terminal productions of <value nm> including the
special value name self . We will write VExprκ for the set of all terminal pro-
ductions of <vexpr> where the set of terminal productions of <operator nm>,
<variable nm>, <signal nm> and <process nm> are OpA, V κ, Sκ and Pκ, respec-
tively. We will write NExprκ for {u ∈ VExprκ | ∀G ∈ Gκ · evalG(u) ∈ N ∪ {nil}}.

The first five cases correspond to operator applications, conditional expres-
sions, view expressions, active expressions and the expression now, respectively,
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in SDL. The SDL expressions parent, offspring and sender are regarded as variables
accesses, and variable accesses are treated as a special case of view expressions.
The sixth case includes self , which corresponds to the SDL expressions self.

The remaining five cases are needed to reflect the intended meaning of various
other SDL construct exactly. The expression cnt is used to associate a unique pid
value with each created process. Expressions of the form waiting(s1, . . . , sn, u)
are used to give meaning to SDL’s state definitions. They are needed to model
that signal consumption is not delayed till the next time slice when there is a
signal to consume. Expressions of the forms type(u) and hasinst(X) are used to
give meaning to SDL’s output actions. They are needed to check (dynamically)
if a receiver with a given pid value is of the appropriate type for a given signal
route and to check if a receiver of the appropriate type for a given signal route
exists. Expressions of the form u1 = u2 are, as a matter of course, used to give
meaning to SDL’s decisions. Furthermore, they are used with expressions of the
form cnt or type(u) as left-hand sides where the latter expressions are used.

The state transforming actions are parametrized by several domains that are
built on VExprκ:

SigDκ = Sκ ×VExprκ
∗

ExtSigDκ = SigDκ ×NExprκ ×NExprκ

ExtSigPκ = (Sκ ×V κ
∗)× {nil} ×NExprκ

The domains SigD and ExtSigD are like Sig and ExtSig , respectively, but with
U and N replaced by VExprκ and NExprκ, respectively. The domain ExtSigP
differs slightly from ExtSigD , because it represents signal patterns, with variables
used for the unknown values and nil for “don’t care”.

The following state transforming actions are used:

input : ExtSigPκ ×Pfin(Sκ)
output : ExtSigDκ × (C κ ∪ {nil})×NExprκ

set : NExprκ × SigDκ ×NExprκ

reset : SigDκ ×NExprκ

ass : V κ ×VExprκ ×NExprκ

cr : Pκ ×V κ
∗ ×VExprκ

∗ × (NExprκ ∪ {nil})
stop : NExprκ

inispont : NExprκ

These are the ACP actions that correspond to input guards, SDL actions, stop

and input none. The second parameter of an input action is the save set being
in force. The third parameter of an output action denotes the delay that the
signal experiences if it must pass through a channel. The last parameter of the
remaining actions denotes the pid value of the process from which the action
originates. Recall that the second and third parameter of an cr action are the
formal parameters and the actual parameters, respectively, of the process to
be created. The presence of nil needs some further explanation. The second
parameter of an output action is a channel if the signal to be sent must pass
through a channel, and nil otherwise. The last parameter of a cr action is a
value expression denoting the pid value of the creating process if it exists, and
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nil otherwise – a creating process does not exist for the processes created during
system start-up. Similar remarks also apply to the corresponding actions after
execution, and to a cr action (see below).

The following inert actions are used:

cr : Pκ ×V κ
∗ ×VExprκ

∗ × (NExprκ ∪ {nil})
input ′ : ExtSigκ ×V κ

∗
output ′: ExtSigκ × (C κ ∪ {nil})
set ′ : N× Sigκ × N
reset ′ : Sigκ × N
ass ′ : V κ ×U × N
cr ′ : Pκ ×V κ

∗ ×U ∗ × (N ∪ {nil})
stop′ : N
tt :

They do not transform states. They are the actions that appear as the result
of executing a state transforming action, except for cr . The instances of cr are
used for process creation, leaving instances of cr as a trace. The action tt is a
special action with no observable effect whatsoever. It appears as the result of
executing an instance of inispont as well as during system start-up as explained
in Section 5.2.

The second parameter of a create action (cr , cr or cr ′) is the sequence of
formal parameters for the relevant process type. This is convenient in two ways.
Firstly, the alternative to make the association between process types and their
formal parameters itself a parameter of the state operator is very unattractive.
Secondly, that association is not fully immutable. Recall that the formal param-
eters are variables and that parameter passing amounts to assigning initial values
to these variables – as part of a process creation action. During the start-up of
the system, such values are not available and no parameter passing takes place,
which correponds to a different association between process types and formal
parameters. This can simply be accomplished in the approach adopted here by
using an empty sequence.

4.4 State transformers and observers

In the process algebra semantics of ϕSDL, which will be presented in Section 5,
ACP actions that transform states from Gκ are used to describe the meaning of
input guards, SDL actions and stop. State transforming actions are also needed to
initiate spontaneous transitions (indicated by input none). In the next subsection,
we will define the result of executing a process, built up from these actions, in
a state from Gκ. That is, we will define the relevant state operator. This will,
for the most part, boil down to describing how the actions, and the progress
of time (modelled by the delay operator σrel), transform states. For the sake of
comprehensibility, we will first define matching state transforming operations,
and also some state observing operations.

A few of the state observing operations are used directly to define the state
operator; the others are used to define the evaluation function for the expressions
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being used in case the values concerned depend on a state. First of all, these
expressions are needed as constituents of the actions because the values concerned
depend on the state in which these actions are executed. Besides, they are needed
as conditions to describe processes that may proceed conditionally, dependent
on the state in which they are executed. Various SDL constructs, as a matter
of course including decisions, give rise to such processes. In the next subsection,
we will define, in addition to the state operator, the above-mentioned evaluation
function.

State transformers:

In general, the state transformers change one or two components of the local
state of one process. The notable exception is rcvsig , which is defined first.
It may change all components except the process type. This is a consequence
of the fact that the storage, communication and timing mechanisms are rather
intertwined on the consumption of signals in SDL. For each state transformer it
holds that everything remains unchanged if an attempt is made to transform the
local state of a non-existing process. This will not be explicitly mentioned in the
explanations given below.

The function rcvsig : ExtSigκ×V κ
∗ ×Gκ → Gκ is used to describe how ACP

actions corresponding to SDL’s input guards transform states.

rcvsig((sig , i, i′), 〈v1, . . . , vn〉, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i′ 7→ (ρ, σ, θ,X)}) if exists(i′, G)
G otherwise

where ρ = stg(lsts(G)i′)⊕ {v1 7→ vals(sig)1, . . . , vn 7→ vals(sig)n, sender 7→ i},
σ = rmvfirst(inpq(lsts(G)i′), sig),
θ = {sig} −¢ timers(lsts(G)i′),
X = ptype(lsts(G)i′)

rcvsig((sig , i, i′), 〈v1, . . . , vn〉, G) deals with the consumption of signal sig sent
from i to i′. It transforms the local state of the receiver as follows:

• the values carried by sig are assigned to the local variables v1, . . . , vn of the
receiver and the sender’s pid value (i) is assigned to sender;

• the first occurrence of sig in the input queue of the receiver is removed;

• if sig is a timer signal, it is removed from the active timers.

Everything else is left unchanged.
The function sndsig : ExtSigκ×(C κ∪{nil})×N×Gκ → Gκ is used to describe

how ACP actions corresponding to SDL’s output actions transform states.

sndsig((sig , i, i′), c, d, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i′ 7→ (ρ, σ, θ,X)})

if exists(i′, G) ∧ (c = nil∨(chs(G)c = 〈 〉 ∧ d = 0))
(cnt(G),now(G), chs(G)⊕ {c 7→ γ}, lsts(G))

if ¬(c = nil∨(chs(G)c = 〈 〉 ∧ d = 0))
G otherwise
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where ρ = stg(lsts(G)i′),
σ = inpq(lsts(G)i′) _ 〈(sig , i, i′)〉,
θ = timers(lsts(G)i′),
X = ptype(lsts(G)i′),
γ = chs(G)c

_ 〈((sig , i, i′), d)〉

sndsig((sig , i, i′), c, d,G) deals with passing signal sig from i to i′, through channel
c with a delay d if c 6= nil. If c = nil, or the queue of c is empty and d = 0, it
transforms the local state of the receiver as follows:

• sig is put into the input queue of the receiver, unless i′ = 0 (indicating that
the environment is the receiver of the signal).

Otherwise, it transforms the queue of the delaying channel as follows:

• sig is put into the queue of the delaying channel.

Everything else is left unchanged.
The function settimer : N×Sigκ×N×Gκ → Gκ is used to describe how ACP

actions corresponding to SDL’s set actions transform states.

settimer(t, sig , i, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i 7→ (ρ, σ, θ, X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i),
σ = rmvfirst(inpq(lsts(G)i), sig) if t > now(G)

rmvfirst(inpq(lsts(G)i), sig) _ 〈(sig , i, i)〉 otherwise,
θ = timers(lsts(G)i)⊕ {sig 7→ t} if t > now(G)

timers(lsts(G)i)⊕ {sig 7→ nil} otherwise,
X = ptype(lsts(G)i)

settimer(t, sig , i, G) deals with setting a timer, identified with signal sig , to time
t. If t has not yet passed, it transforms the local state of the process with pid
value i, the process to be notified of the timer’s expiration, as follows:

• the occurrence of sig in the input queue originating from an earlier setting,
if any, is removed;

• sig is included among the active timers with expiration time t; thus over-
riding an earlier setting, if any.

Otherwise, it transforms the local state of the process with pid value i as follows:

• sig is put into the input queue after removal of its occurrence originating
from an earlier setting, if any;

• sig is included among the active timers without expiration time.

Everything else is left unchanged.
The function resettimer : Sigκ × N × Gκ → Gκ is used to describe how ACP

actions corresponding to SDL’s reset actions transform states.
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resettimer(sig , i, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i 7→ (ρ, σ, θ, X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i),
σ = rmvfirst(inpq(lsts(G)i), sig),
θ = {sig} −¢ timers(lsts(G)i),
X = ptype(lsts(G)i)

resettimer(sig , i, G) deals with resetting a timer, identified with signal sig . It
transforms the local state of the process with pid value i, the process that would
otherwise have been notified of the timer’s expiration, as follows:

• the occurrence of sig in the input queue originating from an earlier setting,
if any, is removed;

• if sig is an active timer, it is removed from the active timers.

Everything else is left unchanged.
Notice that settimer(t, sig , i, G) and settimer(t, sig , i, resettimer(sig , i, G)) have
the same effect. In other words, settimer resets implicitly. In this way, at most
one signal from the same timer will ever occur in an input queue. Furthermore,
SDL keeps timer signals and other signals apart: not a single signal can originate
from both timer setting and customary signal sending. Thus, resetting, either
explicitly or implicitly, will solely remove signals from input queues that originate
from timer setting.

The function assignvar : V κ×U ×N×Gκ → Gκ is used to describe how ACP
actions corresponding to SDL’s assignment task actions transform states.

assignvar(v, t, i, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i 7→ (ρ, σ, θ, X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i)⊕ {v 7→ t},
σ = inpq(lsts(G)i),
θ = timers(lsts(G)i),
X = ptype(lsts(G)i)

assignvar(v, t, i, G) deals with assigning value t to variable v. It transforms the
local state of the process with pid value i, the process to which the variable is
local, as follows:

• t is assigned to the local variable v, i.e. v is included among the variables
in the storage with value t; thus overriding an earlier assignment, if any.

Everything else is left unchanged.
The function createproc : Pκ × V κ

∗ × U ∗ × (N ∪ {nil}) × Gκ → Gκ is used
to describe how ACP actions corresponding to SDL’s create actions transform
states.
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createproc(X, 〈v1, . . . , vn〉, 〈t1, . . . , tn〉, i, G) =
(cnt(G) + 1,now(G), chs(G),
lsts(G)⊕ {cnt(G) + 1 7→ (ρ, σ, θ, X), i 7→ (ρ′, σ′, θ′, X ′)}) if exists(i, G)

(cnt(G) + 1,now(G), chs(G),
lsts(G)⊕ {cnt(G) + 1 7→ (ρ, σ, θ, X)}) if i = nil

G otherwise

where ρ = {v1 7→ t1, . . . , vn 7→ tn, parent 7→ i},
σ = 〈 〉,
θ = { },
ρ′ = stg(lsts(G)i)⊕ {offspring 7→ cnt(G) + 1},
σ′ = inpq(lsts(G)i),
θ′ = timers(lsts(G)i),
X ′ = ptype(lsts(G)i)

createproc(X, 〈v1, . . . , vn〉, 〈t1, . . . , tn〉, i, G) deals with creating a process of type
X. It increments the last issued pid value – which will be used as the pid value
of the created process. In addition, it transforms the local state of the process
with pid value i, the parent of the created process, as follows:

• the pid value of the created process is assigned to offspring.

Besides, it creates a new local state for the created process which is initiated as
follows:

• the values t1, . . . , tn are assigned to the local variables v1, . . . , vn of the
created process and the parent’s pid value (i) is assigned to parent;

• X is made the process type.

Everything else is left unchanged.
The function stopproc : N × Gκ → Gκ is used to describe how ACP actions

corresponding to SDL’s stop transform states.

stopproc(i, G) = (cnt(G),now(G), chs(G), {i} −¢ lsts(G))

stopproc(i, G) deals with terminating the process with pid value i. It disposes of
the local state of the process with pid value i. Everything else is left unchanged.

The function inispont : N × Gκ → Gκ is used to describe how ACP actions
used to initiate spontaneous transitions transform states.

inispont(i, G) =
(cnt(G),now(G), chs(G), lsts(G)⊕ {i 7→ (ρ, σ, θ, X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i)⊕ {sender 7→ i},
σ = inpq(lsts(G)i),
θ = timers(lsts(G)i),
X = ptype(lsts(G)i)

inispont(i, G) deals with initiating spontaneous transitions. It transforms the
local state of the process with pid value i, the process for which a spontaneous
transition is initiated, by assigning i to sender. Everything else is left unchanged.
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The function unitdelay : Gκ → Pfin(Gκ) is used to describe how progress of
time transforms states. In general, these transformations are non-deterministic –
how signals from channels and expiring timers enter input queues is not uniquely
determined. Therefore, this function yields for each state a set of possible states.

G′ ∈ unitdelay(G) ⇔
cnt(G′) = cnt(G) ∧
now(G′) = now(G) + 1 ∧
∀c ∈ dom(chs(G)) · chs(G′)c = coming(unitdelay(chs(G)c)) ∧
∀i ∈ dom(lsts(G)) ·

stg(lsts(G′)i) = stg(lsts(G)i) ∧
(∃σ ∈ InpQ ·

inpq(lsts(G′)i) = inpq(lsts(G)i) _ σ∧
σ ∈ merge({arriving(unitdelay(chs(G)c), i) | c ∈ dom(chs(G))}∪

{〈(sig , i, i)〉 | timers(lsts(G)i)(sig) ≤ now(G)}))∧
timers(lsts(G′)i) =

timers(lsts(G)i)⊕ {sig 7→ nil | timers(lsts(G)i)(sig) ≤ now(G)} ∧
ptype(lsts(G′)i) = ptype(lsts(G)i)

unitdelay(G) transforms the global state as follows:

• the last issued pid value is left unchanged;

• the system time is incremented with one unit;

• for each channel, the signals leaving the channel within one time unit are
removed from its queue;

• for the local state of each process:

– its storage is left unchanged;

– the signals leaving any channel within one time unit and having the
process as receiver, as well as the signals that notify expiration of any
of its timers within one time unit, are put into its input queue in a
merging, order preserving, manner;

– for each of its timers that expire within one time unit, the expiration
time is removed;

– its process type is left unchanged.

State observers:

In general, the state observers examine one component of the local state of one
process. The only exception is has-instance, which may even examine the process
type component of all processes. If an attempt is made to observe the local
state of a non-existing process, each non-boolean-valued state observer yields nil
and each boolean-valued state observer yields false. This will not be explicitly
mentioned in the explanations given below. The functions nxtsig : Pfin(Sκ) ×
N × Gκ → ExtSigκ ∪ {nil} and nxtsignm : Pfin(Sκ) × N × Gκ → Sκ ∪ {nil} are
used to define the result of executing ACP actions corresponding to SDL’s input
guards in a state.
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nxtsig(ss, i, G) = getnxt(inpq(lsts(G)i), ss) if exists(i, G)
nil otherwise

nxtsig(ss, i, G) yields the first signal in the input queue of the process with pid
value i that is of a type different from the ones in ss.

nxtsignm(ss, i, G) = snm(sig(nxtsig(ss, i, G))) if nxtsig(ss, i, G) 6= nil
nil otherwise

nxtsignm(ss, i, G) yields the type of the first signal in the input queue of the
process with pid value i that is of a type different from the ones in ss.

The function contents : V κ × N × Gκ → U ∪ {nil} is used to describe the
value of expressions of the form value(v, u) which correspond to SDL’s variable
accesses and view expressions.

contents(v, i, G) = ρ(v) if exists(i, G) ∧ v ∈ dom(ρ)
nil otherwise

where ρ = stg(lsts(G)i)

contents(v, i, G) yields the current value of the variable v that is local to the
process with pid value i.

The function is-active : Sigκ × N × Gκ → B is used to describe the value of
expressions of the form active(sig , u) which correspond to SDL’s active expres-
sions.

is-active(sig , i, G) = true if exists(i, G) ∧ sig ∈ dom(timers(lsts(G)i))
false otherwise

is-active(sig , i, G) yields true iff sig is an active timer signal of the process with
pid value i.

The function is-waiting : Pfin(Sκ)×N×Gκ → B is used to describe the value
of expressions of the form waiting(s1, . . . , sn, u) which are used to give meaning
to SDL’s state definitions.

is-waiting(ss, i, G) = true if exists(i, G) ∧ nxtsig(ss, i, G) 6= nil
false otherwise

is-waiting(ss, i, G) yields true iff there is a signal in the input queue of the process
with pid value i that is of a type different from the ones in ss.

The function type : N× Gκ → Pκ ∪ {env, nil} is used to describe the value of
expressions of the form type(u) which are used to give meaning to SDL’s output
actions with explicit addressing.

type(i, G) = ptype(lsts(G)i) if exists(i, G)
env if i = 0
nil otherwise

type(i, G) yields the type of the process with pid value i. Different from the other
state observers, it yields a result if i = 0 as well, viz. env.

The function has-instance : (Pκ ∪ {env}) × Gκ → B is used to describe the
value of expressions of the form hasinst(X), where X is a process name, which
are used to give meaning to SDL’s output actions with implicit addressing.
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has-instance(X, G) = true if ∃i ∈ N · (i = 0 ∨ exists(i, G)) ∧ type(i, G) = X
false otherwise

has-instance(X, G) yields true iff there exists a process of type X.

4.5 State operator and evaluation function

In this subsection, we will finally define the state operator that is used to describe,
in whole or in part, the SDL mechanisms for storage, communication, timing and
process creation. We will not define the action and effect functions explicitly,
as in [1]. Instead we will define, for each state transforming action a, the result
of executing a process of the form a · P in a state from Gκ.

6 Because progress
of time transforms states as well, we will also define the result of executing a
process of the form σrel(P ) in a state. In addition, we will define the evaluation
function that is used to describe the value of an expression u in a state G.

State operator:

The state transformers defined in Section 4.4 are used below to describe the
state G′ resulting from executing a state transforming action a in a state G. In
general, the action a′ that appears as the result of executing a state transforming
action a in a state G is the action a with the expressions occurring in it replaced
by their values in state G. However, there are exception to this rule for the
input actions and the output actions. For output actions, the delay duration
is additionally stripped of. Input actions deviate more. The constituents of an
input action a are a pattern of an (extended) signal and a set of signal types, and
the constituents of the corresponding action a′ are a signal matching this pattern
and the sequence of variables occurring in the pattern. That a signal pattern
is replaced by a matching signal is to be expected, the sequence of variables is
added because it shows to which variables the values carried by the signal have
been assigned, and the set of signal types is removed because there is no use to
retain it after execution. There is still another exception for the actions used to
initiate spontaneous transitions. As mentioned before, tt appears as the result of
executing these actions.

We will first define the result of executing a process of the form a ·P in a state
from Gκ for the state transforming ACP actions corresponding to SDL’s input
guards, output actions, set actions, reset actions, assignment task actions, create
actions and the terminator stop, and for the state transforming ACP actions of
the form inispont(u) which will be used to set sender properly when spontaneous

transitions take place. All this is rather straightforward with the state trans-
formers defined in Section 4.4; only the case of the ACP actions corresponding
to SDL’s input guards needs further explanation. If the value of at least one of
the expressions occurring in an ACP action is undefined in the state concerned,

6We follow the convention that, for each equation λG(a · P ) = a′ · λG′(P ), the equation
λG(a) = a′ is implicit.
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the action will fail, i.e. yield deadlock. Different from the other cases, the execu-
tion of an action input(((s, 〈v1, . . . , vn〉), nil, u), ss) may fail in certain states for

other reasons as well. It fails if the type of the first signal in the input queue of
the process referred to by u with a type not occurring in ss is different from s.
Otherwise, it succeeds, the values carried by this signal are assigned to the local
variables v1, . . . , vn of the process concerned, and the signal is removed from the
input queue.

λG(input(((s, 〈v1, . . . , vn〉), nil, u′), ss) · P ) =

input′(nxt , 〈v1, . . . , vn〉) · λrcvsig(nxt ,〈v1,...,vn〉,G)(P ) if i′ 6= nil∧
nxtsignm(ss, i′, G) = s

δ otherwise

where nxt = nxtsig(ss, i′, G),
i′ = evalG(u′)

λG(output(((s, 〈u1, . . . , un〉), u, u′), c, u′′) · P ) =

output′((sig , i, i′), c) · λsndsig((sig,i,i′),c,d,G)(P ) if t1 6= nil∧ . . . ∧ tn 6= nil∧
i 6= nil∧i′ 6= nil∧d 6= nil

δ otherwise

where sig = (s, 〈t1, . . . , tn〉),
tj = evalG(uj) ( for 1 ≤ j ≤ n),
i = evalG(u),
i′ = evalG(u′),
d = evalG(u′′)

λG(set(u, (s, 〈u1, . . . , un〉), u′) · P ) =
set′(t, sig , i) · λsettimer(t,sig,i,G)(P ) if t 6= nil∧t1 6= nil∧ . . . ∧ tn 6= nil∧i 6= nil

δ otherwise

where t = evalG(u),
sig = (s, 〈t1, . . . , tn〉),
tj = evalG(uj) ( for 1 ≤ j ≤ n),
i = evalG(u′)

λG(reset((s, 〈u1, . . . , un〉), u′) · P ) =
reset′(sig , i) · λresettimer(sig,i,G)(P ) if t1 6= nil∧ . . . ∧ tn 6= nil∧i 6= nil

δ otherwise

where sig = (s, 〈t1, . . . , tn〉),
tj = evalG(uj) ( for 1 ≤ j ≤ n),
i = evalG(u′)

λG(ass(v, u, u′) · P ) = ass′(v, t, i) · λassignvar(v,t,i,G)(P ) if t 6= nil∧i 6= nil

δ otherwise

where t = evalG(u),
i = evalG(u′)
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λG(cr(X, fpars, 〈u1, . . . , un〉, u) · P ) =
cr′(X, fpars, apars, i) · λcreateproc(X,fpars,apars,i,G)(P ) if t1 6= nil∧ . . . ∧ tn 6= nil

δ otherwise

where apars = 〈t1, . . . , tn〉,
tj = evalG(uj) ( for 1 ≤ j ≤ n),
i = evalG(u)

λG(stop(u) · P ) = stop′(i) · λstopproc(i,G)(P ) if i 6= nil

δ otherwise

where i = evalG(u)

λG(inispont(u) · P ) = tt · λinispont(i,G)(P ) if i 6= nil

δ otherwise

where i = evalG(u)

Here evalG is used to describe the value of expressions, occurring in a state
transforming action, in state G. This evaluation function will be defined later
on.

Recall that for each inert action a, we simply have

λG(a · P ) = a · λG(P )

We will now proceed with defining the result of executing a process of the
form σrel(P ) in a state from Gκ. This case is quite different from the preceding
ones. Executing a process that is delayed till the next time slice in some state
means that the execution is delayed till the next time slice and, in general, that
it takes place in another state due to the progress of time. Usually, it is not
uniquely determined how progress of time transforms states. This leads to the
following equation:

λG(σrel(P )) = σrel(
∑

G′∈unitdelay(G) λG′(P ))

Evaluation function:

We will end this section with defining the evaluation function that was already
used to describe the value of an expression u in a state G. Most state observers
defined in Section 4.4 are used to define this function. If the value of at least
one of the subexpressions occurring in an expression is undefined in the state
concerned, the expression will be undefined, i.e. yield nil.

The SDL expressions are covered by the first six cases, as explained in Sec-
tion 4.3. These cases do not need any further explanation except the remark
that the meta-variable x ranges over a set of variables in the sense of µCRL that
includes self , a special variable corresponding to the SDL expression self.

evalG(op(u1, . . . , un)) =
op(evalG(u1), . . . , evalG(un)) if evalG(u1) 6= nil∧ . . . ∧ evalG(un) 6= nil
nil otherwise
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evalG(cond(u1, u2, u3)) = evalG(u2) if evalG(u1) = true
evalG(u3) if evalG(u1) = false
nil otherwise

evalG(value(v, u)) = contents(v, evalG(u), G) if evalG(u) 6= nil
nil otherwise

evalG(active((s, 〈u1, . . . , un〉), u)) =
is-active(sig , evalG(u), G) if evalG(u1) 6= nil∧ . . . ∧ evalG(un) 6= nil∧

evalG(u) 6= nil
nil otherwise

where sig = (s, 〈evalG(u1), . . . , evalG(un)〉)

evalG(now) = now(G)

evalG(x) = x

The remaining cases are about expressions which are used in Section 5, as ex-
plained in Section 4.3 as well. They are very straightforward.

evalG(u1 = u2) = true if evalG(u1) = evalG(u2)
false if evalG(u1) 6= evalG(u2)
nil otherwise

evalG(cnt) = cnt(G)

evalG(waiting(s1, . . . , sn, u)) =
is-waiting({s1, . . . , sn}, evalG(u), G) if evalG(u) 6= nil
nil otherwise

evalG(type(u)) = type(evalG(u), G) if evalG(u) 6= nil
nil otherwise

evalG(hasinst(X)) = has-instance(X, G)

5 Process algebra semantics

In this section, we will present a process algebra semantics of ϕSDL. It relies
heavily upon the specifics of the state operator defined in Section 4.5. Here, all
peculiar details of the semantics, inherited from full SDL, become visible.

The semantics of ϕSDL is defined by interpretation functions, one for each
syntactic category, which are all written in the form [[ ]]κ. The superscript κ is
used to provide contextual information where required. The exact interpretation
function is always clear from the context. We will be lazy about specifying the
range of each interpretation function, since this is usually clear from the context
as well. Many of the interpretations are expressions, equations, etc. They will
simply be written in their display form. We will in addition assume that the
interpretation of a name is the same name.
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5.1 System definition

The meaning of a system definition is a quadruple (P, φ,E,G) where:

• P is a process expression describing the behaviour of the system from its
start-up;

• φ is the mapping from process names to process expressions that is to be
associated with the process creation operator used in P ;

• E is the set of recursive process-equations defining the processes corre-
sponding to the SDL states referred to in the process expressions in the
range of φ;

• G is the state space that is to be associated with the state operator used
in P .

The first component depends on the names introduced by the definitions of chan-
nels and process types, and on the given numbers of processes to be created
during the start-up of the system for the process types defined. The second
and third component depend heavily on the process definitions proper. The last
component depends simply on the names introduced by the definitions of vari-
ables, signal types, channels and process types – this means that the state space
depends solely on purely syntactic aspects of the system.

The meaning of each definition occurring in a system definition is a pair (φ,E)
where:

• φ is singleton mapping from process names to process expressions if it is
the definition of a process type, and an empty mapping otherwise;

• E is the set of recursive process-equations defining the processes corre-
sponding to the SDL states referred to in the single process expression in
the range of φ if it is the definition of a process type, and an empty set
otherwise.

In case of a process definition, the first component is expressed in terms of the
meaning of its start transition and the second component in terms of the meaning
of its state definitions. We write [[D]]κφ and [[D]]κE, where [[D]]κ = (φ,E), for φ and
E, respectively. Thus, we have [[D]]κ = ([[D]]κφ, [[D]]κE)

The second and third component of the meaning of a system definition are
obtained by taking the union of the first components and second components,
respectively, of the meaning of all definitions occurring in it.

[[systemS;D1 . . .Dn endsystem;]] :=
(τI∪{tt} ◦ λG0 ◦ Eφ(P ), [[D1]]κφ ∪ . . . ∪ [[Dn]]κφ, [[D1]]κE ∪ . . . ∪ [[Dn]]κE ,Gκ)

where P = ‖X∈procs(κ) (‖init(κ,X) cr(X, 〈 〉, 〈 〉, nil)),
G0 = (0, 0, {c 7→ 〈 〉|c ∈ chans(κ)}, { }),
κ = {[systemS;D1 . . .Dn endsystem;]}

[[processX(k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess;]]κ :=
({X 7→ ∑

self :N cnt = self :→ [[tr]]κ
′}, {[[d1]]κ

′
, . . . , [[dn]]κ

′})
where κ′ = updscopeunit(κ,X)
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[[D]]κ := ({ }, { }) if the definition D is not of the form
processX(k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess;

In the case of a system definition, the process expression τI∪{tt} ◦ λG0 ◦ Eφ(P )
expresses that, for each process type defined, the given initial number of processes
are created and the result is executed in the state G0. Additionally, the internal
action tt as well as the actions in I are hidden. I is to be regarded as a parameter
of the semantics. If one takes the empty set for I, one gets an extreme semantics,
viz. a concrete one corresponding to the viewpoint that all internal actions of a
system are observable. By taking appropriate non-empty sets, one can get a range
of more abstract semantics, including the interesting one that corresponds to the
viewpoint that only the communication with the environment is observable. G0

is the state in which the last issued pid value and the system time are zero, there
is an empty queue for each channel defined, and there are no local states. Recall
that the pid value zero is reserved for the environment and that a newly created
process gets its pid value and local state only when its execution starts. In
the case of a process definition, the process expression in the singleton mapping
{X 7→ ∑

self :N cnt = self :→ [[tr]]κ
′} expresses that, for each process of the type

X, its behaviour is the behaviour determined by the given start transition tr if
self stands for the last issued pid value.

5.2 Process behaviours

The meaning of a state definition, occurring in the scope of a process defini-
tion, is a process-equation defining, for the process type defined, the common
behaviour of its instances from the state being defined (using parametrization
by the identifying pid value self ). It is expressed in terms of the meaning of its
transition alternatives, which are process expressions describing the behaviour
from the state being defined for the individual signal types of which instances
may be consumed and, in addition, possibly for some spontaneous transitions.
The meaning of each transition alternative is in turn expressed in terms of the
meaning of its input guard, if the alternative is not a spontaneous transition,
and its transition.

[[state st; save s1, . . . ,sm;alt1 . . . altn]]κ :=
Xst = ¬waiting(s1, . . . , sm, self ) :→ ([[alt1]]κ

′
+ . . . + [[altn]]κ

′
)+

waiting(s1, . . . , sm, self ) :→ σrel(Xst)

where X = scopeunit(κ),
κ′ = updsaveset(κ, {s1, . . . , sm})

[[input s(v1, . . . ,vn);tr]]κ :=
(lt(cnt, n0) :→ tt) ∗ (¬lt(cnt, n0) :→ input(((s, 〈v1, . . . , vn〉), nil, self ), ss) · [[tr]]κ)

where n0 =
∑

X∈procs(κ) init(κ,X),
ss = saveset(κ)

7

7Here, we use
∑

for summation of a set of natural numbers.
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[[input none; tr]]κ := inispont(self ) · [[tr]]κ

In the case of a state definition, the process-equation describes that the processes
of type X behave from the state st as one of the given transition alternatives,
and that this behaviour is possibly delayed till the first future time slice in which
there is a signal to consume if there are no more signals to consume in the
current time slice. In process-equations, we use names of process types with
state name subscripts, such as Xst above, as variables; in process expressions
elsewhere, we use them to refer to the processes defined thus. Note that, in
the absence of spontaneous transitions, a delay becomes inescapable if there are
no more signals to consume in the current time slice. In the case of a guarded
transition alternative, the process expression input(((s, 〈v1, . . . , vn〉), nil, self ), ss)·
[[tr]]κ expresses that the transition tr is initiated on consumption of a signal of
type s; iteration is used to guarantee that no communication takes place till
the start-up of the system has come to an end. In the case of an unguarded
transition alternative, the process expression expresses that the transition tr is
initiated spontaneously, i.e. without a preceding signal consumption, with sender

set to the value of self.
The meaning of a transition, occurring in the scope of a process definition, is

a process expression describing the behaviour of the transition. It is expressed
in terms of the meaning of its actions and its transition terminator.

[[a1 . . . an nextstate st;]]κ := [[a1]]κ · . . . · [[an]]κ ·Xst

where X = scopeunit(κ)

[[a1 . . . an stop;]]κ := [[a1]]κ · . . . · [[an]]κ · stop(self )

[[a1 . . . an dec;]]κ := [[a1]]κ · . . . · [[an]]κ · [[dec]]κ

In the case of a transition terminated by nextstate st, the process expression
expresses that the transition performs the actions a1, . . . , an in sequential order
and ends with entering state st – i.e. goes on behaving as defined for state st of
the processes of the type defined. In case of termination by stop, it ends with
ceasing to exist; and in case of termination by a decision dec, it goes on behaving
as described by dec.

Of course, the meaning of a decision is a process expression as well. It is
expressed in terms of the meaning of its expressions and transitions.

[[decision e;(e1):tr1 . . . (en):trn enddecision]]κ :=
[[e]] = [[e1]] :→ [[tr1]]κ + . . . + [[e]] = [[en]] :→ [[trn]]κ

[[decision any; ():tr1 . . . ():trn enddecision]]κ := [[tr1]]κ + . . . + [[trn]]κ

In the case of a decision with a question expression e, the process expression
expresses that the decision transfers control to the transition tri for which the
value of e equals the value of ei. In the case of a decision with any instead,
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the process expression expresses that the decision transfers non-deterministically
control to one of the transitions tr1, . . . , trn.

The meaning of an SDL action is also a process expression. It is expressed
in terms of the meaning of the expressions occurring in it. It also depends on
the occurring names (names of variables, signal types, signal routes and process
types – dependent on the kind of action).

[[output s(e1, . . . ,en) to e via r1, . . . ,rm;]]κ :=
(lt(cnt, n0) :→ tt) ∗
(¬lt(cnt, n0) :→ (type([[e]]) = X1 :→ P1 + . . . + type([[e]]) = Xm :→ Pm +

¬(type([[e]]) = X1 ∨ . . . ∨ type([[e]]) = Xm) :→ tt))

where n0 =
∑

X∈procs(κ) init(κ,X),

for 1 ≤ j ≤ m:

Pj = output(((s, 〈[[e1]], . . . , [[en]]〉), self , [[e]]), cj , 0) if cj = nil∑
d:N output(((s, 〈[[e1]], . . . , [[en]]〉), self , [[e]]), cj , d) otherwise,

Xj = rcv(κ, rj),
cj = ch(κ, rj)

[[output s(e1, . . . ,en) via r1, . . . ,rm;]]κ :=
(lt(cnt, n0) :→ tt) ∗
(¬lt(cnt, n0) :→ (

∑
i:N(type(i) = X1 :→ P1 + . . . + type(i) = Xm :→ Pm) +

¬(hasinst(X1) ∧ . . . ∧ hasinst(Xm)) :→ tt))

where n0 =
∑

X∈procs(κ) init(κ,X),

for 1 ≤ j ≤ m:

Pj = output(((s, 〈[[e1]], . . . , [[en]]〉), self , i), cj , 0) if cj = nil∑
d:N output(((s, 〈[[e1]], . . . , [[en]]〉), self , i), cj , d) otherwise,

Xj = rcv(κ, rj),
cj = ch(κ, rj)

[[set (e,s(e1, . . . ,en));]]κ := set([[e]], (s, 〈[[e1]], . . . , [[en]]〉), self )

[[reset (s(e1, . . . ,en));]]κ := reset((s, 〈[[e1]], . . . , [[en]]〉), self )

[[task v := e;]]κ := ass(v, [[e]], self )

[[createX(e1, . . . ,en);]]κ := cr(X, fpars(κ,X), 〈[[e1]], . . . , [[en]]〉, self )

All cases except the ones for output actions are straightforward. The cases
of output actions needs further explanation. The receiver of a signal sent via a
certain signal route must be of the receiver type associated with that signal route.
Therefore, the conditions of the form type(u) = Xj are used. In the case of an
output action with a receiver expression e, if none of the signal routes r1, . . . , rm

has the type of the process with pid value e as its receiver type, or a process with
that pid value does not exist, the signal is simply discarded and no error occurs.
This is expressed by the summand ¬(type([[e]]) = X1∨. . .∨type([[e]]) = Xm) :→ tt.
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In the case of an output action without a receiver expression, first an arbitrary
choice from the signal routes r1, . . . , rm is made and thereafter an arbitrary choice
from the existing processes of the receiver type for the chosen signal route is
made. However, there may be no existing process of the receiver type for that
signal route. Should this occasion arise, the signal is simply discarded. This
is expressed by the summand ¬(hasinst(X1) ∧ . . . ∧ hasinst(Xm)) :→ tt. Note
that this occasion may already arise if there is one signal route for which there
exists no process of its receiver type. Note further that a process expression of
the form

∑
d:N output(sig , c, d) is used for each signal route containing a delaying

channel c. Thus, the arbitrary delay is modelled by an arbitrary choice between
all possible delay durations d as already mentioned in Section 4.2. As for input
guards, iteration is used to guarantee that no communication takes place till the
start-up of the system has come to an end.

5.3 Values

The meaning of an SDL expression is given by a translation to a value expression
of the same kind. There is a close correspondence between the SDL expressions
and their translations. Essential of the translation is that self is added where
the local states of different processes need to be distinguished. Consequently, a
variable access v is just treated as a view expression view (v, self ). For convenience,
the expressions parent, offspring and sender are also regarded as variable accesses.

[[op(e1, . . . ,en)]] := op([[e1]], . . . , [[en]])

[[if e1 then e2 else e3 fi]] := cond([[e1]], [[e2]], [[e3]])

[[v]] := value(v, self )

[[view (v,e)]] := value(v, [[e]])

[[active (s(e1, . . . ,en))]] := active((s, 〈[[e1]], . . . , [[en]]〉), self )

[[now]] := now

[[self]] := self

[[parent]] := value(parent, self )

[[offspring]] := value(offspring, self )

[[sender]] := value(sender, self )

All cases are very straightforward and need no further explanation. This is due
to the choice of value expressions and the evaluation function defined on them
in Section 4.5.
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6 Closing remarks

Models of highly reactive and distributed systems, in particular telecommunica-
tions systems, are frequently made using SDL. This is done with, among other
things, the intention to allow for the analysis of their behaviour. Largely due to
their intrinsic reactive and distributed nature, giving considerations to time is
inherent to the analysis of the behaviour of such systems. The semantics of SDL
according to the ITU/TS recommendation is at some points insufficiently precise,
and at other points too complex, to allow for interesting analysis; in particular
the time related features of SDL, such as timers and channels with delay, miss an
adequate semantics. Besides, the existing tools for analysis of models described
in SDL are very limited; at best a limited kind of model checking, closely related
to simulation of the described behaviour, is provided, and no time related fea-
tures are supported. In a joint project of KPN Research – the research institute
of the telecommunications operator PTT Telecom and the industrial affiliation
of the second author – and Utrecht University, a state-of-the-art model checker
is adapted to the common needs for analysis of systems modelled using ϕSDL.
The intention of that work is to do some first steps in the improvement of the
possibilities for analysis of models described in SDL. The work on ϕSDL reported
in this paper was initiated by that project.

In [10] a foundation for the semantics of SDL, based on streams and stream
processing functions, has been proposed. This proposal indicates that the SDL
view of systems gives an interesting type of dynamic dataflow networks, but the
treatment of time in the proposal is however too sketchy to be used as a starting
point for the semantics of the time related features of SDL. In [11] and [12]
attempts have been made to give a structured operational semantics of SDL, the
latter including the time related features. However, not all relevant details were
worked out, and the results will probably have to be turned inside out in order
to deal with full SDL. At the outset, we also tried shortly to give a structured
operational semantics of SDL, but we found that it is very difficult, especially if
time aspects have to be taken into account. Of course, a structured operational
semantics can be derived from the process algebra semantics, and most probably,
we will have to do so for the above-mentioned project.
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A Notational conventions

Meta-language for syntax:

The syntax of ϕSDL is described by means of production rules in the form of an
extended BNF grammar. The curly brackets “{” and “}” are used for grouping.
The asterisk “∗” and the plus sign “+” are used for zero or more repetitions
and one or more repetitions, respectively, of curly bracketed groups. The square
brackets “[” and “]” are also used for grouping, but indicate that the group is
optional. An underlined part included in a nonterminal symbol does not belong
to the context free syntax; it describes a semantic condition.

Special set, function and sequence notation:

We write P(A) for the set of all subsets of A, and we write Pfin(A) for the set of
all finite subsets of A.

We write f : A → B to indicate that f is a total function from A to B, that
is f ⊆ A×B ∧ ∀x ∈ A · ∃1y ∈ B · (x, y) ∈ f . If A is finite, we emphasize this by

writing f : A
fin→ B instead. We write dom(f), where f : A → B, for A. For an

(ordered) pair (x, y), where x and y are intended for argument and value of some
function, we use the notation x 7→ y to emphasize this intention. The binary
operators −¢ (domain subtraction) and ⊕ (overriding) on functions are defined
by

A−¢ f = {x 7→ y | x ∈ dom(f) ∧ x 6∈ A ∧ f(x) = y}
f ⊕ g = (dom(g)−¢ f) ∪ g

For a function f : A → B, presenting a family B indexed by A, we use the
notation fi (for i ∈ A) instead of f(i).

Functions are also used to present sequences; as usual we write 〈x1, . . . , xn〉
for the sequence presented by the function {1 7→ x1, . . . , n 7→ xn}. The binary
operator _ stands for concatenation of sequences. We write x & t for 〈x〉 _ t.
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B Contextual information

The meaning of a ϕSDL construct generally depends on the definitions in the
scope in which it occurs. Contexts are primarily intended for modeling the scope.
The context that is ascribed to a complete system definition is also used to define
the state space used to describe its meaning. The context of a construct con-
tains all names introduced by the definitions of variables, signal types, channels,
signal routes and process types occurring in the system definition on hand and
additionally:

• if the construct occurs in the scope of a process definition, the name intro-
duced by that process definition, called the scope unit ;

• if the construct occurs in the scope of a state definition, the set of names
occurring in the save part of that state definition, called the save set.

In case of a signal route, the name is in addition connected with the names of
its receiver type and its delaying channel, if present; and in case of a process
type, the name is connected with the names of the variables that are its formal
parameters and the number of processes of this type that have to be created
during the start-up of the system.

Context =
Pfin(VarId)×Pfin(SigId)×Pfin(ChanId)×Pfin(RouteDes)×Pfin(ProcDes)×
(ProcId ∪ {nil})× Pfin(SigId)

where RouteDes = RouteId × (ProcId ∪ {env})× (ChanId ∪ {nil})
ProcDes = ProcId ×VarId∗ × N

We write vars(κ), sigs(κ), chans(κ), routeds(κ), procds(κ), scopeunit(κ) and
saveset(κ), where κ = (V, S, C, Rd, Pd,X, ss) ∈ Context , for V , S, Ch, Rd, Pd,
X and ss, respectively. We write procs(κ) for {X | ∃vs, k·(X, vs, k) ∈ procds(κ)}.
For constructs that do not occur in a process definition, the absence of a scope
unit will be represented by nil and, for constructs that do not occur in a state
definition, the absence of a save set will be represented by { }.

Useful operations on Context are the functions

rcv : Context × RouteId → ProcId ∪ {env},
ch : Context × RouteId → ChanId ∪ {nil},
fpars : Context × ProcId → VarId∗,
init : Context × ProcId → N,
updscopeunit : Context × ProcId → Context ,
updsaveset : Context × Pfin(SigId) → Context

defined below. The functions rcv and ch are used to extract the receiver type
and the delaying channel, respectively, of a given signal route from the context.
These functions are inductively defined by

(r,X, c) ∈ routeds(κ) ⇒ rcv(κ, r) = X,

(r,X, c) ∈ routeds(κ) ⇒ ch(κ, r) = c
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The functions fpars and init are used to extract the formal parameters and the
initial number of processes, respectively, of a given process type from the context.
These functions are inductively defined by

(X, vs, k) ∈ procds(κ) ⇒ fpars(κ,X) = vs,

(X, vs, k) ∈ procds(κ) ⇒ init(κ,X) = k

The functions updscopeunit and updsaveset are used to update the scope unit
and the save set, respectively, of the context. These functions are inductively
defined by

κ = (V, S, C, Rd, Pd,X, ss) ⇒ updscopeunit(κ,X ′) = (V, S, C,Rd, Pd,X ′, ss),
κ = (V, S, C, Rd, Pd,X, ss) ⇒ updsaveset(κ, ss′) = (V, S, C,Rd, Pd,X, ss′)

The context ascribed to a system definition is a minimal context in the sense
that the contextual information available in it is common to all contexts on which
constructs occurring in it depend. The additional information that may be avail-
able applies to the scope unit for constructs occurring in a process definition and
the save set for constructs occurring in a state definition. The context ascribed
to a system definition is obtained by taking the union of the corresponding com-
ponents of the (partial) contexts contributed by all definitions occurring in it,
except for the scope unit and the saveset which are permanently the same – nil
and { }, respectively.

{[systemS;D1 . . .Dn endsystem;]} :=
(vars({[D1]}) ∪ . . . ∪ vars({[Dn]}),
sigs({[D1]}) ∪ . . . ∪ sigs({[Dn]}),
chans({[D1]}) ∪ . . . ∪ chans({[Dn]}),
routeds({[D1]}) ∪ . . . ∪ routeds({[Dn]}),
procds({[D1]}) ∪ . . . ∪ procds({[Dn]}),
nil, { })

{[dcl v T;]} := ({v}, { }, { }, { }, { }, nil, { })

{[signal s(T1, . . . ,Tn);]} := ({ }, {s}, { }, { }, { }, nil, { })

{[channel c;]} := ({ }, { }, {c}, { }, { }, nil, { })

{[signalroute r fromX1 toX2 with s1, . . . ,sn delayed by c;]} :=
({ }, { }, { }, {(r,X2, c)}, { }, nil, { })

{[processX(k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess;]} :=
({ }, { }, { }, { }, {(X, 〈v1, . . . , vm〉, k)}, nil, { })
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