
Acta Informatica manuscript No.
(will be inserted by the editor)

J.A. Bergstra · C.A. Middelburg

Synchronous Cooperation for Explicit
Multi-Threading

the date of receipt and acceptance should be inserted later

Abstract We develop an algebraic theory of threads, synchronous cooperation
of threads and interaction of threads with Maurer machines, and investigate pro-
gram parallelization using the resulting theory. Program parallelization underlies
techniques for speeding up instruction processing on a computer that make use
of the abilities of the computer to process instructions simultaneously in cases
where the state changes involved do no influence each other. One of our findings
is that a strong induction principle is needed when proving theorems about suf-
ficient conditions for the correctness of program parallelizations. The induction
principle introduced has brought us to construct a projective limit model for the
theory developed.

Keywords thread algebra – synchronous cooperation – program algebra –
program parallelization – projective limit model

1 Introduction

Thread algebra originates from the form of process algebra introduced in [6] under
the name basic polarized process algebra. A thread is the behaviour of a determin-
istic sequential program under execution. In earlier work, see e.g. [7,14,13], we

The work presented in this paper has been partly carried out while the second author was also at
Eindhoven University of Technology, Department of Mathematics and Computer Science.

The work presented in this paper has been carried out as part of the GLANCE-project MICRO-
GRIDS, which is funded by the Netherlands Organisation for Scientific Research (NWO).

J.A. Bergstra· C.A. Middelburg
Programming Research Group, University of Amsterdam, P.O. Box 41882, 1009 DB Amster-
dam, the Netherlands
E-mail: J.A.Bergstra@uva.nl, C.A.Middelburg@uva.nl

J.A. Bergstra
Department of Philosophy, Utrecht University, P.O. Box 80126, 3508 TC Utrecht, the Nether-
lands

2 J.A. Bergstra, C.A. Middelburg

have elaborated forms of concurrency where the actions to be performed by the
different threads involved are interleaved according to some deterministic inter-
leaving strategy. Synchronous cooperation is the form of concurrency where at
each stage the actions to be performed by the different threads involved are all
performed simultaneously. In the current paper, we develop an algebraic theory
of threads, synchronous cooperation of threads and interaction of threads with
Maurer machines. We call the resulting theory a thread algebra for synchronous
cooperation.

Threads can be used to direct a Maurer machine in performing operations on
its state. Maurer machines are based on a model for computers proposed by Mau-
rer in [23]. Maurer’s model for computers is quite different from the well-known
models for computers in theoretical computer science such as register machines,
multi-stack machines and Turing machines (see e.g. [20]). The strength of Mau-
rer’s model is that it is close to real computers. Maurer’s model is based on the
view that a computer has a memory, the contents of all memory elements make up
the state of the computer, the computer processes instructions, and the processing
of an instruction amounts to performing an operation on the state of the computer
which results in changes of the contents of certain memory elements.

Explicit multi-threading is a basic technique to speed up instruction process-
ing by a machine (see e.g. [29]). Explicit multi-threading techniques require that
programs are parallelized by judicious use of forking. In this paper, we investigate
program parallelization for simple programs without test and jump instructions
using the thread algebra for synchronous cooperation developed and program al-
gebra.

Program algebra is introduced in [5,6]. In program algebra, not the behaviour
of deterministic sequential programs under execution is considered, but the pro-
grams themselves. A program is viewed as an instruction sequence. The behaviour
of a program is taken for a thread of the kind considered in thread algebra. Pro-
gram algebra provides a program notation which is close to existing assembly
languages.

By employing the thread algebra for synchronous cooperation developed to
investigate program parallelization, we demonstrate that this thread algebra has
at least one interesting application. On the other hand, setting up a framework in
which program parallelization can be investigated, is one of the objectives with
which we have developed a thread algebra for synchronous cooperation. For that
very reason, we have chosen to use Maurer’s model for computers. Unlike this
relatively unknown model, the well-known models for computers in theoretical
computer science have little in common with real computers. They abstract from
many aspects of real computers which must be taken into account when investi-
gating program parallelization.

In earlier work on thread algebra, synchronous cooperation was not consid-
ered. To deal with synchronous cooperation in thread algebra, we introduce in
the thread algebra for synchronous cooperation a special action (δ) which blocks
threads. This feature was not present in earlier work on thread algebra. We also
introduce another feature that was not present in earlier work on thread algebra,
namely conditional action repetition. In modelling instruction processing, this fea-
ture is convenient to deal with instructions of which the processing on a computer
takes more than one step. Typical examples of such instructions are load instruc-

Synchronous Cooperation for Explicit Multi-Threading 3

tions, which may even take many steps in case of cache misses. Moreover, we
introduce the notions of state transformer equivalence and computation. Both no-
tions are relevant to program parallelization: if two threads are state transformer
equivalent, then the computations directed by those threads beginning in the same
initial state terminate in the same final state, but they may have different lengths.

One of the findings of our investigation of program parallelization is that a
strong induction principle is needed when proving theorems about sufficient con-
ditions for the correctness of program parallelizations. Therefore, we introduce an
induction principle to establish state transformer equivalence of infinite threads.
This induction principle is based on the view that any infinite thread is fully char-
acterized by the infinite sequence of all its finite approximations. The model that
we construct for the thread algebra for synchronous cooperation, including the
above-mentioned induction principle, is a projective limit model (see e.g. [4,22])
because such a model fits in very well with this view.

In addition to the thread algebra for synchronous cooperation, we use a simple
variant of the program algebra from [6] to investigate program parallelization. This
simple variant offers a convenient notation for studying program parallelization:
the programs concerned permit a direct analysis of semantic issues involved. It
covers only simple programs without test and jump instructions. This is a drastic
simplification. Because of the complexity of program parallelization, we consider
a simplification like this one desirable to start with.

We regard the work presented in this paper, like the preceding work presented
in [8–10], as a preparatory step in developing, as part of a project investigating
micro-threading [16,21], a formal approach to design new micro-architectures.
That approach should allow for the correctness of new micro-architectures and
their anticipated speed-up results to be verified.

The structure of this paper is as follows. First, we develop most of the thread
algebra for synchronous cooperation (Section 2). Next, we present a projective
limit model for the thread algebra developed so far (Section 3). Then, we com-
plete the thread algebra developed so far with an operator for applying a thread to
a Maurer machine from one of its states and introduce the notion of computation
in the resulting setting (Section 4). Following this, we introduce the notion of state
transformer equivalence of threads and give some state transformer properties of
threads (Section 5). After that, we present the simple variant of program algebra
and introduce classes of program relevant to the investigation of program paral-
lelization (Section 6). Next, we investigate program parallelization, focused on
finding sufficient conditions for the correctness of program parallelizations (Sec-
tion 7). Finally, we make some concluding remarks (Section 8). Appendix B con-
tains a glossary of symbols used in this paper.

In Section 3, some familiarity with metric spaces is assumed. The definitions
of all notions concerning metric spaces that are assumed known in those sections
can be found in most introductory textbooks on topology. We mention [17] as an
example of an introductory textbook in which those notions are introduced in an
intuitively appealing way.

4 J.A. Bergstra, C.A. Middelburg

2 Thread Algebra for Synchronous Cooperation

In this section, we develop most of the thread algebra for synchronous cooperation
used in the investigation of program parallelization later on. First, we treat the ker-
nel of the thread algebra in question. Next, we add step by step several features,
including synchronous cooperation and conditional action repetition, to the ker-
nel. Finally, we present a structural operational semantics for the thread algebra
developed in this section.

2.1 Basic Thread Algebra with Blocking

BTAδ (Basic Thread Algebra with Blocking) is a form of process algebra which
is tailored to the description of the behaviour of deterministic sequential programs
under execution. The behaviours concerned are calledthreads.

In BTAδ , it is assumed that there is a fixed but arbitrary set ofbasic actions
BA with tau,δ 6∈BA . We writeA for BA ∪{tau} andAδ for A ∪{δ}. BTAδ
has the following constants and operators:
– thedeadlockconstantD;
– theterminationconstantS;
– for eacha∈Aδ , a binarypostconditional compositionoperator EaD .

We use infix notation for postconditional composition. We introduceaction pre-
fixing as an abbreviation:a◦ p, wherep is a term over the signature ofBTAδ ,
abbreviatespEaD p.

The intuition is that each basic action performed by a thread is taken as a com-
mand to be processed by the execution environment of the thread. The processing
of a command may involve a change of state of the execution environment. At
completion of the processing of the command, the execution environment pro-
duces a reply value. This reply is eitherT or F and is returned to the thread con-
cerned. Letp andq be closed terms over the signature ofBTAδ anda∈A . Then
pEaD q will perform actiona, and after that proceed asp if the processing of
a leads to the replyT (called a positive reply) and proceed asq if the processing
of a leads to the replyF (called a negative reply). The actiontau plays a special
role: its processing will never change any state and always lead to a positive reply.
The actionδ blocks a thread: the execution environment cannot process it and
consequently a reply value is never returned. Hence,pEδ Dq cannot but become
inactive, just asD.

Example 1Consider the terminc◦ (S EdecD D) and an execution environment
in which processing of basic actionsinc and dec amounts to incrementing and
decrementing a counter by one. Suppose that the counter concerned can take only
non-negative values. Furthermore, suppose that the processing ofinc leads always
to a positive reply and the processing ofdecleads to a positive reply if the value
of the counter is not zero and to a negative reply otherwise. In this execution envi-
ronment,inc◦ (SEdecDD) will first perform inc, next performdec, and then ter-
minate. It will not deadlock instead of terminate because the value of the counter
will be greater than zero whendecis performed.

The axioms ofBTAδ are given in Table 1. Using the abbreviation introduced
above, axiom T1 can be written as follows:xE tauDy = tau◦x.

Synchronous Cooperation for Explicit Multi-Threading 5

Table 1 Axioms ofBTAδ

xEtauDy = xEtauDx T1

xEδ Dy = D T2

Table 2 Conditions on the synchronization function

(ξ & ξ ′)& ξ ′′ = ξ & (ξ ′ & ξ ′′)
(ξ & ξ ′)& ξ ′′ = (ξ ′ & ξ)& ξ ′′

tau& ξ = ξ
δ & ξ = δ
ξ & δ = δ

2.2 Synchronous Cooperation of Threads

We extendBTAδ with a form of synchronous cooperation that supports thread
forking. The result is calledTAsc. Synchronous cooperation requires the introduc-
tion of atomic actions and concurrent actions.

In TAsc, it is assumed that there are a fixed but arbitrary setCA δ of concurrent
actions, a fixed but arbitrary finite setAA ⊆ CA δ of atomic actionsand a fixed
but arbitrarysynchronizationfunction& : CA δ ×CA δ → CA δ such that:

– tau ∈AA andδ 6∈AA ;
– ξ ∈ CA δ iff ξ = δ or ξ ∈ AA or there existξ ′,ξ ′′ ∈ CA δ such thatξ =

ξ ′& ξ ′′;
– for all ξ ,ξ ′,ξ ′′ ∈ CA δ , the equations given in Table 2 are satisfied.

It is further assumed thatAδ = CA δ . We writeCA for CA δ \{δ}.
A concurrent actionξ & ξ ′, whereξ ,ξ ′ ∈ CA , represents the act of simulta-

neously performingξ andξ ′ unlessξ & ξ ′ = δ . Concurrent actionsξ andξ ′ for
which ξ & ξ ′ = δ are regarded to be actions for which the act of simultaneously
performing them is impossible.

It is not assumed that& satisfiesξ & ξ ′ = ξ ′ & ξ , for all ξ ,ξ ′ ∈ CA δ , be-
cause one of the axioms ofTAsc introduced below (axiom RC2) entails thatξ & ξ ′
andξ ′ & ξ can lead to different replies. The assumption thatAA is finite has a
technical background. Only the results presented in Appendix A depend on it.

Using the equations of Table 2, each concurrent action can be reduced to one
of the following three forms:

– δ ;
– a with a∈AA ;
– a1 & . . .& an with a1, . . . ,an ∈AA (n > 1).

The concurrent actiona1 & . . .& an, wherea1, . . . ,an ∈AA , represents the act of
simultaneously performing the atomic actionsa1, . . . ,an.

A collection of threads that proceed concurrently is assumed to take the form
of a sequence, called a thread vector. Synchronous cooperation is the form of con-
currency where at each stage the actions to be performed by the different threads in
the thread vector are all performed simultaneously. In earlier work, see e.g. [7,14,

6 J.A. Bergstra, C.A. Middelburg

13], we have elaborated forms of concurrency where the actions to be performed
by the different threads involved are interleaved according to some deterministic
interleaving strategy. In that work, we have also elaborated several interleaving
strategies that support thread forking. All of them deal with imperfect forking,
i.e. forking off a thread may be blocked and/or may fail. In this paper, we cover
only perfect forking. We believe that perfect forking is a suitable abstraction when
studying program parallelization. Unless capacity problems arise with regard to
forking, it needs not block or fail. We believe that software tools responsible for
program parallelization should see to it that such capacity problems will never
arise.

TAsc has the constants and operators ofBTAδ and in addition the following
operators:

– the unarysynchronous cooperationoperator‖s;
– the ternaryforking postconditional compositionoperator Ent()D ;
– for eachξ ∈ CA δ , a binaryreply conditionaloperator Cyξ B .

The synchronous cooperation operator is a unary operator of which the operand
denotes a sequence of threads. Like action prefixing, we introduceforking prefix-
ing as an abbreviation:nt(p) ◦ q, wherep andq are terms over the signature of
TAsc, abbreviatesqEnt(p)Dq. Henceforth, the postconditional composition op-
erators introduced in Section 2.1 will be called non-forking postconditional com-
position operators.

The forking postconditional composition operator has the same shape as non-
forking postconditional composition operators. Formally, no action is involved
in forking postconditional composition. However, for an operational intuition, in
pEnt(r)Dq, nt(r) can be considered a thread forking action. It represents the act
of forking off threadr. Like with real actions, a reply is produced. We consider
the case where forking off a thread will never be blocked or fail. In that case, it
always produces a positive reply. The actiontau arises as a residue in both the
thread forking off a thread and the thread being forked off. In that way, those
threads keep pace with the other threads that proceed concurrently. In [7],nt(r)
was formally considered a thread forking action. We experienced afterwards that
this leads to unnecessary complications in expressing definitions and results con-
cerning the projective limit model for the thread algebra developed in this paper
(see Section 3).

The reply conditional operatorsCyξ B are auxiliary operators needed to
deal properly with the replies produced for actions that are performed simultane-
ously on account of synchronous cooperation of threads. Suppose thatξ1& . . .& ξn

is the last action performed. Letp andq be closed terms over the signature of
TAsc, and letξ ∈ {ξ1, . . . ,ξn}. Then pCyξ B q behaves asp if processing ofξ
alone would have led to the replyT and it behaves asq if processing ofξ alone
would have led to the replyF. The case whereξ 6∈ {ξ1, . . . ,ξn} is irrelevant to
synchronous cooperation. Nothing is stipulated about the behaviour ofpCyξ Bq
in this case. In fact, it may differ from one execution environment to another.

The axioms for synchronous cooperation with perfect forking are given in Ta-
ble 3.1 In this table,ξ1, . . . ,ξn andξ stand for arbitrary members ofCA δ . The

1 We write〈〉 for the empty sequence,〈d〉 for the sequence havingd as sole element, andα y

β for the concatenation of finite sequencesα andβ . We assume the usual laws for concatenation
of finite sequences.

Synchronous Cooperation for Explicit Multi-Threading 7

Table 3 Axioms for synchronous cooperation with perfect forking

‖s(〈〉) = S SCf1

‖s(α y 〈S〉yβ) = ‖s(α yβ) SCf2

‖s(α y 〈D〉yβ) = D SCf3

‖s(〈x1 Eξ1Dy1〉y . . .y 〈xn EξnDyn〉) =
ξ1 & . . .& ξn ◦‖s(〈x1 Cyξ1

By1〉y . . .y 〈xn Cyξn
Byn〉) SCf4

‖s(α y 〈xEnt(z)Dy〉yβ) = ‖s(α y 〈tau◦x〉y 〈tau◦z〉yβ) SCf5

‖s(α y 〈xCyξ By〉yβ) = ‖s(α y 〈x〉yβ)Cyξ B‖s(α y 〈y〉yβ) SCf6

Table 4 Axioms for reply conditionals

xEξ Dy = ξ ◦ (xCyξ By) RC1

ξ & ξ ′ 6= δ ⇒xCyξ&ξ ′ By = xCyξ ′ By RC2

xCytau By = x RC3

xCyδ By = x RC4

xCyaBx = x RC5

(xCyaBy)CyaBz= xCyaBz RC6

xCyaB (yCyaBz) = xCyaBz RC7

(xCyaBy)CybBz= (xCybBz)CyaB (yCybBz) RC8

xCyaB (yCybBz) = (xCyaBy)CybB (xCyaBz) RC9

axioms for reply conditionals are given in Table 4. In this table,ξ andξ ′ stand for
arbitrary members ofCA δ anda andb stand for arbitrary members ofAA .

The crucial axioms for synchronous cooperation with perfect forking are ax-
ioms SCf4 and SCf5. Axiom SCf4 expresses that, in the case where each thread
in the thread vector can perform an action, first the actions to be performed by the
different threads are all performed simultaneously and after that the synchronous
cooperation proceeds as if the actions performed by the different threads were
performed alone. Axiom SCf5 expresses that, in the case where some threads in
the thread vector can fork off a thread, forking off threads takes place such that
the threads forking off a thread and the threads being forked off keep pace with
the other threads in the thread vector. The crucial axiom for reply conditionals is
axiom RC1. This axiom expresses that the behaviour of a reply conditional for the
last action performed is determined by the reply to which the processing of that
action has led.

Axiom RC2 reflects that, forξ andξ ′ such thatξ & ξ ′ 6= δ , the reply to which
the processing ofξ & ξ ′ leads is the reply to which the processing ofξ ′ leads. An
alternative to axiom RC2 is

ξ & ξ ′ 6= δ ⇒xCyξ&ξ ′ By = (xCyξ By)Cyξ ′ By ,

which reflects that, forξ andξ ′ such thatξ & ξ ′ 6= δ , the reply to which the pro-
cessing ofξ & ξ ′ leads is the conjunction of the reply to which the processing of
ξ leads and the reply to which the processing ofξ ′ leads. This alternative would
result in a slightly different theory. Both axiom RC2 and the alternative are plau-

8 J.A. Bergstra, C.A. Middelburg

sible, but we believe that the alternative would complicate the investigation of
program parallelization slightly.

Axiom RC4 looks odd:δ blocks a thread because it does not lead to any reply.
Axiom RC4 stipulates that a reply conditional forδ behaves as if blocking of a
thread leads to a positive reply. An alternative to axiom RC4 is

xCyδ By = y ,

which stipulates that a reply conditional forδ behaves as if blocking of a thread
leads to a negative reply. The choice between axiom RC4 and this alternative
makes little difference: each occurrence of a reply conditional forδ introduced
by applying axioms ofTAsc is always a subterm of a term that is derivably equal
to D.

Example 2Consider the term‖s(〈inc1 ◦ S〉y 〈inc2 ◦ S〉), which according to the
axioms ofTAsc equalsinc1 & inc2 ◦S. Take the synchronization function& such
that inc1 & inc2 6= δ , which amounts to assuming that each execution environment
can processinc1 and inc2 at the same time. Then, in any execution environment,
‖s(〈inc1 ◦S〉y 〈inc2 ◦S〉) will first perform inc1 andinc2 simultaneously and then
terminate. In an execution environment as described in Example 1, but now with
two counters, simultaneously performinginc1 andinc2 results in incrementing two
counters at once. Notice that the term‖s(〈nt(inc2◦S)◦(inc1◦S)〉), which involves
thread forking, equalstau◦‖s(〈inc1◦S〉y 〈inc2◦S〉).

Henceforth, we writeTTAsc for the set of all closed terms over the signature of
TAsc.

The setB of basic termsis inductively defined by the following rules:

– S,D ∈B;
– if p∈B, thentau◦ p∈B;
– if ξ ∈BA andp,q∈B, thenpEξ Dq∈B;
– if p,q, r ∈B, thenpEnt(r)Dq∈B;
– if ξ ∈BA andp,q∈B, thenpCyξ Bq∈B.

We write B0 for the set of all terms fromB in which no subterm of the form
pEnt(r)Dq occurs. Clearly,B is a subset ofTTAsc. Each term fromTTAsc can be
reduced to a term fromB.

Theorem 1 (Elimination) For all p∈ TTAsc, there exists a termq∈B such that
p = q is derivable from the axioms ofTAsc.

Proof The proof follows a similar line as the proof of Theorem 2 from [14]. This
means that it is a proof by induction on the structure ofp in which some cases
boil down to proving a lemma by some form of induction or another, mostly again
structural induction. Here, we have to consider the additional casep≡ p′Cyξ B
p′′, where we can restrict ourselves to basic termsp′ and p′′. This case is easily
proved using axioms RC3 and RC4. Moreover, the casep≡ ‖s(〈p′1〉y . . .y 〈p′n〉),
where we can restrict ourselves to basic termsp′1, . . . , p′n, cannot be proved by
induction on the sum of the depths plus one ofp′1, . . . , p′n and case distinction on

Synchronous Cooperation for Explicit Multi-Threading 9

the structure ofp′1. Instead, it is proved by induction onν(p), whereν :TTAsc →N
is defined by

ν(S) = 1 ,

ν(D) = 1 ,

ν(tau◦ p) = ν(p)+1 ,

ν(pEξ Dq) = ν(p)+ν(q)+1 if ξ 6= tau ,

ν(pEnt(r)Dq) = ν(p)+ν(r)+3 ,

ν(pCyξ Bq) = ν(p)+ν(q) ,

ν(‖s(〈p1〉y . . .y 〈pn〉)) = ν(p1)+ . . .+ν(pn)+1 ,

and case distinction according to the left-hand sides of the axioms for synchronous
cooperation, which yields an exhaustive case distinction. The proofs for the dif-
ferent cases go similar. We sketch here the proof for the case corresponding to
the left-hand side of axiom SCf5. It is the case wherep′i ≡ p′′ Ent(r ′′)D q′′ for
somei ∈ [1,n]. In this case, if follows from axiom SCf5 and the definition ofν
that there exists a termp′ such thatp = p′ is derivable from the axioms ofTAsc
andν(p) = ν(p′)+1. Becausep = p′ andν(p) > ν(p′), it follows immediately
from the induction hypothesis that there exists a termq ∈ B such thatp = q is
derivable from the axioms ofTAsc. ut
The functionν defined in the proof of Theorem 1 is used in coming proofs as well.
The following is a useful corollary from the proof of Theorem 1.

Corollary 1 For all p1, . . . , pn∈B, there exists a termq∈B0 such that‖s(〈p1〉y
. . .y 〈pn〉) = q is derivable from the axioms ofTAsc.

This corollary implies that each closed term fromTTAsc in which all subterms of
the formpEnt(r)Dq occur in a subterm of the form‖s(〈p1〉y . . .y 〈pn〉), can be
reduced to a term fromB in which no subterm of the formpEnt(r)Dq occurs.

The following lemma will be used in the proof of Proposition 13.

Lemma 1 Let p0 ∈ B0, and let p1, . . . , pn ∈ B. Then‖s(〈p0〉y . . .y 〈pn〉) =
‖s(〈p0〉y 〈‖s(〈p1〉y . . .y 〈pn〉)〉).
Proof This is straightforwardly proved by induction on the structure ofp0, and in
the casep0 ≡ p′ Eξ D p′′ by induction onν(p1)+ . . .+ ν(pn) and case distinc-
tion according to the left-hand side of the axioms for synchronous cooperation.
Moreover, in the casep0 ≡ S, it has to be proved that‖s(〈p1〉y . . .y 〈pn〉) =
‖s(〈‖s(〈p1〉y . . .y 〈pn〉)〉). This is proved similarly. ut

We have taken the operator‖s for a unary operator of which the operand de-
notes a sequence of threads. This matches well with the intuition that synchronous
cooperation operates on a thread vector. We can look upon the operator‖s as if
there is actually ann-ary operator, of which the operands denote threads, for every
n∈ N. In Section 3, we will look upon the operator‖s in this way for the purpose
of more concise expression of definitions and results concerning the projective
limit model for the thread algebra developed in this paper.

10 J.A. Bergstra, C.A. Middelburg

Table 5 Axioms for conditional action repetition

ξ ∗T x = xEξ D (ξ ∗T x) CAR1

ξ ∗F x = (ξ ∗F x)Eξ Dx CAR2

2.3 Conditional Action Repetition

We extendTAsc with conditional action repetition. The result is calledTA∗
sc.

We add, for eachξ ∈Aδ andb∈ {T,F}, a unaryconditional action repetition
operatorξ ∗b to TAsc. Let p be a closed term over the signature ofTA∗

sc. Then
ξ ∗T p performsξ as many times as needed for a positive reply, and then proceeds
asp. In the case ofξ ∗F p, the role of the reply is reversed. The axioms for condi-
tional action repetition are given in Table 5. In this table,ξ stands for an arbitrary
member ofAδ .

Example 3Consider the termdec∗F (inc◦ S) and an execution environment as
described in Example 1. In this execution environment,dec∗F (inc◦ S) will first
performdecas many times as needed for a negative reply, next performinc, and
then terminate. At the moment of termination, the value of the counter will be one
because the processing ofdecwill lead to a negative reply only when the counter
is zero.

We introducesplit-action prefixingas an abbreviation:ξ/ξ ′ ◦ p, wherep is a
term over the signature ofTA∗

sc andξ ,ξ ′ ∈Aδ , abbreviatespEξ D (ξ ′ ∗T p). This
means thatξ/ξ ′ ◦ p performsξ once and nextξ ′ as many times as needed for a
positive reply, and then proceeds asp. If the processing ofξ produces a positive
reply, thenξ ′ is not at all performed.

Henceforth, we writeTTA∗
sc

for the set of all closed terms over the signature of
TA∗

sc.
Below, we introduce a subsetC of TTA∗

sc
which is reminiscent ofB. The sig-

nificance ofC is that several properties that need to be proved for all terms from
some subset ofC can be proved for all terms fromC by structural induction in a
straightforward manner.

The setC of semi-basic termsis inductively defined by the following rules:

– S,D ∈ C ;
– if p∈ C , thentau◦ p∈ C ;
– if ξ ∈BA andp,q∈ C , thenpEξ Dq∈ C ;
– if p,q, r ∈ C , thenpEnt(r)Dq∈ C ;
– if ξ ∈BA andp,q∈ C , thenpCyξ Bq∈ C ;
– if ξ ∈BA andp∈ C , thenξ ∗T p∈ C andξ ∗F p∈ C .

We write C 0 for the set of all terms fromC in which no subterm of the form
pEnt(r)Dq occurs. Clearly,B is a subset ofC andC is a subset ofTTA∗

sc
. Terms

from C with a subterm of the formξ ∗T p or the formξ ∗F p cannot be reduced to
terms fromB. The projection operators introduced in Section 2.4 enable a kind
of approximate reduction for terms fromC .

We write p ·q, wherep∈ C 0 andq∈ TTA∗
sc
, for p with each occurrence ofS

replaced byq. On purpose, this notation is suggestive of sequential composition.

Synchronous Cooperation for Explicit Multi-Threading 11

Table 6 Approximation induction principle

∧
n≥0 πn(x) = πn(y)⇒x = y AIP

Table 7 Axioms for projection

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xEξ Dy) = πn(x)Eξ Dπn(y) P3

πn+1(xEnt(z)Dy) = πn(x)Ent(πn(z))Dπn(y) P4

πn+1(xCyξ By) = πn+1(x)Cyξ Bπn+1(y) P5

However, we use· to denote a syntactic operation, i.e. an operation on terms. This
notation will turn out to be convenient when formulating properties relevant to
program parallelization.

2.4 Approximation Induction Principle

Each closed term over the signature ofTAsc denotes a finite thread, i.e. a thread
of which the length of the sequences of actions that it can perform is bounded.
However, not each closed term over the signature ofTA∗

sc denotes a finite thread:
conditional action repetition gives rise to infinite threads. Closed terms over the
signature ofTA∗

sc that denote the same infinite thread cannot always be proved
equal by means of the axioms ofTA∗

sc. We introduce the approximation induction
principle to reason about infinite threads.

The approximation induction principle, AIP in short, is based on the view
that two threads are identical if their approximations up to any finite depth are
identical. The approximation up to depthn of a thread is obtained by cutting it off
after performing a sequence of actions of lengthn.

AIP is the infinitary conditional equation given in Table 6. Here, following [6],
approximation of depthn is phrased in terms of a unaryprojectionoperatorπn.
The projection operators are defined inductively by means of the axioms given in
Table 7. In this table,ξ stands for an arbitrary member ofA .

Let p∈TTA∗
sc
. Then it follows from AIP that:

x = pEξ Dx⇒x = ξ ∗T p ,

x = xEξ D p⇒x = ξ ∗F p .

Hence, the solutions of the recursion equationsx = pEξ D x andx = xEξ D p
denoted by the closed termsξ ∗T p andξ ∗F p, respectively, are unique solutions
of those equations in models forTA∗

sc in which AIP holds. In Section 3, we will
construct models forTAsc andTA∗

sc, in which AIP holds.
The properties of the projection operators stated in the following two lemmas

are used in coming proofs.

12 J.A. Bergstra, C.A. Middelburg

Lemma 2 For all p∈ TTA∗
sc

andn,m∈ N, πn(πm(p)) = πmin(n,m)(p) is derivable
from the axioms ofTA∗

sc and axiomsP0–P5.

Proof This is easily proved by induction onmin(n,m), and in the inductive case
by induction on the structure ofp. ut
Lemma 3 For all p1, . . . , pm ∈ TTA∗

sc
and n ∈ N, πn(‖s(〈p1〉 y . . . y 〈pm〉)) =

‖s(〈πn(p1)〉y . . .y 〈πn(pm)〉) is derivable from the axioms ofTA∗
sc and axioms

P0–P5.

Proof This is straightforwardly proved by induction onn, and in the inductive
case by induction onν(p1) + . . . + ν(pm) and case distinction according to the
left-hand side of the axioms for synchronous cooperation. ut

The projection operators enable a kind of approximate reduction for each term
from C . This is stated in the following proposition.

Proposition 1 For all p ∈ C and n ∈ N, there exists a termq ∈ B such that
πn(p) = q is derivable from the axioms ofTA∗

sc and axiomsP0–P5.

Proof This is easily proved by induction onn, and in the inductive case by induc-
tion on the structure ofp. ut
Proposition 1 can be generalized fromC to TTA∗

sc
, but first we consider a much

smaller generalization.

Proposition 2 For all p1, . . . , pm∈ C andn∈ N, there exists a termq∈B0 such
thatπn(‖s(〈p1〉y . . .y〈pm〉)) = q is derivable from the axioms ofTA∗

sc and axioms
P0–P5.

Proof This follows immediately from Lemma 3, Proposition 1 and Corollary 1.
ut

The following theorem generalizes Proposition 1 fromC to TTA∗
sc
.

Theorem 2 For all p ∈ TTA∗
sc

and n ∈ N, there exists a termq ∈ B such that
πn(p) = q is derivable from the axioms ofTA∗

sc and axiomsP0–P5.

Proof The proof follows the same line as the proof of Proposition 1. Here, we have
to consider the additional casep≡‖s(〈p1〉y . . .y〈pm〉), wherep1, . . . , pm∈TTA∗

sc
.

By Lemma 3,πn(‖s(〈p1〉y . . .y〈pm〉)) = ‖s(〈πn(p1)〉y . . .y〈πn(pm)〉). From this
and the induction hypothesis, it follows thatπn(‖s(〈p1〉y . . .y 〈pm〉)) = ‖s(〈p′1〉y
. . .y 〈p′m〉), for somep′1, . . . , p′m ∈B. From this and Proposition 2, it follows that
πn(‖s(〈p1〉y . . .y 〈pm〉)) = q′, for someq′ ∈B. ut

The following proposition states a property of synchronous cooperation that
cannot be proved without AIP in the presence of conditional action repetition.

Proposition 3 For all p∈C 0 andq∈TTA∗
sc
, ‖s(p·q) = p·‖s(q) is derivable from

the axioms ofTA∗
sc, axiomsP0–P5andAIP.

Proof We begin by proving that for alln∈ N, πn(‖s(p ·q)) = πn(p · ‖s(q)). This
is easily proved by induction onn and in the inductive case by induction on the
structure ofp, using Lemma 3. The result then follows by applying AIP. ut
This proposition will be used in the proof of Lemma 9.

Synchronous Cooperation for Explicit Multi-Threading 13

Table 8 Alphabet axioms

α(S) = /0

α(D) = /0

α(pEξ Dq) = α(p)∪α(q)∪α(ξ)
α(pEnt(r)Dq) = α(p)∪α(q)∪α(r)
α(pCyξ Bq) = α(p)∪α(q)
α(ξ ∗b p) = α(ξ)∪α(p)
α(‖s(〈〉)) = /0

α(‖s(〈p1〉y . . .y 〈pm〉)) = α(p1)∪ . . .∪α(pm)

α(δ) = /0

α(a1 & . . .& an) = {a1, . . . ,an}

2.5 Alphabets

To meet in the need for alphabet extraction, we introduce the unaryalphabetop-
eratorα. Let p∈ TTA∗

sc
. Thenα(p) is the set of all actions fromAA that may be

performed byp at some stage. The alphabet axioms are given in Table 8. In this
table,p1, . . . , pm, p, q andr stand for arbitrary members ofTTA∗

sc
, ξ stands for an

arbitrary member ofCA δ , a1, . . . ,an stand for arbitrary members ofAA , andb
stands for an arbitrary member of{T,F}.

The following proposition concerns the alphabet of projections.

Proposition 4 For all p∈TTA∗
sc

andn∈ N, we haveα(πn(p))⊆ α(p).

Proof This is straightforwardly proved by induction onn, and in the inductive
case by induction on the structure ofp. ut

The alphabets of threads play a part in the properties of threads that will be
given in Section 5.2.

2.6 Structural Operational Semantics ofTA∗
sc

We present a structural operational semantics forTA∗
sc. This structural operational

semantics is intended to give an operational intuition of the constants and oper-
ators ofTA∗

sc. We do not construct a model forTA∗
sc based on the structural op-

erational semantics and an appropriate version of bisimilarity. In Section 3.1, an
alternative model forTA∗

sc is constructed.
In the structural operational semantics, we represent an execution environment

by a functionρ :CA ∗→ (CA →{T,F}) that satisfies the following conditions:2

– if α ∈ CA ∗, a1, . . . ,an+1 ∈ AA are such thata1 & . . . & an+1 6= δ , andα ′ ∈
perm(〈a1〉y . . .y 〈an〉), thenρ(〈a1 & . . .& an+1〉yα) = ρ(α ′y 〈an+1〉yα);

– if α ∈ CA ∗, thenρ(〈tau〉yα) = ρ(α);

2 We writeD∗ for the set of all finite sequences with elements from setD, andperm(α) for
the set of all permutations of finite sequenceα.

14 J.A. Bergstra, C.A. Middelburg

Table 9 Transition rules ofBTAδ

〈S,ρ〉↓ 〈D,ρ〉↑

〈xEδ Dy,ρ〉↑
ρ(〈ξ 〉)(ξ) = T

〈xEξ Dy,ρ〉 ξ−→ 〈x, ∂
∂ξ ρ〉

ρ(〈ξ 〉)(ξ) = F

〈xEξ Dy,ρ〉 ξ−→ 〈y, ∂
∂ξ ρ〉

– if α ∈ CA ∗ andξ ,ξ ′ ∈ CA are such thatξ & ξ ′ 6= δ , thenρ(α)(ξ & ξ ′) =
ρ(α)(ξ ′);

– if α ∈ CA ∗, thenρ(α)(tau) = T;
– if α ∈CA ∗ andξ ,ξ ′ ∈CA are such thatξ & ξ ′ 6= δ , thenρ(αy〈ξ & ξ ′〉)(ξ)=

ρ(α y 〈ξ 〉)(ξ) andρ(α y 〈ξ & ξ ′〉)(ξ ′) = ρ(α y 〈ξ ′〉)(ξ ′).
We writeE for the set of all those functions. Letρ ∈ E , and letξ ∈ CA . Then

thederivedexecution environment∂∂ξ ρ is defined by ∂
∂ξ ρ(α) = ρ(〈ξ 〉yα).

The chosen representation of execution environments is based on the assump-
tion that it depends at any stage only on the history, i.e. the sequence of actions
processed before, and the action being processed whether the reply produced is
positive or negative. This is a realistic assumption for deterministic execution en-
vironments. If the processing of an action amounts to the simultaneous process-
ing of two or more other actions, then the replies produced for each of those ac-
tions are considered to be available at completion of the processing as well. For
that reason, execution environments cannot simply be represented by functions
ρ :CA ∗→{T,F}.

We writeAnt for the setA ∪{nt(p) | p∈TTA∗
sc
}.

The following transition relations on closed terms are used in the structural
operational semantics ofTA∗

sc:

– a unary relation〈 ,ρ〉↓ for eachρ ∈ E ;
– a unary relation〈 ,ρ〉↑ for eachρ ∈ E ;

– a binary relation〈 ,ρ〉 ζ−→ 〈 ,ρ ′〉 for eachζ ∈Ant andρ,ρ ′ ∈ E .

These transition relations can be explained as follows:

– 〈p,ρ〉↓: in execution environmentρ, threadp cannot but terminate success-
fully;

– 〈p,ρ〉↑: in execution environmentρ , threadp cannot but become inactive;

– 〈p,ρ〉 ξ−→〈p′,ρ ′〉, whereξ ∈A : in execution environmentρ, threadp can per-
form actionξ and after that proceed as threadp′ in execution environmentρ ′;

– 〈p,ρ〉 nt(p′′)−−−→ 〈p′,ρ ′〉: in execution environmentρ, threadp can fork off thread
p′′ and after that proceed as threadp′ in execution environmentρ ′.

The structural operational semantics ofTA∗
sc is described by the transition rules

given in Tables 9, 10 and 11. In these tables,k≥ l > 0, ξ andξ ′ stand for arbitrary
actions fromA , andζi (i ∈ I) stands for an arbitrary element fromAnt. Moreover,
b stands for an arbitrary bijective function from[1, |I |] to I such that, for alln∈
[1, |I |], b(n)≤ b(|I |).

Synchronous Cooperation for Explicit Multi-Threading 15

Table 10 Additional transition rules forTAsc

〈x1,ρ〉↓, . . . ,〈xk,ρ〉↓
〈‖s(〈x1〉y . . .y 〈xk〉),ρ〉↓

〈xl ,ρ〉↑
〈‖s(〈x1〉y . . .y 〈xk〉),ρ〉↑

{〈xi ,ρ〉 ζi−→ 〈x′i ,ρ ′i 〉 | i ∈ I},{〈x j ,ρ〉↓ | j ∈ J},ζ ′b(1) & . . .& ζ ′b(|I |) 6= δ ,
I 6= /0, I ∩J = /0, I ∪J = [1,k]

〈‖s(〈x1〉y . . .y 〈xk〉),ρ〉
ζ ′b(1)& ...&ζ ′b(|I |)−−−−−−−−→ 〈‖s(α ′

b(1)
y . . .yα ′

b(|I |)),
∂

∂ζ ′b(1)& ...&ζ ′b(|I |)
ρ〉

whereα ′
i ≡ 〈x′i〉 andζ ′i = ζi if ζi ∈ CA ,

α ′
i ≡ 〈xi〉y 〈p〉andζ ′i = tau if ζi = nt(p)

〈xEnt(z)Dy,ρ〉 nt(z)−−−→ 〈x,ρ〉
〈x,ρ〉↓

〈xCyδ By,ρ〉↓
〈x,ρ〉↑

〈xCyδ By,ρ〉↑
〈x,ρ〉 ξ ′−→ 〈x′,ρ ′〉

〈xCyδ By,ρ〉 ξ ′−→ 〈x′,ρ ′〉
〈x,ρ〉↓,ρ(〈〉)(ξ) = T

〈xCyξ By,ρ〉↓
〈x,ρ〉↑,ρ(〈〉)(ξ) = T

〈xCyξ By,ρ〉↑
〈x,ρ〉 ξ ′−→ 〈x′,ρ ′〉,ρ(〈〉)(ξ) = T

〈xCyξ By,ρ〉 ξ ′−→ 〈x′,ρ ′〉
〈y,ρ〉↓, ρ(〈〉)(ξ) = F

〈xCyξ By,ρ〉↓
〈y,ρ〉↑, ρ(〈〉)(ξ) = F

〈xCyξ By,ρ〉↑
〈y,ρ〉 ξ ′−→ 〈y′,ρ ′〉, ρ(〈〉)(ξ) = F

〈xCyξ By,ρ〉 ξ ′−→ 〈y′,ρ ′〉

Table 11 Additional transition rules forTA∗
sc

〈δ ∗T x,ρ〉↑
ρ(〈ξ 〉)(ξ) = T

〈ξ ∗T x,ρ〉 ξ−→ 〈x, ∂
∂ξ ρ〉

ρ(〈ξ 〉)(ξ) = F

〈ξ ∗T x,ρ〉 ξ−→ 〈ξ ∗T x, ∂
∂ξ ρ〉

〈δ ∗F x,ρ〉↑
ρ(〈ξ 〉)(ξ) = T

〈ξ ∗F x,ρ〉 ξ−→ 〈ξ ∗F x, ∂
∂ξ ρ〉

ρ(〈ξ 〉)(ξ) = F

〈ξ ∗F x,ρ〉 ξ−→ 〈x, ∂
∂ξ ρ〉

The third transition rule from Table 10 looks more complicated than it actually
is. It can be explained as follows: if the threads in a thread vector can be divided
into active threads that can make a step by performing an action or forking off
a thread and threads that can terminate successfully, and it is possible that all
steps concerned are made simultaneously, then the synchronous cooperation of
the threads in the thread vector can make all steps concerned simultaneously and
after that proceed as the synchronous cooperation of what is left of the active
threads in the thread vector, where each thread that forked off a thread gives rise
to an additional thread next to it. The threads in the resulting thread vector may
also be permuted, with the exception of the thread or threads resulting from the
last active thread in the original thread vector. The execution environment changes
in accordance with the steps made.

Example 4Consider the term‖s(〈a◦(a′◦S)〉y〈nt(b◦S)◦(b′◦S)〉y〈c◦(c′◦S)〉),
wherea,a′,b,b′,c,c′ ∈AA . Suppose thata& c 6= δ . Applying the fourth and fifth

16 J.A. Bergstra, C.A. Middelburg

transition rules in Table 9, we obtain:

〈a◦ (a′ ◦S),ρ〉 a−→ 〈a′ ◦S, ∂
∂aρ〉 ,

〈nt(b◦S)◦ (b′ ◦S),ρ〉 nt(b◦S)−−−−→ 〈b′ ◦S,ρ〉 ,

〈c◦ (c′ ◦S),ρ〉 c−→ 〈c′ ◦S, ∂
∂cρ〉 .

Next, applying the third transition rule in Table 10, we obtain

〈‖s(〈a◦ (a′ ◦S)〉y 〈nt(b◦S)◦ (b′ ◦S)〉y 〈c◦ (c′ ◦S)〉),ρ〉
a&tau&c−−−−−→ 〈‖s(〈a′ ◦S〉y 〈b′ ◦S〉y 〈b◦S〉y 〈c′ ◦S〉), ∂

∂a&tau&cρ〉 ,

becausea& c 6= δ .

Construction of a model forTA∗
sc based on the structural operational semantics

of TA∗
sc and an appropriate version of bisimilarity is feasible only if that version of

bisimilarity is a congruence with respect to the operators ofTA∗
sc. To our knowl-

edge, this cannot be established by means of results from the theory of structural
operational semantics concerning transition rule formats guaranteeing that some
version of bisimilarity is a congruence. It appears that some results from [25,26]
are the nearest obtainable, but there are still difficult issues that must be dealt with.
One of those issues is that Theorem 34 from [26] is not applicable for the follow-
ing reason: in the third transition rule from Table 10,ρ ′i 6= ∂

∂ζ ′b(1)& ...&ζ ′b(|I |)
ρ for all

i ∈ I . We believe that this point does not mean that the version of bisimilarity con-
cerned is not a congruence, but that sufficient conditions for it that are weaker than
the ones from the above-mentioned theorem must be found. Another issue is that
transition labels containing terms are found in the structural operational semantics
of TA∗

sc: this is not covered in [26]. We believe that adaptation on the lines of [25]
is possible, but it is not a trivial matter. Exploring all this is considered outside the
scope of this paper. Because a projective limit model forTA∗

sc is most appropri-
ate to the justification of the induction principle that is introduced in Section 5.1,
we decided to construct a projective limit model instead of a model based on the
structural operational semantics.

3 Projective Limit Model for TA∗
sc

In this section, we construct the projective limit model forTA∗
sc. First, we construct

the projective limit model forTAsc. Next, we make the domain of this model
into a metric space and show that every guarded recursion equation has a unique
solution in this domain using Banach’s fixed point theorem. Finally, we expand the
projective limit model forTAsc to a model forTA∗

sc using this uniqueness result.

3.1 Projective Limit Model forTAsc

We construct the projective limit model forTAsc. In this model infinite threads are
represented by infinite sequences of finite approximations.

Synchronous Cooperation for Explicit Multi-Threading 17

To express definitions more concisely, the interpretations of the constants and
operators from the signature ofTAsc in the initial model forTAsc and the projec-
tive limit model forTAsc are denoted by the constants and operators themselves.
The ambiguity thus introduced could be obviated by decorating the symbols, with
different decorations for different models, when they are used to denote their inter-
pretation in a model. However, in this paper, it is always immediately clear from
the context how the symbols are used. Moreover, we believe that the decorations
are more often than not distracting. Therefore, we leave it to the reader to mentally
decorate the symbols wherever appropriate.

The projective limit construction is known as the inverse limit construction in
domain theory, the theory underlying the approach of denotational semantics for
programming languages (see e.g. [27]). In process algebra, this construction has
been applied for the first time by Bergstra and Klop [4].

We will write Aω for the domain of the initial model forTAsc. Aω consists of
the equivalence classes of basic terms with respect to the equivalence induced by
the axioms ofTAsc. In other words, modulo equivalence,Aω is B. Henceforth, we
will identify basic terms with their equivalence class.

Each element ofAω represents a finite thread, i.e. a thread of which the length
of the sequences of actions that it can perform is bounded. Below, we will con-
struct a model that covers infinite threads as well. In preparation for that, we define
for all n a function that cuts off finite threads fromAω after performing a sequence
of actions of lengthn.

For all n ∈ N, we have theprojection operationπn : Aω → Aω , inductively
defined by

π0(p) = D ,

πn+1(S) = S ,

πn+1(D) = D ,

πn+1(pEξ Dq) = πn(p)Eξ Dπn(q) ,

πn+1(pEnt(r)Dq) = πn(p)Ent(πn(r))Dπn(q) ,

πn+1(pCyξ Bq) = πn+1(p)Cyξ Bπn+1(q) .

For p ∈ Aω , πn(p) is called then-th projection ofp. It can be thought of as an
approximation ofp. If πn(p) 6= p, thenπn+1(p) can be thought of as the closest
better approximation ofp. If πn(p) = p, thenπn+1(p) = p as well. For alln∈ N,
we will write An for {πn(p) | p∈ Aω}.

The semantic equations given above to define the projection operations have
the same shape as the axioms for the projection operators introduced in Sec-
tion 2.4. We will come back to the definition of the projection operations at the
end of Section 3.3.

The properties of the projection operations stated in the following two lemmas
will be used frequently in the sequel.

Lemma 4 For all p∈ Aω andn,m∈ N, we haveπn(πm(p)) = πmin(n,m)(p).

Proof This is easily proved by induction on the structure ofp. ut
Lemma 5 For all p1, . . . , pm∈Aω andn∈N, we haveπn(‖s(〈p1〉y . . .y〈pm〉)) =
‖s(〈πn(p1)〉y . . .y 〈πn(pm)〉).

18 J.A. Bergstra, C.A. Middelburg

Proof This is straightforwardly proved by induction onν(p1)+ . . .+ ν(pm) and
case distinction according to the left-hand sides of the axioms for synchronous
cooperation. ut

In the projective limit model, which covers finite and infinite threads, threads
are represented byprojective sequences, i.e. infinite sequences(pn)n∈N of ele-
ments ofAω such thatpn ∈ An andpn = πn(pn+1) for all n∈ N. In other words, a
projective sequence is a sequence of which successive components are successive
projections of the same thread. The idea is that any infinite thread is fully charac-
terized by the infinite sequence of all its finite approximations. We will writeA∞

for {(pn)n∈N |
∧

n∈N(pn ∈ An∧ pn = πn(pn+1))}.
Theprojective limit modelfor TAsc consists of the following:

– the setA∞, the domain of the projective limit model;
– an element ofA∞ for each constant ofTAsc;
– an operation onA∞ for each operator ofTAsc;

where those elements ofA∞ and operations onA∞ are defined as follows:

S = (πn(S))n∈N ,

D = (πn(D))n∈N ,

(pn)n∈NEξ D (qn)n∈N = (πn(pn Eξ Dqn))n∈N ,

(pn)n∈NEnt((rn)n∈N)D (qn)n∈N = (πn(pn Ent(rn)Dqn))n∈N ,

(pn)n∈NCyξ B (qn)n∈N = (πn(pn Cyξ Bqn))n∈N ,

‖s(〈(p1n)n∈N〉y . . .y 〈(pmn)n∈N〉) = (πn(‖s(〈p1n〉y . . .y 〈pmn〉)))n∈N .

Using Lemmas 4 and 5, we easily prove for(pn)n∈N,(qn)n∈N,(rn)n∈N ∈A∞ and
(p1n)n∈N, . . . ,(pmn)n∈N ∈ A∞:

– πn(πn+1(pn+1 Eξ Dqn+1)) = πn(pn Eξ Dqn);
– πn(πn+1(pn+1 Ent(rn+1)Dqn+1)) = πn(pn Ent(rn)Dqn);
– πn(πn+1(pn+1 Cyξ Bqn+1)) = πn(pn Cyξ Bqn);
– πn(πn+1(‖s(〈p1n+1〉y . . .y 〈pmn+1〉))) = πn(‖s(〈p1n〉y . . .y 〈pmn〉)).

From this and the definition ofAn, it follows immediately that the operations de-
fined above are well-defined, i.e. they always yield elements ofA∞.

The initial model can be embedded in a natural way in the projective limit
model: eachp∈ Aω corresponds to(πn(p))n∈N ∈ A∞. We extend projection to an
operation onA∞ by definingπm((pn)n∈N) = (p′n)n∈N, wherep′n = pn if n < m and
p′n = pm if n≥m. That is,πm((pn)n∈N) is pm embedded inA∞ as described above.
Henceforth, we will identify elements ofAω with their embedding inA∞ where
elements ofA∞ are concerned.

For eachξ ∈ Aδ , the operations corresponding to the conditional action rep-
etition operatorsξ ∗T andξ ∗F of TA∗

sc can be thought of as solutions inA∞

of parametrized equations suggested by axioms CAR1 and CAR2. That is, for
all p∈ A∞, ξ ∗Tp is thought of as a solution inA∞ of the equationx = pEξ D x
and ξ ∗Fp is thought of as a solution inA∞ of the equationx = xEξ D p. The
question is whether these equations have unique solutions inA∞. This question
can be answered in the affirmative by mean of a result that will be established in
Section 3.3.

Synchronous Cooperation for Explicit Multi-Threading 19

3.2 Metric Space Structure for Projective Limit Model

In Section 3.3, we will introduce the notion of guarded recursion equation and
show that every guarded recursion equation has a unique solution inA∞. Follow-
ing [22] to some extent, we makeA∞ into a metric space to establish the unique-
ness of solutions of guarded recursion equations using Banach’s fixed point theo-
rem.

Supplementary, in Appendix A, we makeA∞ into a complete partial ordered
set and show, using Tarski’s fixed point theorem, that every recursion equation has
a least solution inA∞ with respect to the partial order relation concerned.

We remark that metric spaces have also been applied in concurrency theory by
de Bakker and others to solve domain equations for process domains [2] and to
establish uniqueness results for recursion equations [1].

In the remainder of this subsection, as well as in Section 3.3, we assume known
the notions of metric space, completion of a metric space, dense subset in a metric
space, continuous function on a metric space, limit in a metric space and con-
tracting function on a metric space, and Banach’s fixed point theorem. The def-
initions of the above-mentioned notions concerning metric spaces and Banach’s
fixed point theorem can, for example, be found in [17]. In this paper, we will con-
sider only ultrametric spaces. A metric space(M,d) is anultrametric spaceif for
all p, p′, p′′ ∈M, d(p, p′)≤max{d(p, p′′),d(p′′, p′)}.

We define a distance functiond :A∞×A∞ → R by

d(p, p′) = 2−min{n∈N|πn(p)6=πn(p′)} if p 6= p′ ,

d(p, p′) = 0 if p = p′ .

It is easy to verify that(A∞,d) is ametric space. The following theorem sum-
marizes the basic properties of this metric space.

Theorem 3

1. (A∞,d) is an ultrametric space;
2. (A∞,d) is the metric completion of the metric space(Aω ,d′), whered′ is the

restriction ofd to Aω ;
3. Aω is dense inA∞;
4. the operationsπn :A∞ → An are continuous;
5. for all p∈ A∞ andn∈ N, d(πn(p), p) < 2−n, hencelimn→∞ πn(p) = p.

Proof These properties are general properties of metric spaces constructed in the
way pursued here. Proofs of the first three properties can be found in [28]. A proof
of the fourth property can be found in [18]. The fifth property is proved as follows.
It follows from Lemma 4, by passing to the limit and using that the projection
operations are continuous andAω is dense inA∞, thatπn(πm(p)) = πmin(n,m)(p) for
p∈ A∞ as well. Hence,min{m∈ N | πm(πn(p)) 6= πm(p)}> n, and consequently
d(πn(p), p) < 2−n. ut
The basic properties given above are used in coming proofs.

The properties of the projection operations stated in the following lemma will
be used in the proof of Theorem 4 given below.

20 J.A. Bergstra, C.A. Middelburg

Lemma 6 For all p1, . . . , pm∈ A∞ andn∈ N:

πn(p1 Eξ D p2) = πn(πn(p1)Eξ Dπn(p2)) ,

πn(p1 Ent(p3)D p2) = πn(πn(p1)Ent(πn(p3))Dπn(p2)) ,

πn(p1 Cyξ B p2) = πn(πn(p1)Cyξ Bπn(p2)) ,

πn(‖s(〈p1〉y . . .y 〈pm〉)) = πn(‖s(〈πn(p1)〉y . . .y 〈πn(pm)〉)) .

Proof It is enough to prove these equalities forp1, . . . , pm ∈ Aω . The lemma will
then follow by passing to the limit and using thatπn is continuous andAω is
dense inA∞. For p1, . . . , pm ∈ Aω , the first three equalities follow immediately
from Lemma 4 and the definition ofπn and the fourth equality follows immedi-
ately from Lemmas 4 and 5. ut

In the terminology of metric topology, the following theorem states that all
operations in the projective limit model forTAsc are non-expansive. This implies
that they are continuous, with respect to the metric topology induced byd, in all
arguments.

Theorem 4 For all p1, . . . , pm, p′1, . . . , p′m∈ A∞:

d(p1 Eξ D p2, p′1 Eξ D p′2)≤max(d(p1, p′1),d(p2, p′2)) ,

d(p1 Ent(p3)D p2, p′1 Ent(p′3)D p′2)≤max(d(p1, p′1),d(p2, p′2),d(p3, p′3)) ,

d(p1 Cyξ B p2, p′1 Cyξ B p′2)≤max(d(p1, p′1),d(p2, p′2)) ,

d(‖s(〈p1〉y . . .y 〈pm〉),‖s(〈p′1〉y . . .y 〈p′m〉))
≤max(d(p1, p′1), . . . ,d(pm, p′m)) .

Proof Let ki = min{n∈ N | πn(pi) 6= πn(p′i)} for i = 1,2, and letk = min(k1,k2).
Then for alln ∈ N, n < k iff πn(p1) = πn(p′1) and πn(p2) = πn(p′2). From this
and the first equality from Lemma 6, it follows immediately thatπk−1(p1 Eξ D
p2) = πk−1(p′1 Eξ D p′2). Hence,k≤min{n∈ N | πn(p1 Eξ D p2) 6= πn(p′1 Eξ D
p′2)}, which completes the proof for the first inequality. The proofs for the other
inequalities go analogously. ut

3.3 Guarded Recursion Equations

We introduce the notion of guarded recursion equation and show that each guarded
recursion equation has a unique solution inA∞. Before we introduce the notion
of guarded recursion equation, we introduce several other notions relevant to the
issue of unique solutions of recursion equations.

We assume that there is a fixed but arbitrary set of variablesX . We will write
TP, whereP⊆ A∞, for the set of all terms over the signature ofTAsc with parame-
ters fromP; andT X

P , whereP⊆ A∞ andX ⊆X , for the set of all terms fromTP
in which no other variables than the ones inX have free occurrences.3 The inter-
pretation function[[]] :TP → ((X → A∞)→ A∞) of terms with parameters from

3 A term with parameters is a term in which elements of the domain of a model are used as
constants naming themselves. For a justification of this mix-up of syntax and semantics in case
only one model is under consideration, see e.g. [19].

Synchronous Cooperation for Explicit Multi-Threading 21

P⊆ A∞ is defined as usual for terms without parameters, but with the additional
defining equation[[p]](ρ) = p for parametersp.

Let x1, . . . ,xn ∈X , letX⊆{x1, . . . ,xn}, letP⊆A∞, and lett ∈T X
P . Moreover,

let ρ : X → A∞. Then theinterpretation oft with respect tox1, . . . ,xn, written
[[t]]x1,...,xn, is the unique functionφ : A∞n → A∞ such that for allp1, . . . , pn ∈ A∞,
φ(p1, . . . , pn) = [[t]](ρ⊕ [x1 7→ p1]⊕ . . .⊕ [xn 7→ pn]).

The interpretation oft with respect tox1, . . . ,xn is well-defined because it is
independent of the choice ofρ.

An m-ary operationφ on A∞ is a guardedoperation if for all p1, . . . , pm,
p′1, . . . , p′m∈ A∞ andn∈ N:

πn(p1) = πn(p′1)∧ . . .∧πn(pm) = πn(p′m)

⇒πn+1(φ(p1, . . . , pm)) = πn+1(φ(p′1, . . . , p′m)) .

We say thatφ is anunguardedoperation ifφ is not a guarded operation.
The notion of guarded operation, which originates from [28], supersedes the

notion of guard used in [22].
The notion of guarded operation is defined without reference to metric proper-

ties. However, being a guarded operation coincides with having a metric property
that is highly relevant to the issue of unique solutions of recursion equations: an
operation onA∞ is a guarded operation iff it is contracting. This is stated in the
following lemma.

Lemma 7 An m-ary operationφ on A∞ is a guarded operation iff for allp1, . . . ,
pm, p′1, . . . , p′m∈ A∞:

d(φ(p1, . . . , pm),φ(p′1, . . . , p′m))≤ 1
2 ·max(d(p1, p′1), . . . ,d(pm, p′m)) .

Proof Let ki = min{n ∈ N | πn(pi) 6= πn(p′i)} for i = 1, . . . ,m, and let k =
min{k1, . . . ,km}. Then for all n ∈ N, n < k iff πn(p1) = πn(p′1) and . . . and
πn(pm) = πn(p′m). From this, the definition of a guarded operation and the def-
inition of π0, it follows immediately thatφ is a guarded operation iff for all
n< k+1, πn(φ(p1, . . . , pm)) = πn(φ(p′1, . . . , p′m)). Hence,φ is a guarded operation
iff k+1≤min{n∈N | πn(φ(p1, . . . , pm)) 6= πn(φ(p′1, . . . , p′m))}, which completes
the proof. ut

The notion of guarded term defined below is suggested by the fact, stated in
Lemma 7 above, that an operation onA∞ is a guarded operation iff it is contract-
ing. The only guarded operations, and consequently contracting operations, in the
projective limit model forTAsc are the non-forking and forking postconditional
composition operations. Based upon this, we define the notion of guarded term as
follows.

Let P ⊆ A∞. Then the setGP of guardedterms with parameters fromP is
inductively defined as follows:

– if p∈ P, thenp∈ GP;
– S,D ∈ GP;
– if ξ ∈Aδ andt1, t2 ∈TP, thent1 Eξ D t2 ∈ GP;
– if t1, t2, t3 ∈TP, thent1 Ent(t3)D t2 ∈ GP;

22 J.A. Bergstra, C.A. Middelburg

– if ξ ∈Aδ andt1, t2 ∈ GP, thent1 Cyξ B t2 ∈ GP;
– if t1, . . . , tl ∈ GP, then‖s(〈t1〉y . . .y 〈tl 〉) ∈ GP.

The following lemma states that guarded terms represent operations onA∞ that
are contracting.

Lemma 8 Let x1, . . . ,xn ∈X , let X ⊆ {x1, . . . ,xn}, let P⊆ A∞, and lett ∈ T X
P .

Thent ∈ GP only if for all p1, . . . , pn, p′1, . . . , p′n ∈ A∞:

d([[t]]x1,...,xn(p1, . . . , pn), [[t]]
x1,...,xn(p′1, . . . , p′n))

≤ 1
2 ·max{d(p1, p′1), . . . ,d(pn, p′n)} .

Proof This is easily proved by induction on the structure oft using Theorem 4,
Lemma 7, and the fact that the non-forking and forking postconditional composi-
tion operations are guarded operations. ut

A recursion equationis an equationx= t, wherex∈X andt ∈T
{x}

P for some
P⊆ A∞. A recursion equationx = t is aguardedrecursion equation ift ∈ GP for
someP⊆ A∞. Let x= t be a recursion equation. Thenp∈ A∞ is asolutionof x= t
if [[t]]x(p) = p.

Every guarded recursion equation has a unique solution in the projective limit
model forTAsc. This is stated in the following theorem.

Theorem 5 Let x ∈ X , let P⊆ A∞, and lett ∈ T
{x}

P be such thatt ∈ GP. Then
the guarded recursion equationx = t has a unique solution in the projective limit
model forTAsc.

Proof We have from Theorem 3 that(A∞,d) is a complete metric space and
from Lemma 8 that[[t]]x is contracting. From this, we conclude by Banach’s fixed
point theorem that there exists a uniquep∈ A∞ such that[[t]]x(p) = p. Hence, the
guarded recursion equationx = t has a unique solution. ut

For completeness, we mention how the unique solution of a guarded recursion
equationx= t can be constructed. Define the iteratesφ n of a unary operationφ on
A∞ by induction onn as follows:φ 0(p) = p andφ n+1(p) = φ(φ n(p)). The unique
solution ofx = t in A∞ is (πn(([[t]]

x)n(D)))n∈N.

Example 5The equationx= xEξ DS, whereξ ∈A , is a guarded recursion equa-
tion. The unique solution of this recursion equation is the projective sequence
(pn)n∈N, where:

p0 = D ,

p1 = DEξ DD ,

p2 = (DEξ DD)Eξ DS ,

p3 = ((DEξ DD)Eξ DS)Eξ DS ,
...

Synchronous Cooperation for Explicit Multi-Threading 23

Theorem 5 is a considerable generalization of a result on unique solutions of
recursion equations given in [30]. That result can be rephased as follows: every
guarded recursion equation with a right-hand side that contains no other constants
and operators thanS, D and Eξ D (for ξ ∈ Aδ) has a unique solution in the
projective limit model forBTAδ .

The projection operations and the distance function as defined in this paper
match well with our intuitive ideas about finite approximations of threads and
closeness of threads, respectively. The suitability of the definitions given in this
paper is supported by the fact that guarded operations coincide with contracting
operations. However, it is not at all clear whether adaptations of the definitions are
feasible and will lead to different uniqueness results.

3.4 Expansion of Projective Limit Model forTAsc to Model forTA∗
sc

The expansion of the projective limit model forTAsc to a model forTA∗
sc rests

heavily upon Sections 3.2 and 3.3.
The projective limit model forTA∗

sc is the expansion of the projective limit
model forTAsc with:

– an operation for each conditional action repetition operator;

where those additional operations are defined as follows:

ξ ∗Tp is the unique solution ofx = pEξ Dx ,

ξ ∗Fp is the unique solution ofx = xEξ D p .

Because the equationsx = pEξ Dx andx = xEξ D p are guarded recursion
equations, they have unique solutions inA∞ by Theorem 5. Moreover, those solu-
tions are the intended ones: axioms CAR1 and CAR2 hold in the model expanded
in this way.

The definitions of the operations for conditional action repetition clarify why
we decided on considering terms with parameters in Section 3.3. We would have
been able to carry on with terms without parameters, but that would have been a
needless burden.

Notice that Theorem 5 justifies an extension ofTAsc or TA∗
sc with guarded

recursion. We will not work out the details of such an extension in this paper.

4 Threads and Maurer Machines

In this section, we introduce Maurer machines and add application of a thread to
a Maurer machine from one of its state to the thread algebra developed so far.
We also introduce the notion of computation in the resulting setting. However, we
start with a brief review of Maurer computers.

24 J.A. Bergstra, C.A. Middelburg

4.1 Maurer Computers

Maurer computers are computers as defined by Maurer in [23].
A Maurer computerC consists of the following components:

– a non-empty setM;
– a setB with card(B)≥ 2;
– a setS of functionsS:M → B;
– a setO of functionsO :S →S ;

and satisfies the following conditions:

– if S1,S2 ∈S , M′ ⊆M andS3 :M → B is such thatS3(x) = S1(x) if x∈M′ and
S3(x) = S2(x) if x 6∈M′, thenS3 ∈S ;

– if S1,S2 ∈S , then the set{x∈M | S1(x) 6= S2(x)} is finite.

M is called thememory, B is called thebase set, the members ofS are called the
states, and the members ofO are called theoperations. It is obvious that the first
condition is satisfied ifC is complete, i.e. if S is the set of all functionsS:M→B,
and that the second condition is satisfied ifC is finite, i.e. if M andB are finite sets.

In [23], operations are called instructions. In the current paper, the term oper-
ation is used because of the confusion that would otherwise arise with the instruc-
tions of which program algebra programs are made up.

The memory of a Maurer computer consists of memory elements which have
as contents an element from the base set of the Maurer computer. The contents of
all memory elements together make up a state of the Maurer computer. The oper-
ations of the Maurer computer transform states in certain ways and thus change
the contents of certain memory elements. We return to the conditions on the states
of a Maurer computer after the introduction of the input region and output region
of an operation.

Let (M,B,S ,O) be a Maurer computer, and letO : S →S . Then theinput
region of O, written IR(O), and theoutput regionof O, written OR(O), are the
subsets ofM defined as follows:4

IR(O) = {u∈M | ∃S1,S2 ∈S • (∀w∈M \{u} •S1(w) = S2(w)∧
∃v∈OR(O) •O(S1)(v) 6= O(S2)(v))} ,

OR(O) = {u∈M | ∃S∈S •S(u) 6= O(S)(u)} .

OR(O) is the set of all memory elements that are possibly affected byO; and
IR(O) is the set of all memory elements that possibly affect elements ofOR(O)
underO.

Let (M,B,S ,O) be a Maurer computer, letS1,S2 ∈S , and letO∈ O. Then
S1 ¹ IR(O) = S2 ¹ IR(O) impliesO(S1) ¹OR(O) = O(S2) ¹OR(O).5 The conditions

4 The following precedence conventions are used in logical formulas. Operators bind stronger
than predicate symbols, and predicate symbols bind stronger than logical connectives and quan-
tifiers. Moreover,¬ binds stronger than∧ and∨, and∧ and∨ bind stronger than⇒ and⇔.
Quantifiers are given the smallest possible scope.

5 In this paper, we use the notationf ¹ D, where f is a function andD ⊆ dom(f), for the
functiong with dom(g) = D such that for alld ∈ dom(g), g(d) = f (d).

Synchronous Cooperation for Explicit Multi-Threading 25

on the states of a Maurer computer are necessary for this desirable property to
hold.

Let (M,B,S ,O) be a Maurer computer, letO∈ O, let M′ ⊆ OR(O), and let
M′′ ⊆ IR(O). Then theregion affectingM′ underO, written RA(M′,O), and the
region affected byM′′ underO, written AR(M′′,O), are the subsets ofM defined
as follows:

RA(M′,O) = {u∈ IR(O) | AR({u},O)∩M′ 6= /0} ,

AR(M′′,O) =

{u∈OR(O) | ∃S1,S2 ∈S • (∀w∈ IR(O)\M′′ •S1(w) = S2(w)∧
O(S1)(u) 6= O(S2)(u))} .

AR(M′′,O) is the set of all elements ofOR(O) that are possibly affected by the
elements ofM′′ underO; andRA(M′,O) is the set of all elements ofIR(O) that
possibly affect elements ofM′ underO.

In [23], Maurer gives many results about the relation between the input region
and output region of operations, the composition of operations, the decomposi-
tion of operations and the existence of operations. In [8], we summarize the main
results given in [23]. Recently, a revised and expanded version of [23], which
includes all the proofs, has appeared in [24].

4.2 Applying Threads to Maurer Machines

We introduce Maurer machines and add for a fixed but arbitrary Maurer machine
a binaryapplyoperator • to TA∗

sc, resulting inTA∗•
sc. This operator is related to

the apply operators introduced in [15].
Below, we expand Maurer computers(M,B,S ,O) with a setA, a function

[[]] : A→ (O×M) and a relationC⊆ A×A to obtain Maurer machines. For each
a ∈ A, we will write Oa andma for the uniqueO ∈ O andm∈ M, respectively,
such that[[a]] = (O,m).

A Maurer machineis a tuple H = (M,B,S ,O,A, [[]],C), where:

– (M,B,S ,O) is a Maurer computer;
– A is a set withtau ∈ A andδ 6∈ A;
– [[]] : A→ (O×M) is such that:

– for all a∈ A: ∀S∈S •S(ma) ∈ {T,F};
– ∀S∈S • (Otau(S) = S∧S(mtau) = T);

– C⊆ A×A is such that for alla,b∈ A:

C(a,b)⇒
∀S∈S • (Oa(Ob(S)) = Ob(Oa(S))∧

Oa(Ob(S))(mb) = Ob(S)(mb)∧
Ob(Oa(S))(ma) = Oa(S)(ma)) .

26 J.A. Bergstra, C.A. Middelburg

The members ofA are called theatomic actionsof H, and[[]] is called theatomic
action interpretation functionof H. C is called theatomic action concurrency
relationof H.

Let H = (M,B,S ,O,A, [[]],C) be a Maurer machine.A, [[]] andC constitute
the interface between the Maurer machine and its environment. The interface can
be explained as follows:

– a∈ A means thatH is capable of processing atomic actiona;
– for a∈ A, [[a]] = (O,m) means that:

– the processing of atomic actiona by H amounts to performing operationO,
– after that the reply produced byH is contained in memory elementm;

– for a,b ∈ A, C(a,b) means that the atomic actionsa andb can be processed
concurrently.

The condition imposed onC sees to it that atomic actionsa andb can be pro-
cessed concurrently only if in the case wherea andb are processed byH one after
another:

– the ultimate effect on the contents of memory elements never depends on the
order in which the actions are processed;

– the contents of the memory cell containing the reply produced in processing
the first action remains unchanged when the other action is processed.

This condition concerns aspects of real computers which are relevant to program
parallelization, but from which the well-known models for computers abstract.

In [8–10], the interface of a Maurer machine did not include an atomic action
concurrency relation. Its inclusion is needed to be able to determine the correct-
ness of any program parallelization statically.

Let H = (M,B,S ,O,A, [[]],C) be a Maurer machine. A condition that is
stronger than the condition imposed onC can be expressed in terms of the input
regions and output regions of operations:

C(a,b)⇒
OR(Oa)∩ IR(Ob) = IR(Oa)∩OR(Ob) = OR(Oa)∩OR(Ob) = /0∧
ma 6∈OR(Ob)∧mb 6∈OR(Oa)

for all a,b∈ A. This stronger condition may be useful in establishing that the in-
tended atomic action concurrency relation of a Maurer machine under construction
is really the atomic action concurrency relation of the Maurer machine according
to the definition of the notion of Maurer machine given above.

In TA∗•
sc, it is assumed that a fixed but arbitrary Maurer machineH =

(M,B,S ,O,A, [[]],C) has been given that satisfies the following conditions:

– AA = A;
– for all a1, . . . ,an ∈ A: a1 & . . .& an 6= δ iff

∧
1≤i<n

∧
i< j≤nC(ai ,a j);

– for all a1, . . . ,am ∈ A and a′1, . . . ,a
′
n ∈ A: a1 & . . . & am = a′1 & . . . & a′n iff

Oam(. . .Oa1(S) . . .) = Oa′n(. . .Oa′1(S) . . .) for all S∈S ;
– for all a,b∈ A with a 6= b: ∀S∈S •Oa(S)(mb) = S(mb).

Wherever this assumption is made, the notationsOa andma introduced above
will be used. The following notations will also be used. Letξ = a1 & . . . & an

Synchronous Cooperation for Explicit Multi-Threading 27

Table 12 Axioms for apply

x•↑= ↑
S•S= S

D•S= ↑
(xEξ Dy)•S= x•Oξ (S) if Oξ (S)(mξ) = T

(xEξ Dy)•S= y•Oξ (S) if Oξ (S)(mξ) = F

(xEnt(z)Dy)•S= ↑
(xCyξ By)•S= x•S if S(mξ) = T

(xCyξ By)•S= y•S if S(mξ) = F

Table 13 Rule for divergence
∧

n≥0 πn(x)•S= ↑⇒x•S= ↑

with a1, . . . ,an ∈ A andξ 6= δ . Then we writeOξ for the uniqueO∈ O such that
O(S) = Oan(. . .Oa1(S) . . .) for all S∈S , and we writemξ for man.

The apply operator • allows for threads to transform states of the Maurer
machineH by means of its operations. Such state transformations produce either
a state of the associated Maurer machine or theundefined state↑. It is assumed
that↑ is not a state of any Maurer machine. We extend function restriction to↑ by
stipulating that↑ ¹ M = ↑ for any setM. The first operand of the apply operator
must be a term fromTTA∗

sc
and its second operand must be a state fromS ∪{↑}.

Let p ∈ TTA∗
sc
, and letS∈ S . Then p•S is the state fromS that results if all

actions fromCA performed by threadp are processed by the Maurer machine
H from initial stateS. The processing of an actionξ from CA by H amounts
to a state change according to the operationOξ . In the resulting state the reply
produced byH is contained in memory elementmξ . If p is S, then there will be
no state change. Ifp is D, then the result is↑.

The axioms for apply are given in Tables 12 and 13. In these tables,ξ stands
for an arbitrary member ofCA andSstands for an arbitrary member ofS . The
reason for the equation(xEnt(z)Dy)•S= ↑ is that no actions will become avail-
able for processing by the Maurer machine because thread forking is carried into
effect only if it is put in the context of synchronous cooperation.

Let p ∈ TTA∗
sc

andS∈ S . Then p convergesfrom S if there exists ann ∈ N
such thatπn(p)•S 6= ↑. We say thatp divergesfrom S if it does not converge from
S. The rule for divergence from Table 13 can be read as follows: ifx diverges from
S, thenx•Sequals↑.

4.3 Computations

We introduce the notion of computation and related notions in the current setting.
Thesteprelation ` ⊆ (TTA∗

sc
×S)× (TTA∗

sc
×S) is inductively defined as

follows:

– if p = tau◦ p′, then(p,S) ` (p′,S);
– if ξ 6= δ , Oξ (S)(mξ) = T andp = p′Eξ D p′′, then(p,S) ` (p′,Oξ (S));

28 J.A. Bergstra, C.A. Middelburg

– if ξ 6= δ , Oξ (S)(mξ) = F andp = p′Eξ D p′′, then(p,S) ` (p′′,Oξ (S));
– if ξ 6= δ , Oξ (S)(mξ) = T, p = qCyξ B r, and(q,S) ` (q′,S′), then(p,S) `

(q′,S′);
– if ξ 6= δ , Oξ (S)(mξ) = F, p = qCyξ B r, and(r,S) ` (r ′,S′), then(p,S) `

(r ′,S′).

A full path in ` is one of the following:

– a finite path〈(p0,S0), . . . ,(pn,Sn)〉 in ` such that there does not exist a
(pn+1,Sn+1) ∈TTA∗

sc
×S with (pn,Sn) ` (pn+1,Sn+1);

– an infinite path〈(p0,S0),(p1,S1), . . .〉 in ` .

Let p ∈ TTA∗
sc
, and letS∈ S . Then thefull path of (p,S) is the unique full

path in ` from (p,S). Thecomputationof (p,S) is the full path of(p,S) if p
converges fromSand undefined otherwise.

Let p ∈ TTA∗
sc

and S∈ S be such thatp converges fromS. Then we write
||(p,S)|| for the length of the computation of(p,S).

It is easy to see that(p0,S0) ` (p1,S1) only if p0 • S0 = p1 • S1 and that
〈(p0,S0), . . . ,(pn,Sn)〉 is the computation of(p0,S0) only if pn = S and Sn =
p0 •S0. It is also easy to see that, ifp0 converges fromS0, ||(p0,S0)|| is the least
n∈ N such thatπn(p0)•S0 6= ↑.

Notice that, because(pEnt(r)Dq) •S= ↑ for all p,q, r ∈ TTA∗
sc

andS∈S ,
there are no computations for threads involving thread forking.

Program instructions whose processing takes one step can be looked upon as
atomic actions of a Maurer machine. A program instruction whose processing
takes more than one step can be handled by means of split-action prefixing (see
Section 2.3) with two atomic actions, saya andb, using some memory element as
a counter:

– in the case where the instruction takesn steps (n > 1):
– operationOa sets a counter ton−1 and setsma to F,
– operationOb decrements the counter by one and setsmb to T if the value

of the decremented counter is zero and toF otherwise;
– in the case where the instruction takesn to msteps (m> n > 1):

– operationOa sets a counter to a value in the interval[n−1,m−1] depend-
ing upon the contents of certain memory elements and setsma to F,

– operationOb decrements the counter by one and setsmb to T if the value
of the decremented counter is zero and toF otherwise.

Both cases can occur, for example, with load instructions – the second case due to
the possibility of cache misses. In the second case, the value to which the counter
is set depends on the contents of memory elements that are related to the origin
of the varying number of steps. For example, a varying number of steps due to
the possibility of cache misses means that the value to which the counter is set
depends on the contents of memory elements that model the mechanism of the
cache. For each individual computer architecture, it is reasonable to assume that
a lower bound and upper bound on the number of steps taken by each instruction
can be given.

Synchronous Cooperation for Explicit Multi-Threading 29

Table 14 Defining formula for state transformer equivalence

x≈ y⇔∀S∈S • (x•S= y•S)

5 Threads as State Transformers

In this section, we introduce the notion of state transformer equivalence of threads
and present some state transformer properties of threads.

5.1 State Transformer Equivalence

We introduce state transformer equivalence of threads. This equivalence identifies
threads if they are the same as transformers of the states of the Maurer machine
H. An interesting point of state transformer equivalence is the following: ifp and
q are state transformer equivalent, then the computations of(p,S) and(q,S) have
the same final state, but they may have different lengths.

State transformer equivalence, written≈, is defined by the formula given in
Table 14. The following proposition states some basic properties of state trans-
former equivalence.

Proposition 5 For all ξ ,ξ ′ ∈ CA δ :

ξ ◦D≈ D , (1)

tau◦x≈ x , (2)

ξ & ξ ′ 6= δ ⇒xEξ & ξ ′Dy≈ ξ ◦ (xEξ ′Dy) , (3)

ξ & ξ ′ 6= δ
⇒ (xEξ ′Dy)Eξ D (zEξ ′Dw)≈ (xEξ Dz)Eξ ′D (yEξ Dw) ,

(4)

(xCyξ ′ By)Eξ D (zCyξ ′ Bw)≈ (xEξ Dz)Cyξ ′ B (yEξ Dw) , (5)

(xCyξ ′ By)Cyξ B (zCyξ ′ Bw)≈ (xCyξ Bz)Cyξ ′ B (yCyξ Bw) . (6)

Proof These properties follow easily from the defining formula for state trans-
former equivalence, the defining equations for the apply operator, the definition of
a Maurer machine, and the assumptions made about the Maurer machineH. ut
The laws of state transformer equivalence given above are used in coming proofs.

All threads represented by closed terms over the signature ofTAsc are finite
threads. The length of the sequences of actions that a finite thread can perform is
bounded. This has the effect that, if two threads represented by closed terms over
the signature ofTAsc are state transformer equivalent, then this can be proved from
the axioms ofTAsc and the defining equations of the apply operator. However, all
threads represented by closed terms over the signature ofTA∗

sc other than closed
terms over the signature ofTAsc are infinite threads. As a result of that, the axioms
of TA∗

sc and the defining equations of the apply operator are not sufficient to prove
state transformer equivalence.

This calls for a proof rule to deal with infinite threads. A complication that
must be dealt with is the following: different threads can effect the same state
transformation by performing different sequences of actions. This leads us to the

30 J.A. Bergstra, C.A. Middelburg

Table 15 Defining formula for state transformer inclusion

x @∼ y⇔∀S∈S • (x•S 6= ↑⇒x•S= y•S)

Table 16 State transformer inclusion principle

∀n∈ N •∃m∈ N •πn(x) @∼ πm(y)⇒x @∼ y

introduction of state transformer inclusion of threads. Intuitively, one thread in-
cludes another thread as state transformer if each state transformation that can be
effected by the former thread can be effected by the latter thread as well.

State transformer inclusion, written@∼, is defined by the formula given in Ta-
ble 15. The following proposition states basic properties of state transformer in-
clusion.

Proposition 6 For all ξ ∈ CA δ :

x @∼ x , (1)

x @∼ y∧y @∼ z⇒x @∼ z , (2)

x @∼ y∧y @∼ x⇔x≈ y , (3)

x @∼ z∧y @∼ u⇒xEξ Dy @∼ zEξ Du , (4)

x @∼ z∧y @∼ u⇒xCyξ By @∼ zCyξ Bu . (5)

Proof These properties follow easily from the defining formula for state trans-
former inclusion, the defining formula for state transformer equivalence, and the
defining equations for the apply operator. ut

Now we are ready to introduce a rule to prove that one infinite thread includes
another infinite thread as state transformer. The rule concerned, called thestate
transformer inclusion principle, is given in Table 16. To prove that two infinite
threadsp andq are state transformer equivalent, the intended approach is to prove
p @∼ q andq @∼ p using the state transformer inclusion principle. That is sufficient
by Property 3 from Proposition 6.

The following proposition states some basic properties of state transformer
equivalence that can be proved following this approach.

Proposition 7 For all ξ ,ξ ′ ∈ CA δ andb∈ {T,F}:

ξ & ξ ′ 6= δ ⇒ (ξ ′ ∗b x)Eξ D (ξ ′ ∗b y)≈ ξ ′ ∗b (xEξ Dy) ,

ξ & ξ ′ 6= δ ⇒ξ ∗b (ξ ′ ∗b x)≈ ξ ′ ∗b (ξ ∗b x) .

Proof Assume thatξ & ξ ′ 6= δ . Then it is easily proved by induction onn, using
Property 4 from Proposition 5, thatπn((ξ ′ ∗b x)Eξ D (ξ ′ ∗b y))≈ πn(ξ ′ ∗b (xEξ D
y)) for all n∈ N. From this and Property 3 from Proposition 6, the first property
follows immediately by the state transformer inclusion principle. The proof for
the second property goes similarly, and makes use of the first property. ut

Synchronous Cooperation for Explicit Multi-Threading 31

Table 17 Backwards state transformer inclusion principle

x @∼ y⇒∀n∈ N •∃m∈ N •πn(x) @∼ πm(y)

We have the following corollary from Property 4 from Proposition 5 and Proposi-
tion 7.

Corollary 2 For all ξ ,ζ ,ξ ′,ζ ′ ∈ CA δ :

ξ & ξ ′ 6= δ ∧ξ & ζ ′ 6= δ ∧ζ & ξ ′ 6= δ ∧ζ & ζ ′ 6= δ
⇒ξ/ζ ◦ (ξ ′/ζ ′ ◦x)≈ ξ ′/ζ ′ ◦ (ξ/ζ ◦x) .

The following proposition states a useful property of state transformer inclu-
sion that can be proved by means of the state transformer inclusion principle.

Proposition 8 For all p∈TTA∗
sc

andn∈ N, πn(p) @∼ πn+1(p).

Proof Taken,n′ ∈ N. If n′ ≤ n, thenπn′(πn(p)) = πn′(πn+1(p)) by Lemma 2. If
n′ > n, thenπn′(πn(p)) = πn(πn+1(p)) by Lemma 2. This means that for alln′ ∈N
there exists anm′ ∈ N such thatπn′(πn(p)) = πm′(πn+1(p)). Becausex = y im-
plies x ≈ y, it follows immediately by the state transformer inclusion principle
thatπn(p) @∼ πn+1(p). ut

We also introduce the state transformer inclusion principle in the reverse di-
rection, called thebackwards state transformer inclusion principle. It is given in
Table 17.

The following proposition states a basic property of state transformer inclusion
that can be proved using the forward and backward state transformer inclusion
principles.

Proposition 9 For all p,q∈TTA∗
sc
, ξ ∈ CA δ andb∈ {T,F}:

p @∼ q⇒ξ ∗b p @∼ ξ ∗b q .

Proof Assume that for alln∈ N, there exists anm∈ N such thatπn(p) @∼ πm(q).
Then it is easily proved by induction onn, using Property 4 from Proposition 6
and Proposition 8, that for alln∈ N, there exists anm∈ N such thatπn(ξ ∗b p) @∼
πm(ξ ∗b q). From this and the forward and backward state transformer inclusion
principles, it follows thatp @∼ q⇒ξ ∗b p @∼ ξ ∗b q. ut

In Appendix A, we introduce behavioural approximation of threads and relate
it to state transformer inclusion.

As a preparation to the expansion of the projective limit model forTA∗
sc with

relations for the predicate symbols@∼ and≈, we introduce astate transformer
extractionfunctionsttrf :A∞ →S ×S . This function is defined as follows:

sttrf((pn)n∈N) =
⋃

n∈N{(S,S′) ∈S ×S | pn•S= S′} .

32 J.A. Bergstra, C.A. Middelburg

The relations@∼ and≈ on A∞ associated with the predicate symbols@∼ and≈,
respectively, are defined as follows (p,q∈ A∞):

p @∼ q⇔sttrf(p)⊆ sttrf(q) ,

p≈ q⇔sttrf(p) = sttrf(q) .

It is easy to verify that the formulas in Tables 14–17 are sound with respect to the
expansion of the projective limit model forTA∗

sc defined above.

5.2 State Transformer Properties of Threads

We present some state transformer properties of threads which can be useful when
investigating program parallelization. The notationp ·q, which is mainly used in
this subsection, was introduced at the end of Section 2.3.

The following proposition concerns the preservation of state transformer in-
clusion.

Proposition 10 Let p∈ C 0 andq,q′ ∈TTA∗
sc
. Thenq @∼ q′ impliesp·q @∼ p·q′.

Proof This is easily proved by induction on the structure ofp, using Propositions 6
and 9. ut

The following proposition concerns re-ordering of threads.

Proposition 11 Let p,q∈ C 0 be such thata& a′ 6= δ for all a∈ α(p) anda′ ∈
α(q). Thenp·q≈ q· p.

Proof This is proved by induction on the structure ofp and in the casesp ≡
p′ Eξ D p′′, p≡ p′ Cyξ B p′′, p≡ ξ ∗T p′, and p≡ ξ ∗F p′ by induction on the
structure ofq, using Propositions 5, 6, 7 and 9. The proof is straightforward given
the properties stated in those propositions. ut

The following proposition concerns parallelization of threads.

Proposition 12 Let p,q∈ C 0 be such thata& a′ 6= δ for all a∈ α(p) anda′ ∈
α(q). Thenp·q≈ ‖s(〈p〉y 〈q〉).

Proof This is proved by induction on the structure ofp and in the casesp ≡
p′ Eξ D p′′, p ≡ p′ Cyξ B p′′, p ≡ ξ ∗T p′, and p ≡ ξ ∗F p′ by case distinction
on the structure ofq, using Propositions 5, 6 and 11. The proof is tedious, but
straightforward given the properties stated in those propositions. We outline the

Synchronous Cooperation for Explicit Multi-Threading 33

case wherep≡ p′Eξ D p′′ andq≡ ζ ∗T q′:

(p′Eξ D p′′) · (ζ ∗T q′)

≈ (p′ · (ζ ∗T q′))Eξ D (p′′ · (ζ ∗T q′))

≈ ((ζ ∗T q′) · p′)Eξ D ((ζ ∗T q′) · p′′)
≈ ((q′Eζ D (ζ ∗T q′)) · p′)Eξ D ((q′Eζ D (ζ ∗T q′)) · p′′)
≈ ((q′ · p′)Eζ D ((ζ ∗T q′) · p′))Eξ D ((q′ · p′′)Eζ D ((ζ ∗T q′) · p′′))
≈ ((p′ ·q′)Eζ D (p′ · (ζ ∗T q′)))Eξ D ((p′′ ·q′)Eζ D (p′′ · (ζ ∗T q′)))

≈ ξ ◦ ((ζ ◦ ((p′ ·q′)Cyζ B (p′ · (ζ ∗T q′))))Cyξ B
(ζ ◦ ((p′′ ·q′)Cyζ B (p′′ · (ζ ∗T q′)))))

≈ ξ ◦ (ζ ◦ (((p′ ·q′)Cyζ B (p′ · (ζ ∗T q′)))Cyξ B
((p′′ ·q′)Cyζ B (p′′ · (ζ ∗T q′)))))

≈ ξ & ζ ◦ (((p′ ·q′)Cyζ B (p′ · (ζ ∗T q′)))Cyξ B
((p′′ ·q′)Cyζ B (p′′ · (ζ ∗T q′))))

≈ ξ & ζ ◦ ((‖s(〈p′〉y 〈q′〉)Cyζ B‖s(〈p′〉y 〈ζ ∗T q′〉))Cyξ B
(‖s(〈p′′〉y 〈q′〉)Cyζ B‖s(〈p′′〉y 〈ζ ∗T q′〉)))

≈ ξ & ζ ◦‖s(〈p′Cyξ B p′′〉y 〈q′Cyζ B (ζ ∗T q′)〉)
≈ ‖s(〈p′Eξ D p′′〉y 〈q′Eζ D (ζ ∗T q′)〉)
≈ ‖s(〈p′Eξ D p′′〉y 〈ζ ∗T q′〉) .

ut
Like Proposition 10, the following proposition concerns the preservation of state
transformer equivalence.

Proposition 13 Let p,q,q′ ∈ TTA∗
sc

be such thata& a′ 6= δ for all a∈ α(p) and
a′ ∈ α(q)∪α(q′). Then‖s(〈q〉)≈ ‖s(〈q′〉) implies‖s(〈p〉y 〈q〉)≈ ‖s(〈p〉y 〈q′〉).
Proof Let n,m∈ N be such thatn≤ m. Thenπn(p) @∼ πm(p) by Proposition 8.
From this, Theorem 2, and Propositions 2, 4, 10, 11 and 12, it follows that
‖s(〈πn(q)〉) @∼ ‖s(〈πm(q′)〉) implies ‖s(〈πn(p)〉y 〈‖s(〈πn(q)〉)〉) @∼ ‖s(〈πm(p)〉y
〈‖s(〈πm(q′)〉)〉). From this and Lemmas 1 and 3, it follows thatπn(‖s(〈q〉)) @∼
πm(‖s(〈q′〉)) implies πn(‖s(〈p〉y 〈q〉)) @∼ πm(‖s(〈p〉y 〈q′〉)). From this, Propo-
sition 8 and the forward and backward state transformer inclusion principles, it
follows that‖s(〈q〉) @∼ ‖

s(〈q′〉) implies ‖s(〈p〉y 〈q〉) @∼ ‖
s(〈p〉y 〈q′〉). It follows

by symmetry that also‖s(〈q′〉) @∼ ‖
s(〈q〉) implies ‖s(〈p〉y 〈q′〉) @∼ ‖

s(〈p〉y 〈q〉).
Hence,‖s(〈q〉)≈ ‖s(〈q′〉) implies‖s(〈p〉y 〈q〉)≈ ‖s(〈p〉y 〈q′〉). ut

6 Programs

In this section, we introduce the classes of programs that are considered in our
study of program parallelization in Section 7. All programs concerned are con-
sidered closed terms of a program algebra, which is introduced in this section as

34 J.A. Bergstra, C.A. Middelburg

well. In this program algebra, the behaviour of a program under execution is taken
for a thread. For a clear picture of the threads that are involved, we start with in-
troducing the classes of threads that correspond to the classes of programs that are
considered in the study of program parallelization.

6.1 Relevant Classes of Threads

The classes of programs that are considered in the study of program parallelization
are in essence sequences of instructions in which test, jump and fork instructions
do not occur and sequences of instructions in which test and jump instructions
do not occur. In this section, we introduce straight-line threads with split actions
and straight-line threads with split actions and thread forking. These two classes
of threads correspond to the two classes of programs: a straight-line thread with
split actions is the behaviour of a program of the former class and a straight-line
thread with split actions and thread forking is the behaviour of a program of the
latter class. For completeness, we introduce straight-line threads as well.

The setSLT of straight-line threadsis the subset ofTTA∗
sc

inductively de-
fined as follows:

– if a∈AA , thena◦D ∈SLT anda◦S ∈SLT ;
– if a∈AA andp∈SLT , thena◦ p∈SLT .

The setSLT s of straight-line threads with split actionsis the subset ofTTA∗
sc

inductively defined as follows:

– if a∈AA , thena◦D ∈SLT s anda◦S ∈SLT s;
– if a,b∈AA , thena/b◦D ∈SLT s anda/b◦S ∈SLT s;
– if a∈AA andp∈SLT s, thena◦ p∈SLT s;
– if a,b∈AA andp∈SLT s, thena/b◦ p∈SLT s.

The setSLT sf of straight-line threads with split actions and thread forkingis
the subset ofTTA∗

sc
inductively defined as follows:

– if a∈AA , thena◦D ∈SLT sf anda◦S ∈SLT sf;
– if a,b∈AA , thena/b◦D ∈SLT sf anda/b◦S ∈SLT sf;
– if p∈SLT sf, thennt(p)◦D ∈SLT sf andnt(p)◦S ∈SLT sf;
– if a∈AA andp∈SLT sf, thena◦ p∈SLT sf;
– if a,b∈AA andp∈SLT sf, thena/b◦ p∈SLT sf;
– if p,q∈SLT sf, thennt(p)◦q∈SLT sf.

We have the following inclusions:SLT ⊂SLT s⊂SLT sf, SLT s⊂ C 0

andSLT sf ⊂ C . Straight-line threads can be described usingD, S and action
prefixing with atomic actions. For straight-line threads with split actions, split-
action prefixing may be used in addition to action prefixing. Split action prefix-
ing is needed to handle program instructions whose processing takes more than
one step. For straight-line threads with split actions and thread forking, forking
prefixing may be used in addition to action prefixing and split-action prefixing.
Forking prefixing is needed to deal with programs that result from parallelization
of straight-line programs by use of program forking.

Synchronous Cooperation for Explicit Multi-Threading 35

6.2 Algebra of Straight-Line Program with Split Instructions and Forking

We introducePGAsl,sf (ProGram Algebra for Straight-Line programs with Split
instructions and Forking).PGAsl,sf is a variant of PGA, an algebra of sequential
programs based on the idea that sequential programs are in essence sequences of
instructions. PGA provides a program notation for threads. A hierarchy of pro-
gram notations that provide increasingly sophisticated programming features are
rooted in PGA (see [6]).

In PGAsl,sf, it is assumed that there is a fixed but arbitrary setA of basic in-
structions. The followingprimitive instructionsare taken as constants inPGAsl,sf:

– for eacha∈ A, avoid basic instructiona;
– for eacha,b∈ A, asplit basic instructiona/b;
– for each closed termPover the signature ofPGAsl,sf, afork instructionfork(P);
– a termination instruction! .

We writeI for the set of all primitive instructions.
In PGAsl,sf, the test and jump instructions of PGA are absent. This means that,

after a primitive instruction of a program other than the termination instruction has
been executed, execution of the program always proceeds with the next instruc-
tion. After a fork instruction has been executed, in addition, the parallel execution
of another program starts up.

The intuition is that the execution of a basic instructiona may modify a state
and producesT or F at its completion. In the case of a split basic instructiona/b,
a is executed once and nextb repeatedly untilT is produced. If the execution ofa
producesT, thenb is not at all executed. In the case of a void basic instructiona,
simplya is executed once and the value produced is disregarded. The execution of
a fork instructionfork(P) leads to the start-up of the parallel execution ofP, and
produces the replyT. Execution of the current program proceeds with the next in-
struction, just like any primitive instruction other than the termination instruction,
but it may be affected by the parallel execution ofP. The effect of the termination
instruction! is that execution terminates.

Qua behaviour, the execution of different programs in parallel that arises from
the execution of fork instructions corresponds to synchronous cooperation. This is
made precise below by means of a thread extraction operator. The choice for syn-
chronous cooperation is dictated by the intended use ofPGAsl,sf for investigating
program parallelization. In a different context, some kind of interleaving may be
chosen instead.

The thread extraction operator defined below, together with the apply oper-
ator defined in Section 4.2 make it possible to associate operations of a Maurer
machine with basic instructions ofPGAsl,sf.

PGAsl,sf has the following constants and operators:

– for eachu∈ I, aninstructionconstantu ;
– the binaryconcatenationoperator ; .

Closed terms over the signature ofPGAsl,sf are considered to denote finite pro-
grams without test and jump instructions. The intuition is that a finite program
is in essence a finite non-empty sequence of primitive instructions. That is, pro-
grams are considered to be equal if they represent the same finite sequence of

36 J.A. Bergstra, C.A. Middelburg

Table 18 Axiom of PGAsl,sf

(X ;Y) ;Z = X ; (Y ;Z) PGA1

Table 19 Defining equations for thread extraction operation

|a|= a◦D

|a/b|= a/b◦D

|fork(X)|= nt(|X|)◦D

|! |= S

a;X	= a◦	X		
a/b;X	= a/b◦	X		
fork(X) ;Y	= nt(X)◦	Y
! ; X	= S			

Table 20 Alphabet axioms for straight-line programs

αslp(a) = {a}
αslp(a/b) = {a/b}
αslp(fork(X)) = αslp(X)
αslp(!) = /0

αslp(a;X) = {a}∪αslp(X)
αslp(a/b;X) = {a/b}∪αslp(X)
αslp(fork(X) ;Y) = αslp(X)∪αslp(Y)
αslp(! ; X) = /0

primitive instructions. Therefore, the only one axiom ofPGAsl,sf is the one given
in Table 18.

Each closed term over the signature ofPGAsl,sf is considered to denote a pro-
gram of which the behaviour can be described inTA∗

sc, taking the setA of basic
instructions for the setAA . We define that behaviour by means of thethread
extractionoperation| |, which assigns a thread to each program. The thread ex-
traction operation is defined by the equations given in Table 19 (fora,b∈ A).

Let P be a closed term over the signature ofPGAsl,sf. The behaviourof P,
written [[P]], is defined by[[P]] = ‖s(〈|P|〉).

Henceforth, we writeAs for the setA∪{a/b | a,b∈ A}. When investigating
program parallelization, it is useful to know the alphabet of a program, i.e. the set
of instructions fromAs that occur in the program. For that reason, we introduce
the alphabetoperatorαslp. The alphabet axioms for straight-line programs with
split instructions and forking are given in Table 20.

When investigating program parallelization, it is convenient to use the follow-
ing extension of the concurrency relation of a Maurer machine.

Given a Maurer machineH = (M,B,S ,O,A, [[]],C), we extendC to As as
follows (a,a′,b,b′ ∈ A):

C(a/a′,b) ⇔C(a,b)∧C(a′,b) ,

C(a,b/b′) ⇔C(a,b)∧C(a,b′) ,

C(a/a′,b/b′)⇔C(a/a′,b)∧C(a/a′,b′) .

Henceforth, we writeTPGAsl,sf for the set of all closed terms over the signature
of PGAsl,sf.

Synchronous Cooperation for Explicit Multi-Threading 37

6.3 Relevant Classes of Programs

In Section 6.1, we have introduced straight-line threads, straight-line threads with
split actions, and straight-line threads with split actions and thread forking. Here,
we introduce the corresponding classes for programs, viz. straight-line programs,
straight-line programs with split instructions, and straight-line programs with split
instructions and program forking. The last two classes are considered in our study
of program parallelization in Section 7.

The setSLP of straight-line programsis the subset ofTPGAsl,sf inductively
defined as follows:

– ! ∈SLP;
– if a∈ A, thena∈SLP;
– if a∈ A andP∈SLP, thena;P∈SLP.

The setSLPs of straight-line programs with split instructionsis the subset of
TPGAsl,sf inductively defined as follows:

– ! ∈SLPs;
– if a∈ A, thena∈SLPs;
– if a,b∈ A, thena/b∈SLPs;
– if a∈ A andP∈SLPs, thena; P∈SLPs;
– if a,b∈ A andP∈SLPs, thena/b ;P∈SLPs.

The setSLPsf of straight-line programs with split instructions and program
forking is the subset ofTPGAsl,sf inductively defined as follows:

– ! ∈SLPsf;
– if a∈ A, thena∈SLPsf;
– if a,b∈ A, thena/b∈SLPsf;
– if P∈SLPsf, thenfork(P) ∈SLPsf;
– if a∈ A andP∈SLPsf, thena; P∈SLPsf;
– if a,b∈ A andP∈SLPsf, thena/b; P∈SLPsf;
– if P,Q∈SLPsf, thenfork(P) ;Q∈SLPsf.

We have the following inclusions:SLP ⊂SLPs⊂SLPsf. The connec-
tion betweenSLP, SLPs, SLPsf andSLT , SLT s, SLT sf is as follows:

– if P ∈ SLP then |P| ∈ SLT , if P ∈ SLPs then |P| ∈ SLT s, if P ∈
SLPsf then|P| ∈SLT sf;

– if p∈SLT thenp= |P| for someP∈SLP, if p∈SLT s thenp= |P| for
someP∈SLPs, if p∈SLT sf thenp = |P| for someP∈SLPsf.

SLPsf consists of allP andP ; ! from TPGAsl,sf where! does not occur inP. For
all P∈TPGAsl,sf, there exists aP′ ∈SLPsf such that|P|= |P′|.
Example 6Suppose that the basic instructions includeLOAD:R1:A, LOAD:R2:B,
ADD:R2:R2:R1 andSTORE:R3:C. Then the following is a straight-line program:

LOAD:R1:A ; LOAD:R2:B ; ADD:R2:R2:R1 ; STORE:R2:C ; !

Take the view is that this straight-line program is intended for calculating the sum
of the contents of two memory elements and leaving the result of the calculation

38 J.A. Bergstra, C.A. Middelburg

behind in a third memory element. That is, suppose that the above-mentioned
basic instructions correspond to atomic actions of which the processing amounts
to loading the contents of memory elementA in registerR1, loading the contents of
memory elementB in registerR2, adding the contents of registerR1 to the contents
of registerR2, and storing the contents of registerR2 in memory elementC. An
adaptation of the straight-line program given above, to model that the processing
of load instructions takes more than one step, could be the following straight-line
program with split instructions:

LOADI:R1:A/LOADC:R1:A ; LOADI:R2:B/LOADC:R2:B ;
ADD:R2:R2:R1 ; STORE:R2:C ; !

A parallellization of this straight-line program with split instructions could be the
following straight-line program with split instructions and program forking:

fork(LOADI:R2:B/LOADC:R2:B ; ADD:R2:R2:R1 ; STORE:R2:C ; !) ;
LOADI:R1:A/LOADC:R1:A ; !

Getting ahead of our study of program parallelization in Section 7, we men-
tion that this parallelization is not correct if the processing of the split instruc-
tionsLOADI:R1:A/LOADC:R1:A andLOADI:R2:B/LOADC:R2:B may take differ-
ent numbers of steps.

In our study of program parallelization, we make the drastic simplification to
consider only the parallelization of straight-line programs with split instructions.
The reason for that is simply that program parallelization is a complicated matter,
which makes it practically necessary to start its study with a drastic simplification.
As a case in point, we mention that jump instructions would complicate proving
a theorem like Theorem 6, our main theorem about program parallelization, very
much.

7 Program Parallelization

In this section, we investigate program parallelization. Our investigation is focused
on finding sufficient conditions for the correctness of program parallelizations. We
start with presenting some state transformer properties of programs.

7.1 State Transformer Properties of Programs

We present some state transformer properties of straight-line programs with split
instructions and program forking which can be useful when investigating program
parallelization.

Henceforth, we writeSLP wt
s for the set{P∈SLPs | ∃P′ ∈SLPs •P′ =

P ; !} andSLP wt
sf for the set{P ∈ SLPsf | ∃P′ ∈ SLPsf •P′ = P ; !}. The

superscriptwt stands for “without termination”.
First, we present a lemma used without mention below in the proofs of Propo-

sitions 14, 15 and 16.

Synchronous Cooperation for Explicit Multi-Threading 39

Lemma 9

1. for all P∈SLPs, [[P]] = |P|;
2. for all P∈SLPs, there exists ap∈ C 0 such that|P|= p;
3. for all P∈SLP wt

s andP′ ∈SLPsf, [[P;P′]] = [[P; !]] · [[P′]].
Proof The first two properties are easily proved by induction on the structure ofP.
The third property is easily proved by induction on the structure ofP, using the
first two properties and Proposition 3. ut

The following proposition states that state transformer equivalence of the be-
haviour of programs fromSLPsf is preserved by prefixing with any program
from SLPs.

Proposition 14 Let P1 ∈SLPs andP2,P′2 ∈SLPsf. Then[[P2]] ≈ [[P′2]] implies
[[P1 ;P2]]≈ [[P1 ; P′2]].

Proof This follows immediately from Proposition 10. ut
The following proposition states that, in every terminating program fromSLPs,
a new place can be given to a suffix if each instruction occurring in the suffix can
be executed concurrently with each of the instructions occurring between the old
place and the new place.

Proposition 15 Let P1,P2,P3 ∈ SLP wt
s be such thatC(u2,u3) for all u2 ∈

αslp(P2) andu3∈αslp(P3). Then[[P2 ;P3 ; !]]≈ [[P3 ; P2 ; !]] and also[[P1 ;P2 ;P3 ; !]]≈
[[P1 ;P3 ;P2 ; !]].

Proof This follows immediately from Propositions 10 and 11. ut
The following proposition states that, in every terminating program fromSLPs,
the place of a suffix can be taken by a fork instruction for the suffix that is placed
before preceding instructions if those instructions can be executed concurrently
with each of the instructions occurring in the suffix.

Proposition 16 Let P1,P2,P3 ∈ SLP wt
s be such thatC(u2,u3) for all u2 ∈

αslp(P2) and u3 ∈ αslp(P3). Then [[P2 ; P3 ; !]] ≈ [[fork(P3 ; !) ; P2 ; !]] and also
[[P1 ; P2 ;P3 ; !]]≈ [[P1 ; fork(P3 ; !) ; P2 ; !]].

Proof By the axioms for synchronous cooperation, we have[[P2 ;P3 ; !]] ≈
[[fork(P3 ; !) ;P2 ; !]] iff [[P2 ; P3 ; !]] ≈ ‖s(〈[[P2 ; !]]〉 y 〈[[P3 ; !]]〉). The latter fol-
lows immediately from Proposition 12. From this result and Proposition 10,
[[P1 ; P2 ;P3 ; !]]≈ [[P1 ; fork(P3 ; !) ; P2 ; !]] follows immediately. ut
The following proposition states that, for every terminating program fromSLPsf
in which a fork instruction occurs, that fork instruction can be replaced by one
for a state transformer equivalent forked program if the instructions occurring in
both forked programs can be executed concurrently with each of the instructions
occurring after the fork instruction.

Proposition 17 LetP1,P3 ∈SLP wt
s andP2,P′2 ∈SLP wt

sf be such thatC(u2,u3)
for all u2 ∈ αslp(P2) ∪ αslp(P′2) and u3 ∈ αslp(P3). Then [[P2 ; !]] ≈ [[P′2 ; !]] im-
plies [[fork(P2 ; !) ; P3 ; !]] ≈ [[fork(P′2 ; !) ;P3 ; !]] and also[[P1 ; fork(P2 ; !) ;P3 ; !]] ≈
[[P1 ; fork(P′2 ; !) ; P3 ; !]].

40 J.A. Bergstra, C.A. Middelburg

Proof By the axioms for synchronous cooperation, we have[[fork(P2 ; !) ;P3 ; !]]≈
[[fork(P′2 ; !) ; P3 ; !]] iff ‖s(〈[[P3 ; !]]〉y〈|P2 ; ! |〉)≈ ‖s(〈[[P3 ; !]]〉y〈|P′2 ; ! |〉). The latter
follows immediately from Proposition 13. From this result and Proposition 10,
[[P1 ; fork(P2 ; !) ; P3 ; !]]≈ [[P1 ; fork(P′2 ; !) ; P3 ; !]] follows immediately. ut

7.2 Program Partitioning, Annotation and Parallelization

Program parallelization is studied here in the setting ofTA∗•
sc and consequently in

the scope of the assumption from Section 4.2 that a fixed but arbitrary Maurer ma-
chineH = (M,B,S ,O,A, [[]],C) has been given that satisfies certain conditions.

We also usePGAsl,sf, which offers a convenient program notation for studying
program parallelization: the programs ofPGAsl,sf permit a very direct analysis of
semantic issues involved.

We introduce the notion of a partition of a straight-line program, the notion
of an annotated partition of a straight-line program, and the notion of the par-
allelization of a straight-line program induced by an annotated partition of the
straight-line program. A straight-line program is a member ofSLPs, whereas a
parallelization of a straight-line program is a member ofSLPsf\SLPs. More-
over, we introduce a notion of correctness for parallelizations of straight-line pro-
grams. The behaviour of a straight-line program and the behaviour of a correct
parallelization of that straight-line program are threads that are the same as state
transformers.

Let P∈SLPs andP1, . . . ,Pm ∈SLP wt
s . Then(P1, . . . ,Pm) is apartition of

P if P = P1 ; . . . ;Pm ; ! .
Let P = u1 ; . . . ;un with u1, . . . ,un ∈ As and let(P1, . . . ,Pm) be a partition ofP.

Moreover, letn0, . . . ,nm∈ N be such thatP1 = un0+1 ; . . . ; un1, P2 = un1+1 ; . . . ; un2,
. . . , Pm = unm−1+1 ; . . . ; unm. Let l1, . . . , lm−1 ∈ N. Then((P1, . . . ,Pm),(l1, . . . , lm−1))
is anannotated partitionof P if n0 ≤ l1 < n1, . . . ,nm−2 ≤ lm−1 < nm−1.

Let P = u1 ; . . . ; un with u1, . . . ,un ∈ As, let ((P1, . . . ,Pm),(l1, . . . , lm−1)) be an
annotated partition ofP, and letn0, . . . ,nm∈N be as in the definition of annotated
partition above. LetP′m = Pm ; ! and, for eachi ∈ [1,m−1], let P′i = uni−1+1 ; . . . ;
ul i ; fork(P′i+1) ; ul i+1 ; . . . ; uni ; ! if ni−1 < l i andP′i = fork(P′i+1) ; ul i+1 ; . . . ; uni ; ! if
ni−1 = l i . ThenP′1 is theparallelizationof P induced by the annotated partition
((P1, . . . ,Pm),(l1, . . . , lm−1)).

Let P ∈ SLPs andP′ ∈ SLPsf be such thatP′ is the parallelization ofP
induced by some annotated partition. ThenP′ is a correct parallelization ofP if
[[P]]≈ [[P′]].

If P′ is a correct parallelization ofP, then[[P]] and[[P′]] are the same as state
transformers. Moreover, the state transformations that[[P]] can accomplish,[[P′]]
can accomplish in less steps. That is,||([[P′]],S)||< ||([[P]],S)|| for all S∈S . Notice
that a reduction in number of steps is not guaranteed if we replacen0 ≤ l1 < n1,
. . . ,nm−2≤ lm−1 < nm−1 by n0≤ l1≤ n1, . . . ,nm−2≤ lm−1≤ nm−1 in the definition
of annotated partition.

Program parallelization concerns roughly the following:

– the partitions of a program with at least one annotated version that induces a
parallelization of which it can be determined statically that it is a correct one;

Synchronous Cooperation for Explicit Multi-Threading 41

– for each such partition, an annotated version that induces a parallelization of
which it can be determined statically that it gives the largest reduction in num-
ber of steps.

The primary means to determine the above-mentioned correctness and speed-up
properties statically is the concurrency relationC.

A sufficient condition for correctness of a parallelization in terms of the con-
currency relationC can easily be given.

Theorem 6 Letm≥ 2, and letP, P1, . . . ,Pm, n0, . . . ,nm, l1, . . . , lm−1 andP′1, . . . ,P
′
m

be as in the definition of parallelization above. ThenP′1 is a correct parallelization
of P if, for all i ∈ [1,m−1], l i is such that for allj ∈ [l i +1,ni] andk∈ [ni +1,nm]
we haveC(u j ,uk).

Proof This is easily proved by induction onm, using Propositions 16 and 17.ut

7.3 Weaker Sufficient Conditions for Correctness of Parallelizations

Unfortunately, the sufficient condition for correctness of parallelizations given in
Theorem 6 is too strong to be useful. However, it can be weakened if there are
bounds on the number of steps that the processing of split basic instructions takes.
The weakened sufficient condition given in Claim 1 below is not too strong to be
useful provided that the diversity of the greatest number of steps that the process-
ing of different instructions take is small.

In Claim 1 below, we use the following notation. LetP, P1, . . . ,Pm, n0, . . . ,nm,
l1, . . . , lm−1 andP′1, . . . ,P

′
m be as in the definition of parallelization above. More-

over, for eachu∈ I, let ls(u) andgs(u) be the least and greatest number of steps
that the processing ofu takes (ifu is not a split basic instruction, thenls(u) = 1
andgs(u) = 1). Then, for eachi ∈ [1,m−1], we writen′i for the leastn′ such that
∑ j∈[l i+1,ni] gs(u j) ≤ ∑k∈[ni+1,n′] ls(uk)−∑ j ′∈[1,m′

i] ∑k′∈[l i+ j′+1,ni+ j′] ls(uk′), wherem′
i is

the greatestm′ ∈ [0,(m− i)−1] such that∑ j∈[0,m′](l i+ j −ni+ j−1)≤ ni −ni−1.6

After the presentation of the claim, it will be explained thatn′i is a conservative
approximation of the position of the last instruction ofP that is possibly executed
in concurrency with an instruction ofP′i afterP′i+1 is forked off, and also thatm′

i is
one less than the number of programs forked off whileP′i is executed.

Claim 1 Let m≥ 2, and letP, P1, . . . ,Pm, n0, . . . ,nm, l1, . . . , lm−1 and P′1, . . . ,P
′
m

be as in the definition of parallelization above. ThenP′1 is a correct parallelization
of P if, for all i ∈ [1,m−1], l i is such that for allj ∈ [l i +1,ni] andk∈ [ni +1,n′i]
we haveC(u j ,uk).

It can be seen as follows thatm′
i (for i ∈ [1,m−1]) is one less than the number

of programs forked off whileP′i is executed: ifi+1≤mthenP′i+1 is forked off after
l i−ni−1 instructions, ifi+2≤m thenP′i+2 is forked off after(l i−ni−1)+(l i+1−ni)
instructions, and so on. In other words, ifi +m′+1≤m thenP′i+m′+1 is forked off
after∑ j∈[0,m′](l i+ j −ni+ j−1) instructions. This means that, form′ ∈ [0,(m− i)−1],
if ∑ j∈[0,m′](l i+ j−ni+ j−1)≤ ni−ni−1 thenP′i+m′+1 is forked off whileP′i is executed.

6 We use the conventions that[k, l] stands for/0 if k > l and∑i∈I ki stands for0 if I = /0.

42 J.A. Bergstra, C.A. Middelburg

It can be seen as follows thatn′i (for i ∈ [1,m−1]) is a conservative approxima-
tion of the position of the last instruction ofP that is possibly executed in concur-
rency with an instruction ofP′i afterP′i+1 is forked off:∑k∈[ni+1,n′] ls(uk) is the least
number of steps that it takes to process the instructions ofP from the first instruc-
tion of Pi+1 up to and including the instruction with positionn′ sequentially; and
subtraction of∑ j ′∈[1,m′

i] ∑k′∈[l i+ j′+1,ni+ j′] ls(uk′) compensates for the instructions of
P′i+1, . . . ,P′i+m′

i
that are possibly executed in concurrency with instructions ofP′i+2,

. . . , P′i+m′
i+1, namely the instructions ofP′i+1 executed afterP′i+2 is forked off and

. . . and the instructions ofP′i+m′
i
that are executed afterP′i+m′

i+1 is forked off. This
means that if∑ j∈[l i+1,ni] gs(u j)≤∑k∈[ni+1,n′] ls(uk)−∑ j ′∈[1,m′

i] ∑k′∈[l i+ j′+1,ni+ j′] ls(uk′)
then n′ is greater than the position of the last instruction ofP that is possibly
executed in concurrency with an instruction ofP′i afterP′i+1 is forked off.

We believe that we can give a proof of Claim 1, but we refrain from giving a
proof. Such a proof would involve complicated variants of many of the preceding
propositions to be proved. The variants concerned would be attuned to the assump-
tion that for each primitive instruction the least and greatest number of steps that
its processing takes are given. We do not consider it realistic to give such a proof
in the light of the fact that the weakened sufficient condition is still too strong to
be useful if the diversity of the greatest number of steps that the processing of
different instructions take is great. This means that the weakened sufficient condi-
tion is still rather uninteresting in practice: parallelization is found in techniques
for speeding up instruction processing intended to deal with the presence of this
diversity.

Given a partition of a straight-line program, we can determine statically which
annotated versions of the partition that induce a parallelization satisfying the suf-
ficient condition from Claim 1 give the largest reduction in number of steps. Let
P, P1, . . . ,Pm, n0, . . . ,nm, l1, . . . , lm−1, P′1, . . . ,P

′
m andn′1, . . . ,n

′
m−1 be as in Claim 1.

If, for all i ∈ [1,m−1], l i is such that for allj ∈ [l i +1,ni] andk ∈ [ni +1,n′i] we
haveC(u j ,uk) and in addition for alll ′ ∈ [ni−1, l i −1] there exist aj ∈ [l ′ + 1, l i]
and ak∈ [ni +1,n′i] such that notC(u j ,uk), thenP′1 is a correct parallelization of
P such that for all correct parallelizationsP′ of P induced by annotated versions
of the partition(P1, . . . ,Pm) that also satisfy the sufficient condition from Claim 1
we have||([[P′1]],S)|| ≤ ||([[P′]],S)|| for all S∈S .

Example 7Consider the programP = P1 ;P2 ; ! , whereP1 andP2 are as follows:

P1 = LOAD:R1:A ;
MUL:R2:R1:R1

P2 = MOVE:R3:1 ;
MOVE:R4:2 ;
LOAD:R5:B ;
ADD:R5:R5:R3 ;
MUL:R6:R5:R5 ;
MUL:R6:R6:R4 ;
ADD:R6:R6:R2 ;
STORE:R6:C

writing LOAD:R:M for the split instructionLOADI:R:M/LOADC:R:M to increase
the resemblance with programs written in some assembly language.A, B andC are
different memory elements. If the contents ofA andB area andb, respectively,

Synchronous Cooperation for Explicit Multi-Threading 43

thenP calculatesa2 + 2(b+ 1)2 and stores the result of the calculation inC. It is
clear that(P1,P2) is a partition ofP. We suppose that each instruction ofP1 may
be executed in concurrency with each instruction ofP2 except the last but one. The
execution of all instructions takes one step, with the exception of the instructions
of the formLOAD:R:M. We suppose that the execution of the latter instructions
takes betweenl andh steps. The annotated partition((P1,P2),(0)) induces the
parallelizationP′ = fork(P2 ; !) ; P1 ; ! . This parallelization satisfies the sufficient
condition for correctness from Claim 1 provided thath− l ≤ 4. It is trivial to
determine that((P1,P2),(0)) is the annotated version of(P1,P2) that gives the
largest reduction in number of steps.

8 Conclusions

We have developed an algebraic theory of threads, synchronous cooperation of
threads, and interaction of threads with Maurer machines. Setting up a framework
in which issues concerning techniques for speeding up instruction processing that
involve parallel processing of instructions with diverse variable processing times
can be investigated is one of the aims with which we have developed this theory.
As part of its development, we have constructed a projective limit model for the
theory. In addition to properties of the theory and its projective limit model that
are general in nature, we have established properties that are primarily relevant
when investigating the issues referred to above.

We have investigated program parallelization, which underlies all explicit
multi-threading techniques to speed up instruction processing, using the theory
developed. Our finding is that program parallelization, which is done on static
grounds, tends to yield marginal speed-ups of instruction processing unless the
diversity of greatest processing times is small. The problem is that for all instruc-
tions, including the ones with long greatest processing times, the worst case must
be taken into account. That leaves little room for provably correct parallelizations
that speed up instruction processing substantially.

An obvious idea to reduce the effects of a great diversity of greatest process-
ing times is to use optimistic estimations of processing times for the instructions
that take long greatest processing times and to suspend and resume forked-off
programs dynamically to compensate for too optimistic estimations of processing
times. It is clear that the speed-ups yielded by that highly depend upon the schedul-
ing algorithm used for the resumption of suspended programs and the particular
estimations of processing times used. Even if an ideal scheduler is assumed, i.e.
one that maximizes simultaneity in the processing of instructions from all pro-
grams involved, it appears that there is no clue to the parallelizations that could
speed up instruction processing substantially. In fact, the choice of a partition
and the choice of an annotated version thereof look to be arbitrary choices now:
correctness of the induced parallelizations is not relevant, because it is enforced
dynamically, and whether one induced parallelization gives a larger reduction in
number of steps than another cannot be determined statically.

We have found that an induction principle to establish state transformer equiv-
alence of infinite threads is material to proving theorems about sufficient condi-
tions for the correctness of program parallelizations. We have also found that, in
spite of the drastic simplification made by considering only programs without test

44 J.A. Bergstra, C.A. Middelburg

and jump instructions, proving a theorem about a very simple sufficient condi-
tion for the correctness of program parallelizations is very difficult. We have not
started proving a claim about a somewhat more involved sufficient condition for
the correctness of program parallelizations because proving that claim comes very
near the limit of what is feasible.

In the area of micro-processor design, explicit-multi-threading is claimed to be
a basic technique for speeding up instruction processing substantially. Our main
reason to investigate program parallelization was that the arguments that are given
for this claim are not soundly based by the standard of theoretical computer sci-
ence. We also expected to be able to give in the end heuristics for correct program
partitioning that speeds up instruction processing substantially. One of our con-
clusions from the results of the investigation of program parallelization is that the
justness of the claim is far less evident than it is generally assumed in the area of
micro-processor design. Another conclusion from the results of our investigation
is that the development of useful heuristics is as yet practically unfeasible.

In this paper, we have carried on the line of research that has already resulted
in [8–10]. We pursue with this line of research the object to develop an approach
to design new micro-architectures that allows for their correctness and anticipated
speed-up results to be verified. It emanates from the work presented in [6,3]. There
is another related line of research that emanates from that work. That line of re-
search concerns the development of a theory about threads, multi-threading and in-
teraction of threads with services that is useful for gaining insight into the seman-
tic issues concerning the multi-threading related features found in contemporary
programming languages. It has already resulted in [7,11,14,12,13]. We believe
that the theory being developed may also be useful when developing paralleliza-
tion techniques for compilers that have to take care of program parallelization for
programs written in programming languages such as Java and C#.

Acknowledgements We thank two anonymous referees for suggesting improvements of the
presentation of the paper.

A CPO Structure for Projective Limit Model

In this appendix, we makeA∞ into a complete partial ordering (cpo) to establish the existence of
least solutions of recursion equations using Tarski’s fixed point theorem.

The approximationrelationv ⊆ Aω ×Aω is the smallest partial ordering such that for all
p, p′,q,q′ ∈ Aω :

– Dv p;
– pv p′⇒ tau◦ pv tau◦ p′;
– for all ξ ∈BA , pv p′∧qv q′⇒ pEξ Dqv p′Eξ Dq′;
– pv p′∧qv q′∧ r v r ′⇒ pEnt(r)Dqv p′Ent(r ′)Dq′;
– for all ξ ∈BA , pv p′∧qv q′⇒ pCyξ Bqv p′Cyξ Bq′.

Theapproximationrelationv⊆ A∞×A∞ is defined component-wise:

(pn)n∈N v (qn)n∈N⇔∀n∈ N • pn v qn .

The approximation relationv onAn is simply the restriction ofv onAω to An.
The following proposition states that anyp∈ Aω is finitely approximated by projection.

Synchronous Cooperation for Explicit Multi-Threading 45

Proposition 18 For all p∈ Aω :

∃n∈ N • (∀k < n•πk(p)v πk+1(p)∧∀l ≥ n•πl (p) = p) .

Proof The proof follows the same line as the proof of Proposition 1 from [3]. This means that
it is a rather trivial proof by induction on the structure ofp. Here, we have to consider the
additional casesp≡ p′Ent(p′′′)D p′′ andp≡ p′Cyξ B p′′. These cases go analogously to the
casep≡ p′Eξ D p′′. ut

The properties stated in the following lemma will be used in the proof of Theorem 7 given
below.

Lemma 10 For all n∈ N:

1. (An,v) is a cpo;
2. πn is continuous;
3. for all p∈ Aω :

(a) πn(p)v p;
(b) πn(πn(p)) = πn(p);
(c) πn+1(πn(p)) = πn(p).

Proof The proof follows similar lines as the proof of Proposition 2 from [3]. Property 1 follows
from the fact that every directed setP⊆ An is finite. Like in [3], this fact is proved by induction
on n. Due to the presence of reply conditionals, the proof is more involved. It is the only proof
in this paper that makes use of the assumption thatAA is a finite set. For Property 2, we now
have to use induction on the structure of the elements ofAω and distinction between the cases
n = 0 andn > 0 for non-forking and forking postconditional compositions. Due to the presence
of reply conditionals, we cannot use induction onn and case distinction on the structure of the
elements ofAω like in [3]. However, the crucial details of the proof remain the same. Like in [3],
Property 3a follows immediately from Proposition 18. Properties 3b and 3c follow immediately
from Lemma 4. ut

The following theorem states some basic properties of the approximation relationv onA∞.

Theorem 7 (A∞,v) is a cpo with
⊔

P = (
⊔{πn(p) | p∈ P})n∈N for all directed setsP⊆ A∞.

Moreover, up to (order) isomorphismAω ⊆ A∞.

Proof The proof follows the same line as the proof of Theorem 1 from [3]. That is, using general
properties of the projective limit construction on cpos, the first part follows immediately from
Properties 1 and 2 from Lemma 10, and the second part follows easily from Proposition 18 and
Property 3 from Lemma 10. ut

Another important property of the approximation relationv onA∞ is stated in the following
theorem.

Theorem 8 The operations from the projective limit model forTA∗
sc are continuous with respect

tov.

Proof With the exception of the conditional action repetition operations, the proof follows the
same line for all kinds of operations. It begins by establishing the monotonicity of the operation
on Aω . For the non-forking and forking postconditional composition operations and the reply
conditional operations, this follows immediately from the definition ofv on Aω . For the syn-
chronous cooperation operation, it is straightforwardly proved by induction onν(p) and case
distinction according to the left-hand sides of the axioms for synchronous cooperation. Then the
monotonicity of the operations onA∞ follows from their monotonicity onAω , the monotonicity
of the projection operations and the definition ofv onA∞.

For the conditional action repetition operations, the proof differs in that it begins with estab-
lishing – with a proof by induction onn, using axioms for conditional action repetition – that,
for all p,q∈Aω , for all n∈N, pv q impliesπn(ξ ∗b p)v πn(ξ ∗b q). From this and the definition
of v on A∞, the monotonicity of the conditional action repetition operations onA∞ follows as
well.

46 J.A. Bergstra, C.A. Middelburg

What remains to be proved is that least upper bounds of directed sets are preserved by the
operations. We will show how the proof goes for the non-forking postconditional composition
operations. The proofs for the other kinds of operations go similarly. LetP,Q⊆ A∞ be directed
sets. Then, for alln ∈ N, {πn(p) | p ∈ P},{πn(q) | q ∈ Q},{πn(p) Eξ D πn(q) | p ∈ P∧ q ∈
Q} ⊆ An are directed sets by the monotonicity ofπn. It is easily proved by induction onn,
using the definition ofv on An, that these directed sets are finite. This implies that they have
maximal elements. From this, it follows by the monotonicity ofEξ D that, for all n ∈ N,
(
⊔{πn(p) | p∈ P})Eξ D (

⊔{πn(q) | q∈ Q}) =
⊔{πn(p)Eξ D πn(q) | p∈ P∧q∈ Q}. From

this, it follows by the property of lubs of directed sets stated in Theorem 7 and the definition
of πn+1 that, for all n ∈ N, πn+1((

⊔
P) Eξ D (

⊔
Q)) = πn+1(

⊔{pEξ D q | p ∈ P∧ q ∈ Q}).
Becauseπ0((

⊔
P) Eξ D (

⊔
Q)) = D = π0(

⊔{pEξ D q | p ∈ P∧ q ∈ Q}), also for alln ∈ N,
πn((

⊔
P)Eξ D(

⊔
Q)) = πn(

⊔{pEξ Dq | p∈P∧q∈Q}). From this, it follows by the definition
of v onA∞ that(

⊔
P)Eξ D (

⊔
Q) =

⊔{pEξ Dq | p∈ P∧q∈Q}. ut

We have the following important result about recursion equations.

Theorem 9 Let x ∈ X , let P⊆ A∞, and lett ∈ T
{x}

P . Then the recursion equationx = t has
a least solution with respect tov, i.e. there exists ap∈ A∞ such that[[t]]x(p) = p and, for all
q∈ A∞, [[t]]x(q) = q impliespv q.

Proof We have from Theorem 7 that(A∞,v) is a cpo and, using Theorem 8, it is easily proved
by induction on the structure oft that[[t]]x is continuous. From this, we conclude by Tarski’s fixed
point theorem that there exists ap∈ A∞ such that[[t]]x(p) = p and, for allq∈ A∞, [[t]]x(q) = q
implies pv q. Hence, the recursion equationx = t has a least solution with respect tov. ut

The following proposition relates the ordering relationv introduced in this appendix with
the ordering relation@∼ introduced in Section 5.1.

Proposition 19 For all p,q∈ A∞, pv q⇒ p @∼ q.

Proof Let p,q ∈ A∞ be such thatpv q. Then, for alln ∈ N, we haveπn(p) v πn(q) by the
monotonicity ofπn. It is easily proved by induction on the structure ofp′ that p′ v q′ implies
p′ @∼ q′ for all p′,q′ ∈ Aω . Hence, for alln ∈ N, we haveπn(p) @∼ πn(q) as well. From this, it
follows immediately that, for alln ∈ N, there exists anm∈ N such thatπn(p) @∼ πm(q). From
this, it follows by the state transformer inclusion principle (see Table 16) thatp @∼ q. ut

We have the following corollary concerning@∼ from Propositions 18 and 19.

Corollary 3 For all p∈ Aω :

∃n∈ N • (∀k < n•πk(p) @∼ πk+1(p)∧∀l ≥ n•πl (p)≈ p) .

B Glossary of Symbols

In this appendix, we provide a glossary of symbols used in this paper.

Notation Meaning Page

Thread algebras

BTAδ basic thread algebra with blocking 4
TAsc thread algebra with synchronous cooperation 5
TA∗

sc TAsc with conditional action repetition 10
TA∗•

sc TA∗
sc with thread to Maurer machine application 25

Synchronous Cooperation for Explicit Multi-Threading 47

Thread algebra notation

D deadlock 4
S termination 4
pEξ Dq non-forking postconditional composition 4
ξ ◦ p action prefixing 4
ξ & ξ ′ synchronization 5
‖s(〈p1〉y . . .y 〈pn〉) synchronous cooperation 6
pEnt(r)Dq forking postconditional composition 6
pCyξ Bq reply conditional 6
nt(p)◦q forking prefixing 6
ξ ∗b p conditional action repetition 10
ξ/ξ ′ ◦ p split-action prefixing 10
p·q pwith all occurrences ofS replaced byq 10
πn(p) projection 11
α(p) alphabet 13
p•S apply 25

Sets of actions
BA set of basic actions 4
A set of basic actions andtau 4
Aδ set of basic actions,tau andδ 4
AA set of atomic actions 5
CA set of concurrent actions 5
CA δ set of concurrent actions andδ 5

Sets of terms
TTAsc set of closed terms over signature ofTAsc 8
B set of basic terms 8
B0 set of basic terms without forking 8
TTA∗

sc
set of closed terms over signature ofTA∗

sc 10
C set of semi-basic terms 10
C 0 set of semi-basic terms without forking 10
SLT set of straight-line threads 34
SLT s set of straight-line threads with split actions 34
SLT sf set of straight-line threads with split actions and thread forking 34

Domains of models
Aω domain of initial model forTAsc 17
A∞ domain of projective limit model forTAsc 18

Maurer machines
M memory 24
B base set 24
S set of states 24
O set of operations 24
A set of atomic actions 25
[[]] atomic action interpretation function 25
C atomic action concurrency relation 25
↑ undefined state 27
||(p,S)|| length of computation 28

State transformer equivalence

≈ state transformer equivalence 29
@∼ state transformer inclusion 30

48 J.A. Bergstra, C.A. Middelburg

Program algebra

PGAsl,sf straight-line program algebra with split instructions and forking 35
A set of basic instructions 35
I set of primitive instructions 35
As set of void and split basic instructions 36
a void basic instruction 35
a/b split basic instruction 35
fork(P) fork instruction 35
! termination instruction 35
P;Q concatenation 35
αslp(P) alphabet 36
|P| thread extraction 36
[[P]] program behaviour 36
TPGAsl,sf set of closed terms over signature ofPGAsl,sf 36
SLP set of straight-line programs 37
SLPs set of straight-line programs with split instructions 37
SLPsf set of straight-line programs with split instructions and forking 37

References

1. de Bakker, J.W., Bergstra, J.A., Klop, J.W., Meyer, J.J.C.: Linear time and branching time
semantics for recursion with merge. Theoretical Computer Science34, 135–156 (1984)

2. de Bakker, J.W., Zucker, J.I.: Processes and the denotational semantics of concurrency.
Information and Control54(1/2), 70–120 (1982)

3. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: J.C.M.
Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (eds.) Proceedings 30th ICALP,Lecture
Notes in Computer Science, vol. 2719, pp. 1–21. Springer-Verlag (2003)

4. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information
and Control60(1/3), 109–137 (1984)

5. Bergstra, J.A., Loots, M.E.: Program algebra for component code. Formal Aspects of Com-
puting12(1), 1–17 (2000)

6. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic and
Algebraic Programming51(2), 125–156 (2002)

7. Bergstra, J.A., Middelburg, C.A.: Thread algebra for strategic interleaving. To appear
in Formal Aspects of Computing. Preliminary version: Computer Science Report 04-35,
Department of Mathematics and Computer Science, Eindhoven University of Technology
(2004)

8. Bergstra, J.A., Middelburg, C.A.: Maurer computers with single-thread control. To ap-
pear inFundamenta Informaticae. Preliminary version: Computer Science Report 05-17,
Department of Mathematics and Computer Science, Eindhoven University of Technology
(2005)

9. Bergstra, J.A., Middelburg, C.A.: Simulating Turing machines on Maurer machines. To
appear inJournal of Applied Logic. Preliminary version: Computer Science Report 05-28,
Department of Mathematics and Computer Science, Eindhoven University of Technology
(2005)

10. Bergstra, J.A., Middelburg, C.A.: Maurer computers for pipelined instruction processing.
To appear inMathematical Structures in Computer Science. Preliminary version: Computer
Science Report 06-12, Department of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology (2006)

11. Bergstra, J.A., Middelburg, C.A.: Thread algebra with multi-level strategies. Fundamenta
Informaticae71(2/3), 153–182 (2006)

12. Bergstra, J.A., Middelburg, C.A.: A thread calculus with molecular dynamics. Computer
Science Report 06-24, Department of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology (2006)

13. Bergstra, J.A., Middelburg, C.A.: Distributed Strategic Interleaving with Load Balancing.
Computer Science Report 07-03, Department of Mathematics and Computer Science, Eind-
hoven University of Technology (2007)

Synchronous Cooperation for Explicit Multi-Threading 49

14. Bergstra, J.A., Middelburg, C.A.: A thread algebra with multi-level strategic interleaving.
Theory of Computing Systems,41(1), 3–32 (2007)

15. Bergstra, J.A., Ponse, A.: Combining programs and state machines. Journal of Logic and
Algebraic Programming51(2), 175–192 (2002)

16. Bolychevsky, A., Jesshope, C.R., Muchnick, V.: Dynamic scheduling in RISC architectures.
IEE Proceedings Computers and Digital Techniques143(5), 309–317 (1996)

17. Croom, F.H.: Principles of Topology. Saunders College Publishing, Philadelphia (1989)
18. Dugundji, J.: Topology. Allyn and Bacon, Boston (1966)
19. Hodges, W.A.: Model Theory,Encyclopedia of Mathematics and Its Applications, vol. 42.

Cambridge University Press, Cambridge (1993)
20. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages

and Computation, second edn. Addison-Wesley, Reading, MA (2001)
21. Jesshope, C.R., Luo, B.: Micro-threading: A new approach to future RISC. In: ACAC 2000,

pp. 34–41. IEEE Computer Society Press (2000)
22. Kranakis, E.: Fixed point equations with parameters in the projective model. Information

and Computation75(3), 264–288 (1987)
23. Maurer, W.D.: A theory of computer instructions. Journal of the ACM13(2), 226–235

(1966)
24. Maurer, W.D.: A theory of computer instructions. Science of Computer Programming60,

244–273 (2006)
25. Mousavi, M.R., Gabbay, M.J., Reniers, M.A.: SOS for higher order processes. In: M. Abadi,

L. de Alfaro (eds.) CONCUR 2005,Lecture Notes in Computer Science, vol. 3653, pp. 308–
322. Springer-Verlag (2005)

26. Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congruence for-
mats for SOS with data. Information and Computation200, 107–147 (2005)

27. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. Allyn
and Bacon, Boston (1986)

28. Stoltenberg-Hansen, V., Tucker, J.V.: Algebraic and fixed point equations over inverse limits
of algebras. Theoretical Computer Science87, 1–24 (1991)

29. Ungerer, T., Robič, B., Šilc, J.: A survey of processors with explicit multithreading. ACM
Computing Surveys35(1), 29–63 (2003)

30. Vu, T.D.: Metric denotational semantics for BPPA. Report PRG0503, Programming Re-
search Group, University of Amsterdam (2005)

