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Abstract. This paper gives a comprehensive description of a typed version of the logic
known as LPF. This logic is basic to formal specification and verified design in the
software development method VDM. If appropriately extended to deal with recursively
defined functions, the data types used in VDM, etc., it gives the VDM notation and its
associated rules of reasoning. The paper provides an overview of the needed extensions
and examines some of them in detail. It is shown how this non-classical logic – and
the extensions – can be reconstructed classically by embeddings into classical infinitary
logic.

1. Introduction

Functions specified in – for example – the VDM notation are in general partial. Thus

diff : Z�Z�Z

diff(i� j) � if i = j then 0 else diff(i� j + 1) + 1

is a recursive function which computes the difference between two integers providing its
first argument is greater than or equal to the second. Partial functionscan give rise to non-
denoting terms in formulae (i.e. terms that do not refer to objects of the intended type)
– they are loosely referred to as undefined terms. There are problems when reasoning
about partial functions in classical first-order logic. Consider what might appear to be a
reasonable formalization of the property above:

�i� j : Z� i � j � diff (i� j) = i � j �

The truth of this plausible formula depends on implications such as

1 � 2 � diff (1� 2) = 1� 2

in which diff(1� 2) does not denote an integer. If the equality (=) is strict (which is
the case with normal computational – or weak – equality) the right-hand side of this
implication does not denote a truth value. (In fact, the diff example is purposely chosen
because there is not a convenient subtype to use for the domain over which its application
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is defined.) There are several ways of handling the difficulty with such a formula. One
possibility is to read logical connectives like implication as though they were defined by
conditional expressions which are non-strict in their second argument. Unfortunately,
with this viewpoint, one loses intuitiveproperties such as commutativity for disjunctions
and conjunctions; it also fails to help with examples such as

�i� j : Z� diff (i� j) = i � j � diff (j� i) = j � i �

A range of approaches to this problem are reviewed in [CJ91] and [MR91]. The former
presents arguments for the logic which is used with VDM (see [Jon90]). This logic
is known as the ‘Logic of Partial Functions’ (LPF) and uses non-classical meanings
for the logical connectives and quantifiers. Atomic formulae that contain non-denoting
terms may be logically neither-true-nor-false and the logical connectives and quantifiers
are extended to cope with operands that are neither-true-nor-false; the only apparent
disadvantage is that one has to give up the ‘law of the excluded middle’. Yet, the classical
truth-conditions and falsehood-conditions for logical connectives and quantifiers are
retained: LPF provides extensions to the connectives and quantifiers in which the formula
concerned is classified as neither-true-nor-false exactly when it cannot be classified as
true or false by these conditions. An untyped version of LPF is presented in [BCJ84]
and elaborated in [Che86].

Another approach to the difficultydiscussed above stays within the world of classical
two-valued logics by viewing atomic formulae that contain non-denoting terms as
logically false. In this way, the ‘law of the excluded middle’ does not have to be
abandoned. When a formula cannot be classified as true, it is inexorably classified as
false; no further distinction is made. This approach is attributed to Scott [Sco67] and
has been followed in, for example, MPL� [KR89].

The approach followed in LPF can be explained at the same time as showing the
thrust of the description of LPF set out below. Consider the formula

diff (1� 2) = 1 � 	 (diff(1� 2) = 1) �

This is not a tautology in LPF. It can be translated into classical logic as follows:

diff(1� 2) 
 � � 1 
 � � diff (1� 2) 1 � diff (1� 2) 
 � � 1 
 � � diff(1� 2) 
 1 �

where � is a constant corresponding to undefined and is classical equality which
yields true when its operands are the same – even if undefined – and false otherwise.
Essentially, the equality used ( ) is being made to absorb the undefinedness.

Since it has been described elsewhere, the case for LPF is not addressed further
here: the purpose of this paper is to give a firm foundation to a typed version of LPF.
One method employed is that indicated above: all formulae are mapped into classical
logic. The version of LPF treated in this paper is used as the basis of formal specification
and verified design in the software development method VDM. In order to be usable in
software development, it has to be extended to deal with the base types and type formers
used in VDM, subtypes via type invariants, recursively defined types and functions,
etc. This gives essentially the VDM notation (VDM-SL) and its associated rules of
reasoning.

In addition to the usual non-logical – model-theoretic – justification of the inference
rules of LPF, a logical justification is given in this paper by means of an embedding into
classical logic. This shows how this non-classical logic can be reconstructed classically.
Classical logic is used meta-logically here: it provides a classical explanation of LPF
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which is illuminating for those people who use this logic but have a stronger intuition
about classical logic.

Following the presentation of LPF, the above-mentioned extensions are described.
The rules given for reasoning about (some of) the base types and type formers, subtypes
and recursively defined types as well as the rules given for reasoning about recursively
defined functions are justified by means of an embedding of the extended LPF into
classical infinitary logic [Kei71]. Classical logic with countably infinite conjunctions
and disjunctions (L�) is used here to deal with recursion in type and function definitions.
It would have been possible to use classical finitary logic extended with a minimal
fixpoint operator but this alternative was rejected because it is further from being our
ultima ratio.

The extended LPF provides essentially the VDM notation and its associated rules
of reasoning. Like other specification languages, the VDM notation is meant to permit
formulating claims concerning specifications for software systems – such as VDM proof
obligations – in a mathematically precise way and constructing formal proofs to justify
these claims. These central issues are shared with logic, but they are focused on software
systems instead of abstract structures. Because these issues have been extensively studied
in logic, an embedding into (classical) logic appears to be very useful. Besides, it makes
formal justification of proof rules possible. A similar embedding of VVSL (which is
a variant of the VDM notation) into MPL� – a weak extension of L� – can be found
in [Mid93].

2. A basic logic of partial functions

A language of LPF is constructed with type symbols, function symbols and predicate
symbols that belong to a certain set which is called a signature. For a given signature,
say �, the language concerned is called the language of LPF over signature � or the
language of LPF(�). The corresponding proof system and interpretation are analogously
called the proof system of LPF(�) and the interpretation of LPF(�), respectively.

In this section LPF is described precisely. First, the assumptions which are made
about type, function and predicate symbols are given and the notion of signature is
introduced. Thereafter, the language, proof system and interpretationof LPF are defined.

2.1. Signatures for LPF

We assume a set TYPE of type symbols, a set FUNC of function symbols, and a set PRED
of predicate symbols. Every f 
 FUNC and every P 
 PRED has an arity n (n � 0).
To denote this arity, we use the notation arity(f) and arity(P ). Function symbols of arity
0 are called constant symbols. There is a special predicate symbol = of arity 2, called
weak equality.

A signature � is a finite subset of TYPE �FUNC�PRED. We write T(�) for
� � TYPE, F(�) for � � FUNC, P(�) for � � PRED. SIG denotes the set of all
signatures for LPF.

We also assume a set VAR of variable symbols. Furthermore, it is assumed that
TYPE, FUNC, PRED, VAR and f=g are mutually disjoint sets. We write VLPF for
TYPE �FUNC�PRED�VAR. We use the notationw � w� (w�w� 
 VLPF) to indicate
that w and w� are identical symbols.
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2.2. Language of LPF(�)

Terms and formulae

The language of LPF(�) contains terms and formulae. They are constructed according
to the formation rules given below.

The logical connectives and quantifiers of classical logic have counterparts in LPF.
In addition, LPF has the logical connectives � and �. These additional connectives are
not needed for specifying software systems but they make LPF an expressively complete
three-valued logic (i.e., any function on the three-valued domain of truth values can be
defined by a formula). The proof rules for the connectives� and� are seldom needed for
reasoning about specifications; indeed, this is precisely one of the advantages claimed
for LPF. The reader is referred to [CJ91] for further discussion. False (false), definedness
(�) and strong equality (==), which are defined below by means of � and �, are also
seldom employed in proofs using LPF; of course, they play a larger role in the current
paper which concerns the foundations of the whole of LPF.

The terms of LPF(�) are inductively defined by the following formation rules:

1. variable symbols are terms;
2. if f 
 F(�), arity(f) = n and t1� � � � � tn are terms, then f(t1� � � � � tn) is a term.

The formulae of LPF(�) are inductively defined by the following formation rules:

1. � is a formula;
2. if P 
 P(�), arity(P ) = n and t1� � � � � tn are terms, then P (t1� � � � � tn) is a formula;
3. if t1 and t2 are terms, then t1 = t2 is a formula;
4. if t is a term and T 
 T(�), then t : T is a formula;
5. if A is a formula, then�A and 	 A are formulae;
6. if A1 and A2 are formulae, then A1 � A2 is a formula;
7. if A is a formula, x is a variable symbol and T 
 T(�), then �x : T �A is a formula.

The string representation of formulae suggested by these formation rules can lead to
syntactic ambiguities: parentheses are used to avoid such ambiguities.

TLPF(�) and LLPF(�) denote the set of all terms of LPF(�) and the set of all
formulae of LPF(�), respectively.

We henceforth use (with or without subscripts):

T and T � to stand for arbitrary type symbols in T(�),
c to stand for an arbitrary constant symbol in F(�),
f and g to stand for arbitrary function symbols in F(�),
P and Q to stand for arbitrary predicate symbols in P(�),
x, y and z to stand for arbitrary variable symbols in VAR,
t and t� to stand for arbitrary terms in TLPF(�),
A, A� and A�� to stand for arbitrary formulae in LLPF(�).

The formula� is neither-true-nor-false.�A is true ifA is either true or false and�A
is false otherwise. So�� is false. For the connectives 	 and � as well as the quantifier
�, the classical truth-conditions and falsehood-conditions are retained. A formula is
classified as neither-true-nor-false exactly when it cannot be classified as true or false
by these conditions. Equality is treated in the same way: t1 = t2 is neither-true-nor-false
if and only if t1 or t2 is non-denoting.

The formula t : T is a typing assertion. If t : T is true then tmust be denoting, which
means that t = t is true as well. If t is non-denoting, then t : T is neither-true-nor-false.
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Abbreviations and notational conventions

Additional connectives and quantifiers are defined as abbreviations:

false := �� �

� A := A � 	 A �

A1 � A2 := 	 (	 A1 � 	 A2) �

A1 � A2 := 	 A1 � A2 �

A1 � A2 := (A1 � A2) � (A2 � A1) �

�x : T �A := 	 �x : T � 	 A �

Definedness (�) and strong equality (==) are used in Sect. 3. They are defined by
the following abbreviations:

t� := �(t = t) �

t1 == t2 := (t1� � t2�) � (t1 = t2 � �(t1 = t1 � t2 = t2)) �

So t� is true if t is denoting and t� is false otherwise. Strong equality is very much like
equality in classical logic: t1 == t2 is true if t1 and t2 denote the same object or both are
non-denoting and t1 == t2 is false otherwise.

For convenience, non-equality is also defined as abbreviation:

t1 
= t2 := 	 (t1 = t2) �

The need to use parentheses in the string representation of formulae is reduced
by ranking the precedence of the logical connectives �, �, 	 , �, �, � , � . The
enumeration presents this order from the highest precedence to the lowest precedence.
Furthermore the scope of the quantifiers extends as far as possible to the right and
�x1 : T1 � � � ��xn : Tn � A is usually written as �x1 : T1� � � � � xn : Tn �A. Parentheses
are usually omitted in terms of the form f(t1� � � � � tn) whenever arity(f) = 0: constant
symbols are used as terms.

Free variables and substitution

For a term or formula e of LPF(�), free(e) denotes the set of free variables of e, which
is defined in the usual way. A variable symbol x is called free in e if x 
 free(e). We
write free(� ), where � is a set of formulae, for

S
ffree(A) jA 
 �g.

Substitution for variables is also defined in the usual way. Let x be a variable symbol,
t be a term and e be a term or formula. Then [x := t]e is the result of replacing the term t
for the free occurrences of the variable symbol x in e, avoiding – by means of renaming
of bound variables – free variables becoming bound in t.

2.3. Proof system of LPF(�)

Sequents

The proof system of LPF(�) is formulated as a sequent calculus for proofs in nat-
ural deduction style.1 The inference rules have formulae and sequents amongst their
hypotheses (called ordinary hypotheses and sequent hypotheses, respectively).

1 For a comparison of this and other proof styles as well as other kinds of proof systems, see e.g., [Sun83].
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A sequent is an expression of the form � � A, where � and A are a finite set of
formulae and a formula, respectively, of LPF(�). Instead of f g � A we write � A.
Furthermore, we write �� � � for � � � � and A for fAg.

The intended meaning of the sequent � � A is that the formula A is a consequence
of the formulae � . There are several sensible notions of consequence for three-valued
logics; that underlying LPF is precisely defined in Sect. 2.4. It corresponds to the
intuitive idea that one can draw conclusions that are true from premises that are true
(called strong conclusions and strong premises, respectively, in [KTB88]). Formulae
and sequents are proved by (natural deduction) proofs obtained by using the rules of
inference given below.

Rules of inference

The essential point about LPF is that the law of the excluded middle (A � 	 A) does
not hold (A might be neither-true-nor-false). Since this is implied by

� -I
A1 � A2 A1 � 	 A2

	 A1

and the rule (�-E) given below (which can be used in LPF as well as in classical logic),
it follows that the rule (	 -I) – or any other rule corresponding to the principle of proof
by contradiction – cannot be used. In consequence, rules concerning the negation of
negations, conjunctions and universal quantifications are needed in the proof system of
LPF. (Other distinguishing points are discussed after the rules.)

The proof system of LPF is defined by the following rules of inference:

� � -I
A

	 	 A

�-I
A1 A2

A1 � A2

��-I
	 Ai

	 (A1 � A2) for i = 1�2

�-I
x : T � A
�x : T �A

��-I
t : T 	 [x := t]A
	 �x : T �A

=-refl
t : T
t = t

�=-I
t1 = t1 t2 = t2

�(t1 = t2)

� :-I
t = t

�(t : T )

� -E
A1 	 A1

A2

� � -E
	 	 A
A

�-E
A1 � A2

Ai
for i = 1�2

��-E
	 (A1 � A2) 	 A1 � A3 	 A2 � A3

A3

�-E
t : T �x : T �A

[x := t]A

��-E
	 �x : T �A1 x : T�	 A1 � A2

A2

z

=-sub
t1 = t2 [x := t1]A

[x := t2]A

�=-E
�(t1 = t2)

t1 = t1 � t2 = t2

� :-E
�(t : T )
t = t
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x-den
�(x : T )

�-I-1
A
�A

�-I-2
	 A
�A

��-I
�A1 � A2 �A1 � 	 A2

	 �A1

�-E
�
A

��-E
	 �
A

�-E
�A1 A1 � A2 	 A1 � A2

A2

��-E
	 �A1 � A2 	 �A1 � 	 A2

�A1

z Restriction on the rule (	�-E): x not free in A2.

The rule of reflexivity for equality is slightlyadapted from the classical case because
it does not satisfy the usual law in case of non-denoting terms. The additional rules for
equality are also needed because of the extension to the three-valued case – t1 = t2 is
true or false exactly when t1 and t2 are denoting.

Similar rules are needed for typing assertions – t : T is true or false exactly when t
is denoting.2 The other rule concerning typing is needed because variables are always
denoting in LPF.

The rules for � and � are seldom used in practice. However, exactly these rules
are used to justify the derived rules of inference (false-E) and (	 false-I) given below.
Further we have the following law of the excluded fourth in LPF: A � 	 A � 	 �A.

Proofs

A natural deduction proof consists of:

1. a finite set of formulae, called the hypotheses of the proof;
2. a non-empty finite sequence of formulae and proofs, called the steps of the proof,

the last of which must be a formula which is called the conclusion of the proof.

Each step that is a formula must be a hypothesis of the proof or the conclusion of an
instance of an inference rule. In the latter case, each of the ordinary hypotheses of the
rule instance concerned must be a hypothesis or preceding step of the proof (or of an
enclosing proof) and each of the sequent hypotheses of the rule instance concerned must
be established by a preceding step of the proof (or of an enclosing proof). A sequent
� � A is established by a step iff the step is a (sub-)proof, every hypothesis of the proof
is in � and the conclusion of the proof is A.

A sequent � � A is provable if there exists a proof with � as hypotheses and A as
conclusion. A formula A is provable if the sequent � A is provable. To indicate this, we
write LPF(�) : � � A and LPF(�) : A, respectively.

Derived rules

The following are some derived rules, i.e. for each instance of these rules, if the hy-
potheses are provable then so is the conclusion:

� false-I
	 false

false-E
false
A

�=-E
t 
= t
A

2 These rules make the rule of reflexivity for equality superfluous.
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=-sym
t1 = t2
t2 = t1

�=-I�
t1 : T1 t2 : T2

�(t1 = t2)

�=-sym
t1 
= t2
t2 
= t1

� �-I
x : T � � A

�(�x : T �A)

The following derived rules show how weak equality and strong equality are related:

=�==
t1 = t2
t1 == t2

==�=
t1 == t2 t1 = t1

t1 = t2

The formulae and sequents of LPF are translated to formulae and sequents of
classical infinitary logic (L�) in Sect. 2.5. The translation concerned has the property
that what can be proved in LPF remains the same after translation. This implies that
the inference rules of LPF become derived rules of L� after translation. The translation
provides one justification for the inference rules of LPF; another justification is afforded
by the interpretation given below.

2.4. Interpretation of LPF(�)

The proof system of LPF is based on the interpretation of terms and formulae presented
below: the rules of inference preserve validity under this interpretation.

Structures

Terms and formulae of LPF(�) are interpreted in structures which consist of a universal
domain of values and an interpretation of every symbol in the signature � as well as
the equality symbol. The universal domain of values must be a set containing a special
element �. When a term is non-denoting,� is used as its interpretation. Analogously,
when a formula is neither true (T) nor false (F), N is used as its interpretation.

A structure A, with signature �, consists of:

1. a set UA, the domain of A, such that� 
 UA and UA � f�g 
= f g;
2. for every T 
 T(�),

a set TA such that TA � UA � f�g;

3. for every f 
 F(�), arity(f) = n,

a total map fA : UA � � � � � UA� �z �
n times

� UA;

4. for every P 
 P(�), arity(P ) = n,

a total map PA : UA � � � � � UA� �z �
n times

� fT�F�Ng;

5. a total map =A : UA � UA � fT�F�Ng such that for all d� d� 
 UA,

=A(d� d�) =

��
�

T if d 
= � and d� 
= � and d = d�

F if d 
= � and d� 
= � and d 
= d�

N otherwise�

Instead of wA we write w when it is clear from the context that the interpretation of
symbol w in structure A is meant.
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Assignments

An assignment in a structure A with signature � assigns to variables elements in
the domain of A. However, variables are never mapped to �. This restriction is in
accordance with the treatment of variables: both free and bound variables always denote.
The interpretation of terms and formulae of LPF(�) in A is given with respect to an
assignment � in A.

Let A be a structure with signature �. Then an assignment in A is a function
� : VAR � UA � f�g.

For every assignment � in A, variable symbol x and element d 
 UA � f�g, we
write �(x� d) for the assignment �� such that ��(y) = �(y) if y 
� x and ��(x) = d.

Interpretation

The interpretation of terms is given by a function mapping term t, structure A and
assignment � in A to the element of UA that is the value of t in A under assignment
�. Similarly, the interpretation of formulae is given by a function mapping formula A,
structure A and assignment � in A to the element of fT�F�Ng that is the truth value
of A in A under assignment �. We write [[t]]A

� and [[A]]A
� for these interpretations. The

superscripts are omitted when it is clear from the context which structure is meant.
The interpretation functions for terms and formulae are inductively defined by

[[x]]A
� = �(x) �

[[f(t1� � � � � tn)]]A
� = fA([[t1]]A

�� � � � � [[tn]]A
�)

and

[[�]]A
�� = N �

[[P (t1� � � � � tn)]]A
� = PA([[t1]]A

�� � � � � [[tn]]A
�) �

[[t1 = t2]]
A
� = =A([[t1]]A

�� [[t2]]
A
�) �

[[t : T ]]A
� =

��
�

T if [[t]]A
� 
= � and [[t]]A

� 
 TA

F if [[t]]A
� 
= � and [[t]]A

� �
 TA

N otherwise�

[[�A]]A
� =

�
T if [[A]]A

� = T or [[A]]A
� = F

F otherwise�

[[	 A]]A
� =

��
�

T if [[A]]A
� = F

F if [[A]]A
� = T

N otherwise�

[[A1 � A2]]A
� =

��
�

T if [[A1]]A
� = T and [[A2]]A

� = T
F if [[A1]]A

� = F or [[A2]]A
� = F

N otherwise�

[[�x : T �A]]A
� =

��
�

T if for all d 
 T A� [[A]]A
�(x�d) = T

F if for some d 
 TA� [[A]]A
�(x�d) = F

N otherwise�

We write A j= A[�] for [[A]]A
� = T.
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Notice that the above interpretation makes conjunction non-strict in both of its
arguments and gives the truth value F for a universally quantified formula �x : T �A in
some cases where the interpretation of A is neither T nor F for some assignments.

For a finite set � of formulae of LPF(�) and a formula A of LPF(�), A is a
consequence of � , written � j= A, iff for all structures A with signature �, for all
assignments � in A, if A j= A�[�] for all A� 
 � then A j= A[�].

Theorem 1. The proof system given above for LPF has the following soundness and
completeness properties:

soundness : if � � A� then � j= A ;
completeness : if � j= A� then � � A �

Proof. The proof for the untyped case in [Che86] extends directly to the typed case.

It is a consequence of the compositional style adopted for constructing a completeness
proof that – in case of incompleteness – the failed proof attempt indicates the origin(s)
of the incompleteness. In fact, the rules (� :-I), (� :-E), and (x-den), which are needed
for typing assertions, were only discovered when we tried to construct the completeness
proof.

2.5. Embedding LPF into L�

In this subsection, the relationship between LPF and classical infinitary logic is charac-
terized. The terms, formulae and sequents of LPF are translated to terms, formulae and
sequents, respectively, of L�. The mappings concerned provide a uniform embedding
of LPF into L�. The translation has the property that what can be proved in LPF remains
the same after translation. It provides an illuminating classical explanation of LPF and
justifies the inference rules of LPF logically. Later, extensions of LPF concerning the
base types and type formers used in VDM, subtypes via invariants and recursively de-
fined types and functions are presented. The inference rules concerned are also justified
by an embedding into L�.

Translation

In the translation, a canonical mapping from symbols of LPF to symbols of L� is
assumed. More precisely, we assume a total mapping from VLPF to VL� ; for each
w 
 VLPF, we writew for the symbol to which w is mapped. Furthermore, the mapping
is assumed to be injective and such that

each type symbol T is mapped to a predicate symbol T
with arity(T ) = 1,

each function symbol f is mapped to a function symbol f
with arity(f) = arity(f),

each predicate symbol P is mapped to a function symbolP
with arity(P ) = arity(P ),

each variable symbol x is mapped to a variable symbol x.
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We also use the notationW for the image of W (W � VLPF) under this mapping. We
write:

TLPF for
S
fTLPF(�) j� 
 SIGg�

LLPF for
S
fLLPF(�) j� 
 SIGg�

TL� for
S
fTL�(�) j� 
 SIGg�

LL� for
S
fLL�(�) j� 
 SIGg�

The terms and formulae of LPF are translated by mappings:

([�]) : TLPF � TL� � ([�])t : LLPF � LL� �

For the translation of formulae, an auxiliary mapping is used as well:

([�])f : LLPF � LL� �

For a term t of LPF, the term ([t]) is the translation of t to L�. For a formulaA of LPF, the
formula ([A])t is the translation of A to L�. Intuitively, ([A])t is a formula of L� stating
that the formula A of LPF is true in LPF. Likewise, ([A])f is a formula of L� stating that
the formula A of LPF is false in LPF. In case both ([A])t and ([A])f are false in L�, A is
neither-true-nor-false in LPF.

The syntactic variables that are used in the definition of these mappings, range over
syntactic objects as follows (subscripts and primes are not shown):

T ranges over TYPE�
f ranges over FUNC�
P ranges over PRED�

x ranges over VAR�
t ranges over TLPF�
A ranges over LLPF �

It is assumed that t� f� � 
 FUNC, U�B 
 PRED, y� y1� � � � � yn 
 VAR, t� f� � of
arity 0 and U�B of arity 1.

The symbol is used for equality in L�. This (classical) equality is explained in
Appendix A.

The translation mapping for terms is inductively defined by

([x]) = x �

([f(t1� � � � � tn)]) = f(([t1])� � � � � ([tn])) �

The translation mapping for formulae and the auxiliary mapping are simultaneously and
inductively defined by

([�])t = false �

([P (t1� � � � � tn)])t = P (([t1])� � � � � ([tn])) t �

([t1 = t2])t = ([t1]) 
 � � ([t2]) 
 � � ([t1]) ([t2]) �

([t : T ])t = ([t]) 
 � � T (([t])) �

([�A])t = ([A])t � ([A])f �

([	 A])t = ([A])f �

([A1 � A2])t = ([A1])t � ([A2])t �

([�x : T �A])t = �x � T (x) � ([A])t �
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([�])f = false �

([P (t1� � � � � tn)])f = P (([t1])� � � � � ([tn])) f �

([t1 = t2])f = ([t1]) 
 � � ([t2]) 
 � � ([t1]) 
 ([t2]) �

([t : T ])f = ([t]) 
 � � 	 T (([t])) �

([�A])f = 	 (([A])t � ([A])f) �

([	 A])f = ([A])t �

([A1 � A2])f = ([A1])f � ([A2])f �

([�x : T �A])f = �x � T (x) � ([A])f �

These translation rules strongly resemble the interpretation rules of LPF that are given
in Sect. 2.4: the rules for the mapping ([�])t correspond to the truth-conditions and the
rules for the mapping ([�])f correspond to the falsehood-conditions.

A translation for sequents of LPF(�) can also be devised:

([� � A]) := Ax(��� � fAg) � f([A�])t jA� 
 �g � ([A])t �

where

Ax(��� �) =
fU(�) � �y �U(y) � y 
 �g�
ft 
 f � t 
 � � f 
 � � (B(b) � b t � b f � b �)g�
fT (y) � U(y) � y 
 � jT 
 T(�)g�
fU(y1) � � � � � U(yn)�U(f(y1� � � � � yn)) j f 
 F(�)� arity(f) = ng�
fU(y1) � � � � � U(yn)�B(P (y1� � � � � yn)) jP 
 P(�)� arity(P ) = ng�
fU(x) � x 
 � jx 
 free(� �)g �

Ax(��� �) contains a formula asserting that the domain of values contains at least one
value in addition to the special element used as the interpretation of non-denoting terms
and a formula asserting that the domain of truth values contains exactly two distinct
truth values in addition to the special element used as the interpretation of non-denoting
formulae. It also contains formulae asserting that the types concerned do not contain
the special element used as the interpretation of non-denoting terms. It further contains
formulae asserting that application of the functions concerned yields values from the
domain of values and formulae asserting that application of the predicates concerned
yields truth values. Finally, it contains formulae asserting that the free variables are
always denoting.

Note that the finite fragment of L� suffices for the embedding of LPF. L� is used be-
cause its countably infinite disjunctions are needed for the embedding of the extensions
for recursive definitions of functions and types in Sects. 3 and 5.

Reducibility

Roughly speaking, LPF can be reduced to L� in the sense that what can be proved in
LPF remains the same after translation.

Theorem 2. LPF can be reduced to L�, i.e.

LPF(�) : � � A iff L�(� � fU�B� t� f� �g) : ([� � A]) �
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Proof. � is proved by induction over the length of a proof of � � A. For �, it suffices
to show that for some structure A of LPF with signature � that is a counter-model for
� � A, there exists a structure A� of L� with signature � � fU�B� t� f��g that is a
counter-model for ([� � A]).

It is assumed that the translation of sequents is extended to inference rules in the
obvious way.

Corollary. The translation of the inference rules of LPF are derived rules in L�.

3. Recursively defined functions

In the previous section, LPF was embedded into L�. Recursive function definitions can
be represented in L�. This permits the rules used for reasoning about recursively defined
functions in LPF to become derived rules of L�.

In this section the extension of LPF for recursive function definitions is described.
First, the additional formation rules, inference rules and interpretation rules for recursive
function definitions are given. Thereafter, their embedding into L� is defined.

3.1. LPF and recursive function definitions

The logic LPF is used in VDM to reason about recursively defined functions. The
treatment of recursive function definitions in VDM is made precise below by defining
a conservative extension of LPF.

The following additional formation rule for terms is required:

3. if A is a formula and t1 and t2 are terms, then if A then t1 else t2 is a term.

Terms of this form are called conditionals. In [BCJ84], conditionals are also regarded
as terms of an extension of LPF.

The following additional formation rule for formulae is required:

8. if f 
 F(�), arity(f) = n, x1� � � � � xn are distinct variable symbols, T1� � � � � Tn are
(not necessarily distinct) types and t is a term with free(t) � fx1� � � � � xng, then
f(x1 : T1� � � � � xn : Tn)T � t is a formula.

Formulae of this form are called recursive function definitions. A recursive function
definition f(x1 : T1� � � � � xn : Tn)T � t defines f directly in terms of a defining term
t in which the function being defined may be recursively used. It corresponds to the
direct definition of f written in the VDM notation as

f : T1 � � � � � Tn � T
f(x1� � � � � xn) � t

The following are additional inference rules for conditionals and recursive function
definitions:3

3 The first hypothesis of the rule (Func-ind) could be replaced by the simpler [f (x 1� � � � � xn) := �]A if �
was also regarded as a (non-denoting) term of the extension of LPF.
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if-1
A

ifA then t1 else t2 == t1
if-2

	 A
ifA then t1 else t2 == t2

if-3
	 �A

	 ((ifA then t1 else t2)�)

Func-def
x1 : T1 � � � xn : Tn t : T

f(x1 : T1� � � � � xn : Tn)T � t � f(x1� � � � � xn) = t

Func-ind

	 (u�) � [f(x1� � � � � xn) := u]A
A � [f(x1� � � � � xn) := t]A

f(x1 : T1� � � � � xn : Tn)T � t � A
t continuous in f , A admissible in f

Here [f(x1� � � � � xn) := t]A is the result of simultaneously replacing the occurrences of
the substitution instances of f(x1� � � � � xn) in A by the corresponding substitution in-
stances of t. The function definition hypothesis is usually dropped when it is clear from
the context which definition is meant.

We say that t is continuous in f iff the mapping from functions to functions that
maps f to (the function that maps x1� � � � � xn to) t is continuous with respect to the ‘less
defined than’ ordering given below. A sufficient syntactic condition for continuity is: in
every term of the form if A� then t1 else t2 occurring in t, f does not occur in A�.

We say thatA is admissible inf iff, for every chain of functionsF0 v F1 v F2 v � � �
(where v is the ‘less defined than’ ordering) contained in the set of all functions f
satisfyingA, its least upper bound is also in that set. The following syntactic properties
characterize a large class of admissible formulae. Formulae of the forms P (t1� � � � � tn),
t1 = t2, t� : T �, 	 (t� : T �), t�� and 	 (t��) are admissible if in every term of the form
if A� then t1 else t2 occurring in the formula concerned, f does not occur in A�; so
are formulae of the forms 	 P (t1� � � � � tn) and t1 
= t2 if additionally f occurs in at
most one of the terms ti (where i 
 f1� � � � � ng and i 
 f1� 2g, respectively). Also
admissible are formulae in which f does not occur. Furthermore, if A�, A1 and A2 are
admissible formulae, then so are A1 � A2, A1 � A2 and �x : T � �A�. So is �x : T � �A�

if additionallyT � is a finite type. IfA� is an admissible formula, then so are all formulae
obtained by replacing one or more occurrences of a subformula A�� by 	 	 A�� or vice
versa. From these properties it follows among other things that a formula of the formA1

� A2 is admissible if 	 A1 and A2 are admissible.
Strong equality (==) is used instead of weak equality (=) in the rules (if-1) and (if-2)

for the sake of conciseness and simplicity of the collection of primitive inference rules
for conditionals. However, rules involving strong equality, which can only be defined
in LPF by means of the uncommon connective �, can mostly be dispensed with when
reasoning about specifications. The following derived rules for conditionals are more
often used in practice:

if-1�
t1 = t1 A

ifA then t1 else t2 = t1
if-2�

t2 = t2 	 A
ifA then t1 else t2 = t2

Moreover, the method of reasoning about recursive functions discussed below often cir-
cumvents the need to argue about conditionals directly.

In the structures used for interpretation, a partial function is modelled by a total map
whose argument domains and result domain contain �. An argument tuple is mapped
to � if the function concerned is undefined for that argument tuple. This suggests the
following definition, which is used in the additional interpretation rules given below.
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For total maps F�G : UA � � � � � UA� �z �
n times

� UA, where A is a given structure, F is less

defined than G iff

for all d1� � � � � dn 
 U
A� F (d1� � � � � dn) 
= �� F (d1� � � � � dn) = G(d1� � � � � dn) �

The following are the additional interpretation rules for conditionals and recursive
function definitions:

[[ifA then t1 else t2]]A
� =

��
�

[[t1]]A
� if [[A]]A

� = T
[[t2]]A

� if [[A]]A
� = F

� otherwise�

[[f(x1 : T1� � � � � xn : Tn)T � t]]A
� =�				�

				�

T if fA is the least defined F : UA � � � � � UA� �z �
n times

� UA such that

for all d1 
 TA
1 � � � � � dn 
 TA

n � d 
 TA�

[[t]]A�

�(x1�d1)���(xn�dn ) = d� F (d1� � � � � dn) = d

F otherwise�

where A� is the structure with signature � such that wA�

= wA if w 
� f and fA�

= F
(w 
 �).

Note that the interpretation of f(x1 : T1� � � � � xn : Tn)T � t is not a set of models
in which f corresponds to the function being defined. Instead it is essentially the
characteristic function of the set concerned. This interpretation is taken for technical
reasons: function definition hypotheses and other hypotheses can thus be treated alike.

The soundness of the rules (if-1), (if-2), (if-3) and (Func-def) with respect to this
interpretation is obvious. The hypotheses of the rule (Func-ind) imply that A holds for
a countable sequence of approximations of the function f where each approximation is
less defined than the next one: the first approximation is the totally undefined function
and each of the following approximations relies on the previous approximation for the
recursive uses of f in t. If t is continuous in f , then this sequence converges to the
function being defined according to the interpretation of recursive function definitions
given above. If additionallyA is admissible in f , A holds for that function as well.

In [Jon90], it is informally explained how a recursive definition of a partial function
can be rendered into inference rules. The inference rules concerned resemble the appro-
priate rules of an inductive definition of the function (for partial functions, such rules
usually need to be of a particular form). Given the recursive definition, the inference
rules can also be regarded as derived rules of this extension of LPF. For example,

fac : Z�Z

fac(n) � if n = 0 then 1 else n � fac(n� 1)

is a recursive definition of a function on integers which yields the factorial of non-
negative integers and is undefined otherwise. The corresponding inference rules accord-
ing to [Jon90] are

fac-b
fac(0) = 1

fac-i
t : Z t 
= 0 fac(t� 1) = t�

fac(t) = t � t�

They are derived rules of LPF with the extension for recursive function definitions. The
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rules (fac-b) and (fac-i) are allowing any fixpoint of the definition instead of requiring
the least fixpoint.4 They do not suffice to show that fac is only defined for non-negative
integers, i.e.

�x : Z� fac(x)� � x � 0 �

The justification of this leastness result depends among other things upon the rule (Func-
ind). Note that the uncommon connective � has to be used – at least indirectly – to
formulate leastness results. However, such results are not often needed when reasoning
about specifications in practice.

3.2. Embedding recursive function definitions into L�

Just like formulae of LPF, recursive function definitions can be mapped to formulae of
L�. The rules (if-1), (if-2), (if-3), (Func-def) and (Func-ind) become derived rules of L�
after translation. So the translation justifies these additional rules as well. Consequently,
it also justifies the generation of rules from recursive function definitions according
to [Jon90].

Recursive definitions in L�

In L�, a large class of recursive definitions can be expressed as formulae.5 To describe
the formulae concerned, we use the following notation:

– defined predicates fx1� � � � � xn jAg, with the meaning given by
fx1� � � � � xn jAg(t1� � � � � tn) � [x1 := t1� � � � � xn := tn]A;

– predicate operators 	P�fx1� � � � � xn jAg, with the meaning given by
(	P�fx1� � � � � xn jAg)(D) = fx1� � � � � xn j [P :=D]Ag;

– a fixpoint operator Fix: Fix(
) is the least fixpoint of 
 for continuous predicate
operators 
 = 	P�fx1� � � � � xn jAg with arity(P ) = n.

All this is precisely defined as abbreviations in Appendix A.
This will do to describe the formulae corresponding to recursive predicate defini-

tions. In case of recursive function definitions, the definition concerned has first to be
replaced by a recursive definition of a predicate that uniquely determines the function
concerned. The replacement is also given by the mapping � defined in Appendix A.

Embedding into L�

Conditionals require that terms are translated to formulae of L� by a mapping

([�])� : TLPF� � TL� � LL� �

where TLPF� denotes the set of all terms of LPF extended for recursive function def-
initions. Intuitively, ([t])u is a formula stating that the value of t is u. The required

4 In general, such inference rules are allowing almost any fixpoint. However this qualification applies only
to very pathological cases.

5 The recursive definitions concernedare exactly the definitions f (x 1 : T1� � � � � xn : Tn)T � t for which
t is continuous in f .
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adaptations of the translation rules for the terms and formulae of LPF are trivial; e.g.
the rule for the translation of function applications becomes:

([f(t1� � � � � tn)])u =

�y1� � � � � yn �U(y1) � � � � � U(yn) � ([t1])y1 � � � � � ([tn])yn � f(y1� � � � � yn) u �

The following rule is for the translation of conditionals to formulae of L�:

([if A then t1 else t2])u =

(([A])t � ([t1])u) � (([	 A])t � ([t2])u) � (([	 �A])t � u �) �

The following rules are for the translation of recursive function definitions to formulae
of L�:

([f(x1 : T1� � � � � xn : Tn)T � t])t =

�x1� � � � �xn� y �U(x1) � � � � � U(xn) � U(y) �
(f(x1� � � � �xn) y �

(y 
 � � D(x1� � � � �xn� y)) �
(y � � 	 �y� �U(y�) � D(x1� � � � �xn� y

�))) �

where

D := Fix(	F�fx1� � � � �xn� y jT 1(x1) � � � � � T n(xn) � T (y) � �(([t])y)g) �

and

([f(x1 : T1� � � � � xn : Tn)T � t])f = 	 ([f(x1 : T1� � � � � xn : Tn)T � t])t �

The inference rules (if-1), (if-2), (if-3), (Func-def) and (Func-ind) become derived
rules of L� after translation.

For the function fac defined above, the translation of the body of the definition, ([t])y,
is logically equivalent to

(n 0 � y 1) � (n 
 0 � y n � fac(n� 1))

under the assumption that n : Z. After applying the mapping �, we obtain the following
recursive definition of the corresponding predicate:

Fac =
fn� y j ([Z])(n) � ([Z])(y) �

((n 0 � y 1) � (n 
 0 � �z �Fac(n� 1� z) � y n � z))g �

After applying Fix to the corresponding predicate operator, we obtain a defining formula
logically equivalent to

�n� y �U(n) � U(y) �
(fac(n) y �

(	 ([Z])(n) � y �) �
(n � 0 � y �) �
(n 0 � y 1) �
(n 1 � y n) �
(n 2 � y n � (n� 1)) �
(n 3 � y n � (n� 1) � (n� 2)) �

...
) �
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4. Base types and type formers

In the VDM notation, one has base types such as the boolean type B , whose elements
are the truth values, and the natural type N, whose elements are the natural numbers.
Other types can be constructed from the base types by means of type formers such as
the set type former �-set and the sequence type former ��. The elements of 
 -set are the
finite sets with elements of type 
 and the elements of 
� are the finite sequences with
elements of type 
 . Another useful type former is the union type former �j�. Its use is
necessary in recursive type definitions (treated in Sect. 5). The elements of 
1j
2 are the
values that are elements of 
1 or 
2.

Instead of describing the extension of LPF for base types and type formers fully,
only the adaptations for the natural type, the sequence type former and the union type
former are described in this section. Other base types can be treated in the same vein as
the natural type and other type formers can be treated in the same vein as the sequence
type former. The union type former is quite different from the other type formers.

First, the additional formation rules, inference rules and interpretation rules for the
natural type, the sequence type former and the union type former are given. Thereafter,
their embedding into L� is defined. A meta-rule for the creation of induction rules for
inductively defined types is also given.

4.1. LPF and types

The logic LPF is also used in VDM to reason about VDM’s base types and the types
constructed from them by means of VDM’s type formers. The treatment of these types
can be made precise by defining another conservative extension of LPF. It requires
the introduction of type expressions. The required adaptations of the formation rules,
inference rules, etc. of LPF and the extension for recursive function definitions to the
introduction of this syntactic category are trivial: type symbols are simply identified
with type expressions. However, the current extension requires more.

The following formation rules for type expressions are required:

1. type symbols are type expressions;
2. N is a type expression;
3. if 
 is a type expression, then 
� is a type expression;
4. if 
1 and 
2 are type expressions, then 
1j
2 is a type expression.

The following are additional inference rules concerning the natural type and the
sequence types:

N-gen-b 0 : N N-gen-i
t : N

succ(t) : N

N-ind
[x := 0]A x : N� A � [x := succ(x)]A

x : N � A

Seq-gen-b [ ] : 
 � Seq-gen-i
t1 : 
 t2 : 
 �

cons(t1� t2) : 
 �

Seq-ind
[x2 :=[ ]]A x1 : 
� x2 : 
 �� A � [x2 := cons(x1� x2)]A

x2 : 
 � � A
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The rules (N-ind) and (Seq-ind) are induction rules for natural numbers and finite se-
quences, respectively.

The following are additional rules of inference concerning union types:

j -I
t : 
1 � t : 
2

t : 
1j
2
j -E

t : 
1j
2

t : 
1 � t : 
2

A structure A with signature � has the following additional restrictions on U A:

1a. N � UA � f�g;
1b. for every S � UA � f�g, S� � UA � f�g.

Here N denotes the set of all natural numbers.
The additional interpretation function for type expressions is inductively defined by

[[T ]]A = TA �

[[N]]A = N �

[[
 �]]A = ([[
 ]]A)� �

[[
1j
2]]
A = [[
1]]

A � [[
2]]A �

The soundness of the inference rules concerning the natural type, the sequence types
and the union types with respect to this interpretation is obvious.

The VDM notation does not have dependent types. Therefore, the interpretation
of any type expression remains the same under different assignments. Formulae such
as [ ] 
= 0 are not excluded syntactically, because typing is not decidable in the VDM
notation – due to its subtyping mechanism (described in Sect. 5).

4.2. Embedding types into L�

Type expressions can also be embedded into L�. They can be mapped to defined
predicates. The inference rules concerning the various types become derived rules of
L� after translation. So the translation justifies these rules as well.

Inductive definitions in L�

In Sect. 3, defined predicates, predicate operators and a fixpoint operator were introduced
as abbreviations to facilitate expressing recursive definitions as formulae of L�. A large
class of inductivedefinitions can also be expressed as formulae. To describe the formulae
concerned, we use the following additional notation:

– x1� � � � � xn with the meaning given by
x1� � � � � xn = fy1� � � � � yn j y1 
 x1 � � � � � yn 
 xng;

– [P + :=D]A is the result of replacing the defined predicate D for the positive occur-
rences of the predicate symbol P in A.

In the case of an inductive definition A of a predicate P , the formula A is trans-
formed into a continuous predicate operator 
 with the property that Fix(
) is
the smallest P satisfying A. Under certain mild conditions, the predicate operator

 = 	P�fx1� � � � � xn j 	 [P + :=x1� � � � � xn]Ag turns out to be appropriate. This is de-
scribed in detail in Appendix A.
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Embedding into L�

Type expressions are translated to defined predicates by a mapping

([�]) : XLPF �DL� �

whereXLPF denotes the set of all type expressions andDL� denotes the set of all defined
predicates. Intuitively, ([
 ]) is the defined predicate D such that t : 
 is true in LPF is
stated by �y � ([t])y � D(y). This mapping is inductively defined by

([T ]) = T �

([N]) = Fix(	P�fy j 	 [P + := y](P (0) � �y1 �P (y1) � P (succ(y1)))g) �

([
 �]) = Fix(	Q�fy j 	 [Q+ := y]
(Q([ ]) � �y1� y2 � ([
 ])(y1) � Q(y2) � Q(cons(y1� y2)))g) �

([
1j
2]) = fy j ([
1])(y) � ([
2])(y)g �

Note that
P (0) � �y1 �P (y1) � P (succ(y1))

and
Q([ ]) � �y1� y2 � ([
 ])(y1) � Q(y2) � Q(cons(y1� y2))

are the usual inductive definitions of the set of all natural numbers and the set of all
finite sequences over a given set ([
 ]), respectively. After replacing y for the positive
occurrences of P and Q, respectively, in these formulae and taking the negation of the
resulting formulae, we obtain the usual recursive definitions:

P = fy j y 0 � �y1 � P (y1) � y succ(y1)g

and
Q = fy j y [ ] � �y1� y2 � ([
 ])(y1) � Q(y2) � y cons(y1� y2)g �

After applying Fix to the corresponding predicate operators, we obtain defined predicates
([N]) and ([
 �]). One easily verifies that

([N])(y) �
W
n y succn(0) �

where

succ0(t) := t �

succn+1(t) := succ(succn(t)) �

and
([
 �])(y) �

W
nAn �

where

A0 := y [ ] �

An+1 := �y1� � � � � yn+1 � ([
 ])(y1) � � � � � ([
 ])(yn+1) �
y cons(y1� � � � � cons(yn+1� [ ]) � � �) �

These formulae define the predicates concerned correctly. So the transformation works
for the inductive definitions of ([N]) and ([
 �]). This was to be expected because the form
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of the inductive definitions (the Horn formulae form) guarantees that the applicability
conditions for the transformation are met.

The above shows that the embedding in L� for other base types and types constructed
by means of other type formers can be easily obtained if we know a way to generate
any element of the type concerned.

It is easy to see that the inference rules concerning union types become derived rules
of L� after translation. A corollary from one of the justifications of the meta-rule about
inductive definitions given below is that it is also the case for the rules concerning the
natural type and the sequence types.

4.3. A meta-rule about induction rules

All base types and types constructed by means of type formers can be defined inductively
in LPF by an instance of the following schema:

c1 : 
 � � � � � cn : 
 �
(�x1

1 : 
 1
1 � � � � � x

1
n1

: 
 1
n1
� f1(x1

1� � � � � x
1
n1

) : 
 )
�
...
�

(�xm1 : 
m1 � � � � � xmnm : 
mnm � fm(xm1 � � � � � x
m
nm

) : 
 ) �

Fact 3. If the inductive definition of a type 
 is an instance of the above schema, then
the corresponding instance of the induction rule schema

[x := c1]A � � � [x := cn]A
x1

1 : 
 1
1 � � � � � x

1
n1

: 
 1
n1
� f[x :=x1

i ]Aj

1
i � 
g � [x := f1(x1

1� � � � � x
1
n1

)]A
...

xm1 : 
m1 � � � � � xmnm : 
mnm � f[x :=xmi ]Aj
mi � 
g � [x := fm(xm1 � � � � � x
m
nm

)]A
x : 
 � A

is a sound rule of inference.

Proof. After transforming the translation of the inductive definition as described in the
previous subsection, we obtain the following defining formula for ([
 ]):

([
 ])(y) �
W
nAn �

where

A0 := y c1 � � � � � y cn �

An+1 :=
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An �
(�x1

1� � � � �x
1
n1
�


i�fij�1
i
���g

([
 1
i ])(x1

i) �



i�fij�1
i
��g

[y :=x1
i ]An � y f1(x1

1� � � � �x
1
n1

))

�
...
�

(�xm1 � � � � �x
m
nm

�

i�fij�m

i
���g

([
mi ])(xmi ) �



i�fij�m
i
��g

[y :=xmi ]An � y fm(xm1 � � � � �xmnm)) �

This is the construction of the inductive closure of the set fc1� � � � � cng under the
functions f1� � � � � fm expressed in L�. The induction rule follows directly from the
induction principle for inductive sets and ([x : 
 ]) t � ([
 ])(x).

Another justification can be given by showing that the induction rule becomes a
derived rule of L� after translation. After translation, we can infer

(A0 � [x := y]([A])t) �V
n
((An � [x := y]([A])t) � (An+1 � [x := y]([A])t))

from the hypotheses of the rule. Then
V
n(An � [x := y]([A])t) follows by transitivity

of implication. ([
 ])(x) � ([A])t, the translation of the conclusion of the rule, is a direct
consequence.

It follows immediately from this alternative justification that the inference rules
concerning the natural type and the sequence types become derived rules of L� after
translation.

5. Subtypes and recursively defined types

As well as recursive function definitions, recursive type definitions can be represented
in L�. So the rules used for reasoning about recursively defined types in LPF become
also derived rules of L�. In addition to type formers and recursion, restriction of types
to subtypes is used in VDM to define types.

In this section, first the extension of LPF for subtypes is described and thereafter the
extension for recursive type definitions. For both extensions, the additional formation
rules, inference rules and interpretation rules as well as the translation rules for the
embedding into L� are given.

5.1. Subtypes

In the VDM notation, a type can also be a subtype of another type specified by means of
an invariant. For example, sequences without repeating elements are defined as follows:

Useq = Elem�

inv inv-Useq(s) � is-uniques(s)

An obvious definition of is-uniques is
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is-uniques : Elem� � B

is-uniques(s) � �i� j : N1 � i� j 
 inds s � i 
= j � s(i) 
= s(j)

For a precise treatment of these subtypes in a further extension of LPF, the following
additional formation rule for type expressions is required:

5. if x is a variable symbol, 
 is a type expression and A is a formula with free(A) �
fxg, then �x : 
 jA� is a type expression.

�x : 
 jA� corresponds to the subtype of 
 denoted in the VDM notation by


 inv inv-T (x) � A

(T is a name introduced for the subtype).
The following are additional inference rules concerning subtypes:

subtype-I
t : 
 � [x := t]A
t :�x : 
 jA�

subtype-E
t :�x : 
 jA�
t : 
 � [x := t]A

The following is the additional interpretation rule for subtypes:

[[�x : 
 jA�]]A = fd 
 [[
 ]]A j [[A]]A
�(x�d)g �

where� is an arbitrary assignment in A. The soundness of the inference rules concerning
subtypes with respect to this interpretation is obvious.

The following additional translation rule for type expressions makes these inference
rules derived rules of L� after translation:

([�x : 
 jA�]) = fx j ([
 ])(x) � ([A])tg �

So subtypes can also be embedded into L�.
Justification of induction rules for subtypes by means of the inference rules given

above generally requires proofs by induction. For sequences without repeating elements,
the appropriate induction rule is:

Useq-ind

[x2 :=[ ]]A
x1 : Elem� x2 : Useq� x1 �
 elemsx2� A � [x2 := cons(x1� x2)]A

x2 : Useq � A

is-uniques can just as well be defined as follows:

is-uniques : Elem� � B

is-uniques(s) �
s = [ ] �
�h : Elem� t : Elem� � is-uniques(t) � h �
 elems t � s = cons(h� t)

This definition shows the restrictions under which the generation of sequences yields
exactly the sequences without repeating elements. Such constructive definitions of
invariants make it easy to create induction rules for subtypes.

We can capture the creation of an induction rule for a subtype from an associated
constructively defined invariant in a meta-rule as well, because the approach described
for base types and type formers generalizes to types that can be defined inductively in
LPF by an instance of the following schema:
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c1 : 
 � � � � � cn : 
 �
(�x1

1 : 
 1
1 � � � � � x

1
n1

: 
 1
n1
�A1 � f1(x1

1� � � � � x
1
n1

) : 
 )
�
...
�

(�xm1 : 
m1 � � � � � xmnm : 
mnm �Am � fm(xm1 � � � � � x
m
nm

) : 
 ) �

where the formulae A1� � � � � Am do not contain 
 .

5.2. Recursive type definitions

In the VDM notation, a type can also be introduced by a recursive type definitionT = 
 .
For example, LISP-like lists can be defined by L = NjL�. The use of the union type
former is necessary in recursive type definitions.

For a precise treatment of recursive type definitions, an additional formation rule
for formulae is required:

9. if T 
 T(�) and 
 is a type expression, then T = 
 is a formula.

In the rules used for reasoning about recursively defined types, recursive type definitions
are used as formulae.

Additional inference rules are:6

Type-def
t : 


T = 
 � t : T

Type-ind
[T :=f g]A A � [T := 
 ]A

T = 
 � A
� continuous in T , A admissible in T

The type definition hypothesis is usually dropped when it is clear from the context which
definition is meant.

We say that 
 is continuous in T iff the mapping from types to types that maps
T to 
 is continuous with respect to the ‘less than’ ordering given below. A sufficient
syntactic condition is: in every type expression of the form �x : 
 � jA�� occurring in

 , T does not occur in A�.

We say that A is admissible in T iff, for every chain of types S0 � S1 � S2 � � � �
(where � is the ‘less than’ ordering) contained in the set of all types T satisfying A,
its least upper bound is also in that set. The following syntactic properties characterize
a large class of admissible formulae. Formulae of the forms t� : T �, 	 (t� : T �) and
�(t� : T �) are admissible if in every term of the form if A� then t1 else t2 occurring in
the formula concerned, T does not occur in A�. Also admissible are formulae in which
T does not occur. The preservation properties are as in case of functions (treated in
Sect. 3).

For sets S� S� � U � f�g, S is less than S� iff S � S�.
The following is the additional interpretation rule for recursive type definitions:

[[T = 
 ]]A
� =�
T if T A is the least S � UA � f�g such that S = [[
 ]]A�

�

F otherwise�

6 Here fg denotes the empty type. The use of terms that denote sets as types is described in the next
section.
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where A� is the structure with signature � such that wA�

= wA if w 
� T and T A�

= S.
The soundness of the inference rules concerning recursive type definitions with

respect to this interpretation is seen in a similar way to recursive function definitions.
The following additional translation rules make them derived rules of L� after

translation:

([T = 
 ])t = �y � T (y) � Fix(	T �fy j y 
 � � ([
 ])(y)g) �

([T = 
 ])f = 	 ([T = 
 ])t �

So recursive type definitions can also be embedded into L�.
Induction rules for recursively defined types can be justified by means of the rule

(Type-ind). For the LISP-like list, the induction rule

L-ind

x : N � A [x :=[ ]]A
x1 : L� x2 : L�� [x :=x1]A� [x := x2]A � [x := cons(x1� x2)]A

x : L � A

can be derived. The derivation is similar to the derivation of (structural) induction rules
from the fixpoint induction rule of PP� in [Pau87]. Note that this result is in accordance
with the meta-rule about induction rules (think of the inductive definition of the typeL).
One might doubt the type correctness of substituting x2 for x in A above, but x2 : L�

implies x2 : L according to the rules (j -I) and (Type-def).

6. Miscellaneous matters

In the VDM notation, terms of type B are used as formulae and vice versa. This re-
quires trivial additional formation rules and interpretation rules for terms and formulae
as well as a restriction on the structures in which they are interpreted. The following
are the inference rules concerning the interchangeability of formulae and terms of type B :

B -I
�(A)
A : B

B -E
t : B
�(t)

� as =
A1 � A2

A1 = A2

Note that formulae t, where t is a term that is not of type B , are not excluded syntactically
– because typing is not decidable in VDM. The last rule permits derivation of the rule:

B -exh
t : B

t = true � t = false

The following additional translation rules make the inference rules concerning the
interchangeability of formulae and terms of type B derivable in L� after translation:

([A])u = (([A])t � u t) � (([A])f � u f) � (	 (([A])t � ([A])f) � u �) �

([t])t = ([t])t �

([t])f = ([t])f �

In the right-hand side of the last two rules, ([t]) t and ([t])f are applications of the embedding
function for terms.

In the VDM notation, terms of set types are used as types as well. This also requires
some simple adaptations. The following additional rules of inference are needed:
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	�:
t 
 t�

t : t� :�	
t� : 
 -set t : t�

t 
 t�

Note that typing assertions t : t� where t� is a term that is not of a set type cannot be
excluded syntactically. For this reason, the first hypothesis of the second inference rule
is needed.

The following is the rule for set comprehension appropriate for set types:

Set-compr
fx : 
 jAg : 
 -set

t 
 fx : 
 jAg � t : 
 � [x := t]A

A direct consequence is the following derived rule:

Set-as-type
fx : 
 jAg : 
 -set

t : fx : 
 jAg � t :�x : 
 jA�

The (common) hypothesisof these rules is needed because the set denoted by fx : 
 jAg
may be infinite.

The following additional translation rule makes the inference rules concerning the
use of terms of set type as types derivable in L� after translation:

([t]) = fy j �y� � ([t])y
�

� y 
 y�g �

7. Closing remarks

This paper gives a comprehensive description of a typed version of the logic known
as LPF (Sect. 2) and some extensions which are used with VDM (Sects. 3, 4 and 5).
The logical justification of the inference rules concerned – by means of an embedding
into classical infinitary logic – is new. Further discussion of problems of finding a proof
theory for VDM can be found in [FM93]; material which shows how theories are built
using the proof theory is covered in [BFL93].

The induction rules for recursively defined functions (Sect. 3) and types (Sect. 5)
– which are reminiscent of the fixpoint induction principle – as well as the meta-rule
about induction rules for base types and types constructed by means of type formers
(Sect. 4), were not presented before. They give a firm foundation to the way in which
recursive definitions of functions and types are rendered into inference rules in VDM.
It is further demonstrated that constructive definitions of invariants (Sect. 5) are useful
in devising induction rules for subtypes.

From the experience with VVSL [Mid93], we know that the extensions for other
aspects of VDM such as implicit specification of functions and operations can be treated
in the same vein. The proof obligations associated with such implicit specifications as
well as the proof obligations associated with data reification and operation decomposi-
tion can also be given a logical justification. Hence it appears that VDM as described
in [Jon90] can be justified entirely in classical (infinitary) logic. As a matter of course,
higher-order and polymorphic functions need heavier machinery.

Acknowledgement. Our thanks go to Gerard Renardel de Lavalette for his help related to this paper. We are
also grateful to an anonymous referee for his detailed and valuable comments on a draft of the paper.
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A. L�

In this appendix, L� is reviewed in brief. For a comprehensive discussion of this logic,
see e.g. [Kei71]. How recursive definitions and inductive definitions can be expressed as
formulae of L� is also described in this appendix. The method concerned was worked
out (for MPL�) by Renardel in [Ren89].

Introduction to L�

In L�, there are no type symbols. A signature is just a set of function symbols and
predicate symbols. The formulae that contain only function symbols and predicate
symbols from a signature � constitute the language of L� over � or the language
of L�(�). The corresponding proof system is analogously called the proof system of
L�(�).

The language of L�(�) contains terms and formulae. The terms of L�(�) are
inductively defined by the following formation rules:



28 C.B. Jones and C.A. Middelburg

1. variable symbols are terms;
2. if f 
 F(�), arity(f) = n and t1� � � � � tn are terms, then f(t1� � � � � tn) is a term.

The formulae of L�(�) are inductively defined by the following formation rules:

1. false is a formula;
2. if P 
 P(�), arity(P ) = n and t1� � � � � tn are terms, then P (t1� � � � � tn) is a formula;
3. if t1 and t2 are terms, then t1 t2 is a formula;
4. if A is formula, then 	 A is a formula;
5. if hAnin�� = hA0� A1� � � �i are formulae, then

V
nAn is a formula;

6. if A is a formula and x is a variable symbol, then �x �A is a formula.

The string representation of formulae as suggested by these formation rules can lead to
syntactic ambiguities. Parentheses are used to avoid such ambiguities.

The symbol is used for equality in L�. It is classical equality: t1 t2 is true if
t1 and t2 denote the same object and t1 t2 is false otherwise. So classical equality
differs from weak equality (=) in LPF and coincides with strong equality (==) in LPF.

Countable disjunctions and binary conjunctions are defined as abbreviations as
follows: W

nAn := 	
V
n	 An �

A1 � A2 :=
V
nA

�
n�where A�0 = A1 and A�

n = A2 for 0 � n � � �

Binary disjunction, implication, equivalence and existential quantification are defined
as abbreviations as for LPF.

The proof system of L� is formulated here as a sequent calculus for proofs in natural
deduction style. It is defined by the following rules of inference:

� � -E
	 	 A
A

� -I
A1 � A2 A1 � 	 A2

	 A1

V
-I

hAnin��V
nAn

�-I
A

�x �A

-refl
t t

false-E
false

A

� -E
A1 	 A1

A2

V
-E

V
nAn

An
for all n

�-E
�x �A

[x := t]A

-sub
t1 t2 [x := t1]A

[x := t2]A

The following are some derived rules:

� -I�
A1 � false
	 A1

�-I
A1 A2

A1 � A2

� -E�
A1 	 A1

false

�-E
A1 � A2

Ai
for i = 1�2
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Recursive definitions in L�

In L�, a large class of recursive definitions of functions can be expressed as formulae. To
show how these formulae can be obtained, we introduce some notation and abbreviations.

A defined predicate is an expression of the form fx1� � � � � xn jAg, where x1� � � � � xn
are distinct variable symbols and A is a formula; n is called the arity of the defined
predicate. For terms t1� � � � � tn, fx1� � � � � xn jAg(t1� � � � � tn) is defined as an abbreviation
of a formula by

fx1� � � � � xn jAg(t1� � � � � tn) := [x1 := t1� � � � � xn := tn]A �

A predicate symbol P of arity n is identified with the defined predicate

fx1� � � � � xn jP (x1� � � � � xn)g �

A recursive function definition f(x1 : T1� � � � � xn : Tn)T � t can be expressed as a
formula if there exists a defined predicate D that uniquely determines the function being
defined in the sense that the value of f atx1� � � � � xn is y iff the formulaD(x1� � � � � xn� y)
is true.

The following abbreviations of defined predicates are used:


	n := fx1� � � � � xn j falseg ��
m��

fx1� � � � � xn jAmg := fx1� � � � � xn j
W
m
Amg �

The arity indication n as subscript of 
	 is dropped when it is clear from the context or
unimportant which arity is meant.

Inclusion and extensional equality between defined predicates are defined as abbre-
viations of formulae by

fx1� � � � � xn jA1g � fx1� � � � � xn jA2g := �x1� � � � � xn �A1 � A2 �

fx1� � � � � xn jA1g = fx1� � � � � xn jA2g := �x1� � � � � xn �A1 � A2 �

Substitution for predicate symbols is defined as for variable symbols. Let P be a
predicate symbol, D be a defined predicate and A be a formula. Then [P :=D]A is the
result of replacing the defined predicate D for the occurrences of the predicate symbol
P in A, avoiding that free variables in D become bound.

If a predicate is recursively defined, then the definition determines a mapping from
predicates to predicates. Its least fixpoint is considered to be the predicate being defined.
Predicate operators correspond to mappings from predicates to predicates.

A predicate operator is an expression of the form 	P�D, where P is a predicate
symbol and D = fx1� � � � � xn jAg is a defined predicate. For a defined predicate D� of
the same arity as P , (	P�D)(D�) is defined as an abbreviation of a defined predicate by

(	P�fx1� � � � � xn jAg)(D�) := fx1� � � � � xn j [P :=D�]Ag �

For a predicate operator 
 = 	P�D where P and D are of the same arity, Fix(
),
the fixpoint of 
, is defined as an abbreviation of a defined predicate by

Fix(
) :=
�
m��


m(
	) �

where
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0(D) := D �


m+1(D) := 
(
m(D)) �

If
 is a continuous predicate operator, then one can prove that Fix(
) is indeed the least
fixpoint of 
.

A predicate operator 
 = 	P�D is continuous iff

fDm � Dm+1 jm � �g � 
(
�
m��

Dm) =
�
m��


(Dm)

is provable for arbitrary defined predicates D1� D2� � � � of the same arity as P .

Fact 4. If the predicate operator 
 = 	P�D is continuous and P and D are of the same
arity, then Fix(
) is the least fixpoint of 
, i.e.


(Fix(
)) = Fix(
) and 
(P ) � P � Fix(
) � P

are provable.

Proof. Fix(
) is Kleene’s least fixpoint construction (which stops at � for a continuous
operator), expressed in L�.

This guarantees that a large class of recursive predicate definitions can be expressed
as formulae.

The following are derived rules:

Fix-=

(Fix(
)) = Fix(
) � continuous

Fix-ind
[P := 
	]A A � [P :=
(P )]A

[P := Fix(
)]A
� continuous, A admissible

where 
 = 	P�D with P and D of the same arity. The latter rule is a fixpoint induction
rule. Formula A is admissible iff

fDm � Dm+1 jm � �g �
V
m[P :=Dm]A � [P :=

�
m��

Dm]A

is provable for arbitrary defined predicates D1� D2� � � � of the same arity as P .
In case of a recursive function definition, the definition is first replaced by a recursive

definition of a predicate that uniquely determines the function concerned. For a function
f and corresponding predicate F , the replacement is given by the mapping � defined
below. It is assumed that, in a formula containing f , every occurrence of f is provided
with a unique index i (to indicate this we write fi). For each index i, xi denotes a distinct
variable symbol not free in the transformed term or formula. The mapping � and an
auxiliary mapping � are simultaneously defined by the following rules:
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�(t) = true if f not in t�
�(fi(t1� � � � � tn)) = F (�(t1)� � � � � �(tn)� xi) �
�(g(t1� � � � � tm)) = �(t1) � � � � � �(tm) if g different from f�

�(t) = t if f not in t�
�(fi(t1� � � � � tn)) = xi �
�(g(t1� � � � � tm)) = g(�(t1)� � � � � �(tm)) if g different from f�
�(P (t1� � � � � tm)) = P (t1� � � � � tm) if f not in t1� � � � � tm�
�(t1 t2) = t1 t2 if f not in t1� t2�
�(P (t1� � � � � tm)) =
�x1� � � � � xl � �(t1) � � � � � �(tm) � P (�(t1)� � � � � �(tm)) if f in t1� � � � � tm�
�(t1 t2) =
�x1� � � � � xl � �(t1) � �(t2) � �(t1) �(t2) if f in t1� t2�

where x1� � � � � xl are the variables xi occurring in �(t1) � � � � � �(tm) and
�(t1) � �(t2)� respectively,

� commutes with the logical connectives and quantifiers.

Inductive definitions in L�

The previous subsection shows how recursive predicate definitions can be expressed as
formulae of L�. In case of an inductive definition A of a predicate P , the idea is to
transform the formula A into a continuous predicate operator 
 with the property that
Fix(
) is the smallest P satisfying A. To show how the predicate operator concerned
can be obtained, we introduce some additional notation and abbreviations.

The following abbreviation of defined predicates is used:

x1� � � � � xn := fy1� � � � � yn j y1 
 x1 � � � � � yn 
 xng �

Let P be a predicate symbol, D be a defined predicate and A be a formula. Then
[P + :=D]A and [P
 :=D]A are the results of replacing the defined predicate D for the
positive occurrences and the negative occurrences, respectively, of the predicate symbol
P in A, avoiding that free variables in D become bound.

For an inductive definition A of a predicate P (of arity n), the predicate operator

 = 	P�fx1� � � � � xn j 	 [P + :=x1� � � � � xn]Ag turns out to be appropriate under certain
conditions.

The formula A is complement preserving for P iff

[P :=fx1� � � � � xn j 	 [P :=x1� � � � � xn]Ag]A

is provable.

Fact 5. If 
 = 	P�fx1� � � � � xn j 	 [P + :=x1� � � � � xn]Ag is a continuous predicate op-
erator and [P
 :=Q]A is complement preserving for P , then Fix(
) is the smallest
predicate P satisfying A, i.e.

[P := Fix(
)]A and A � Fix(
) � P

are provable.

Proof. This is proved almost exactly as Theorem D.2.5. in [Ren89].
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This guarantees that a large class of inductive predicate definitions can be expressed
as formulae. For example, if a predicate P is inductively defined by a (finite or infinite)
conjunction of formulae of the form

�x1� � � � � xl �A1 � � � � � Am � P (t1� � � � � tn) �

where every formula Ai is of the form P (t�1� � � � � t
�
n) or does not contain P , then the

definition can be expressed as a formula in L�.
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