Acta Informatica Manuscript-Nr.
(will be inserted by hand later)

A typed logic of partial functions
reconstructed classically

C.B. Jones! and C.A. Middelbur¢??

1 Department of Computer Science, University of Manchester, Manchester M13 9PL, England
2 Department of Computer Science, PTT Research, PO. Box 421, 2260 AK Leidschendam, The Netherlands
3 Department of Philosophy, Utrecht University, PO. Box 80.126, 3508 TC Utrecht, The Netherlands

Received: April 2, 1993/ Accepted: October 4, 1993

Abstract. Thispaper givesacomprehensive description of atyped version of thelogic
known as LPF. This logic is basic to formal specification and verified design in the
software development method VDM. If appropriately extended to deal with recursively
defined functions, the data types used in VDM, etc., it gives the VDM notation and its
associated rules of reasoning. The paper provides an overview of the needed extensions
and examines some of them in detail. It is shown how this non-classical logic — and
the extensions — can be reconstructed classically by embeddingsinto classical infinitary
logic.

1. Introduction

Functions specified in — for example —the VDM notation are in general partial. Thus

diff : ZxZ—7Z
diff(i, j) £if i = j then Oelse diff(s,j + 1) + 1

isarecursive functionwhich computesthe difference between twointegersprovidingits
first argument isgreater than or equal tothe second. Partial functionscan giverisetonon-
denoting terms in formulae (i.e. terms that do not refer to objects of the intended type)
—they are loosely referred to as undefined terms. There are problems when reasoning
about partial functionsin classical first-order logic. Consider what might appear to be a
reasonable formalization of the property above:

Vi, jiZ-i>j = diff(i,j)=i—j.
The truth of this plausible formula depends on implications such as
1>2 = diff(1,2)=1-2

in which diff(1, 2) does not denote an integer. If the equality (=) is strict (which is
the case with normal computational — or weak — equality) the right-hand side of this
implication does not denote a truth value. (In fact, the diff example is purposely chosen
because thereisnot aconvenient subtypeto use for thedomain over whichitsapplication

2 C.B. Jonesand C.A. Middelburg

is defined.) There are several ways of handling the difficulty with such a formula. One
possibility isto read logical connectives likeimplicationas though they were defined by
conditional expressions which are non-strict in their second argument. Unfortunately,
withthisviewpoint, onelosesintuitiveproperties such as commutativity for disjunctions
and conjunctions; it also failsto help with examples such as

Vi, j:Z-diff(d,j) =i —j v diff(j,9)=j—1.

A range of approaches to this problem are reviewed in [CJ91] and [MR91]. The former
presents arguments for the logic which is used with VDM (see [Jon90]). This logic
is known as the ‘Logic of Partial Functions (LPF) and uses non-classical meanings
for the logical connectives and quantifiers. Atomic formulae that contain non-denoting
terms may belogically neither-true-nor-falseand thelogical connectivesand quantifiers
are extended to cope with operands that are neither-true-nor-false; the only apparent
disadvantageisthat onehasto giveup the‘law of theexcluded middl€’. Yet, theclassical

truth-conditions and falsehood-conditions for logical connectives and quantifiers are
retained: L PF providesextensionsto the connectivesand quantifiersinwhichtheformula
concerned is classified as neither-true-nor-false exactly when it cannot be classified as
true or false by these conditions. An untyped version of LPF is presented in [BCJ34]

and elaborated in [Che86].

Another approach to the diffi culty discussed above stayswithintheworld of classical
two-valued logics by viewing atomic formulae that contain non-denoting terms as
logically false. In this way, the ‘law of the excluded middle’ does not have to be
abandoned. When a formula cannot be classified as true, it is inexorably classified as
false; no further distinction is made. This approach is attributed to Scott [Sco67] and
has been followed in, for example, MPL,, [KR89].

The approach followed in LPF can be explained at the same time as showing the
thrust of the description of LPF set out below. Consider the formula

diff(1,2)=1v - (diff(1,2)=1) .
Thisisnot atautology in LPF. It can be translated into classical logic as follows:
diff(1,2) 1 A L£ET Adiff(1,2) =1 v diff (1,2) £1 A1 &1 A diff(1,2) £1,

where | is a constant corresponding to undefined and = is classical equality which
yields true when its operands are the same — even if undefined — and false otherwise.
Essentially, the equality used (=) is being made to absorb the undefinedness.

Since it has been described elsewhere, the case for LPF is not addressed further
here: the purpose of this paper is to give a firm foundation to a typed version of LPF.
One method employed is that indicated above: al formulae are mapped into classical
logic. Theversion of L PF treated inthispaper isused as the basis of formal specification
and verified design in the software development method VDM. In order to be usablein
software devel opment, it hasto be extended to deal with the base types and typeformers
used in VDM, subtypes via type invariants, recursively defined types and functions,
etc. This gives essentially the VDM notation (VDM-SL) and its associated rules of
reasoning.

In addition to the usual non-logical — model-theoretic — justification of the inference
rules of LPF, alogical justification isgiven in this paper by means of an embedding into
classical logic. Thisshows how thisnon-classical logic can be reconstructed classically.
Classical logic is used meta-logically here: it provides a classical explanation of LPF

A typed logic of partial functions 3

which is illuminating for those people who use thislogic but have a stronger intuition
about classical logic.

Following the presentation of LPF, the above-mentioned extensions are described.
The rules given for reasoning about (some of) the base types and type formers, subtypes
and recursively defined types as well as the rules given for reasoning about recursively
defined functions are justified by means of an embedding of the extended LPF into
classical infinitary logic [Kei71]. Classica logic with countably infinite conjunctions
and digjunctions(L) isused hereto deal with recursionintype and function definitions.
It would have been possible to use classical finitary logic extended with a minimal
fixpoint operator but this alternative was rejected because it is further from being our
ultimaratio.

The extended LPF provides essentially the VDM notation and its associated rules
of reasoning. Like other specification languages, the VDM notation is meant to permit
formulating claims concerning specificationsfor software systems—such as VDM proof
obligations— in amathematically precise way and constructing formal proofsto justify
these claims. These central issues are shared withlogic, but they are focused on software
systemsinstead of abstract structures. Becausetheseissueshavebeen extensively studied
inlogic, an embedding into (classical) logic appears to be very useful. Besides, it makes
formal justification of proof rules possible. A similar embedding of VVSL (which is
avariant of the VDM notation) into MPL,, —a weak extension of L., — can be found
in[Mid9g].

2. A basic logic of partial functions

A language of LPF is constructed with type symbols, function symbols and predicate
symbolsthat belong to a certain set which is called a signature. For a given signature,
say Y, the language concerned is called the language of LPF over signature X' or the
language of L PF(X)). The corresponding proof system and interpretation areanal ogously
called the proof system of LPF(X") and the interpretation of LPF(Y’), respectively.

In this section LPF is described precisely. First, the assumptions which are made
about type, function and predicate symbols are given and the notion of signature is
introduced. Thereafter, thelanguage, proof system and interpretation of L PF are defined.

2.1. Sgnaturesfor LPF

We assume a set TYPE of type symbols, aset FUNC of function symbols, and aset PRED
of predicate symbols. Every f € FUNC and every P € PRED hasan arity n (n > 0).
To denotethisarity, we usethe notation arity(f) and arity(#). Function symbolsof arity
0 are called constant symbols. There is a specia predicate symbol = of arity 2, called
weak equality.

A signature X' is a finite subset of TYPE U FUNCU PRED. We write T(X) for
2 N TYPE, F(X) for ¥ N FUNC, P(X) for &' N PRED. SG denotes the set of all
signatures for LPF.

We aso assume a set VAR of variable symbols. Furthermore, it is assumed that
TYPE, FUNC, PRED, VAR and {=} are mutualy digoint sets. We write }{ pr for
TYPE U FUNCU PRED U VAR. We use the notation w = w/ (w, w’ € V_pg) toindicate
that w and w’ are identical symbols.

4 C.B. Jonesand C.A. Middelburg

2.2. Language of LPF(X))
Terms and formulae

The language of LPF(Y) contains terms and formulae. They are constructed according
to the formation rules given below.

The logical connectives and quantifiers of classical logic have counterpartsin LPF.
In addition, LPF hasthe logical connectives + and 2. These additional connectives are
not needed for specifying software systems but they make L PF an expressively complete
three-valued logic (i.e., any function on the three-valued domain of truth values can be
defined by aformula). The proof rulesfor the connectives+ and A are seldom needed for
reasoning about specifications; indeed, thisis precisely one of the advantages claimed
for LPF. Thereader isreferred to[CJ91] for further discussion. False (false), definedness
(1) and strong equality (==), which are defined below by means of « and A, are also
seldom employed in proofs using L PF; of course, they play alarger role in the current
paper which concerns the foundations of the whole of L PF.

The terms of LPF(Y) are inductively defined by the following formation rules:

1. variable symbols are terms;
2. if f € F(Y), arity(f) =nandty, ..., t, areterms, then f(¢1, ..., ¢,) isaterm.

The formulae of LPF(X") are inductively defined by the following formation rules:

1. xisaformula

2. if P e P(Y), arity(P) = nandty,...,t, areterms, then P(ty, ..., t,) isaformulg
3. if ty and ¢, areterms, then#; = ¢t isaformula;

4. iftisatermand 7" € T(X), thent : T"isaformulg;

5. if Aisaformula then A A and — A are formulae;

6. if A3 and A, areformulae, then A; A Ay isaformula;

7. if Aisaformula, z isavariablesymbol and 7" € T(X), thenVz : T'- Aisaformula.

The string representation of formulae suggested by these formation rules can lead to
syntactic ambiguities: parentheses are used to avoid such ambiguities.

Tipe(Y) and £ pr(X) denote the set of al terms of LPF(X) and the set of all
formulae of LPF(Y), respectively.

We henceforth use (with or without subscripts):

T and T to stand for arbitrary type symbolsin T(X),

¢ to stand for an arbitrary constant symbol in F(Y),

f and ¢ to stand for arbitrary function symbolsin F(X),
P and () to stand for arbitrary predicate symbolsin P(X),
z, y and z to stand for arbitrary variable symbolsin VAR,
t and ¢’ to stand for arbitrary termsin 7 pe(X),

A, A" and A” to stand for arbitrary formulaein £ pr(X).

Theformulax isneither-true-nor-false. A Aistrueif A iseithertrueorfalseand A A
isfalse otherwise. So A * isfalse. For the connectives— and A as well asthe quantifier
Y, the classical truth-conditions and falsehood-conditions are retained. A formulais
classified as neither-true-nor-false exactly when it cannot be classified as true or false
by these conditions. Equality istreated inthe same way: ¢; = t, isneither-true-nor-false
if and only if ¢; or ¢, isnon-denoting.

Theformulat : T'isatypingassertion. If ¢ : T"istruethent must be denoting, which
means that ¢ = ¢ istrue aswell. If ¢ isnon-denoting, then¢ : 7" is neither-true-nor-false.

A typed logic of partial functions 5

Abbreviations and notational conventions

Additional connectives and quantifiers are defined as abbreviations:

false = Ax
§A = AV-A,
ALV A = —|(—| A]_/\"Az),
Al = Ay = A1V Ay,
A & A = (Al = Az)/\(Az = Al),
Je:T-A = =Ve:T A,

Definedness (|) and strong equality (==) are used in Sect. 3. They are defined by
the following abbreviations:

t = Al=1),
t1==1, = (tll vV tzl) = (t]_ =i A A(tl =1 ANt = tz)) .

Sot| istrueif ¢ isdenoting and ¢ | isfalse otherwise. Strong equality isvery much like
equality inclassical logic: t1 ==t istrueif ¢, and ¢, denote the same object or both are
non-denotingand ¢ == ¢, isfalse otherwise.

For convenience, non-equality is also defined as abbreviation:

t]_?-(tz = —|(t1:t2) .

The need to use parentheses in the string representation of formulae is reduced
by ranking the precedence of the logical connectives A, §, =, A, V, =, < . The
enumeration presents this order from the highest precedence to the lowest precedence.
Furthermore the scope of the quantifiers extends as far as possible to the right and
Yoy :Ty----Va, 11, - Aisusudly writtenas Va1 : 11, ..., 2, 1 T, - A. Parentheses
are usually omitted in terms of the form f(¢4, . . ., t,,) whenever arity(f) = O: constant
symbols are used as terms.

Free variables and substitution

For aterm or formulae of LPF(Y), free(e) denotes the set of free variables of ¢, which
is defined in the usual way. A variable symbol z is called freein e if z € free(e). We
write free(/"), where I" is a set of formulae, for | J{free(4) | A € I'}.

Substitutionfor variablesisal so defined in theusual way. Let 2 beavariable symbol,
t beatermand e beaterm or formula. Then [« :=t]e istheresult of replacing theterm ¢
for the free occurrences of the variable symbol z in e, avoiding — by means of renaming
of bound variables — free variables becoming bound in ¢.

2.3. Proof system of LPF(X)

Sequents

The proof system of LPF(Y) is formulated as a sequent calculus for proofs in nat-
ural deduction style.! The inference rules have formulae and sequents amongst their
hypotheses (called ordinary hypotheses and sequent hypotheses, respectively).

1 For acomparisonof this and other proof styles as well as other kinds of proof systems, seee.g., [Sun83].

6 C.B. Jonesand C.A. Middelburg

A sequent is an expression of the form /" = A, where I" and A are a finite set of
formulae and a formula, respectively, of LPF(X). Instead of {} - A we writet A.
Furthermore, we write I', I'" for " U " and A for {A}.

The intended meaning of the sequent I" - A isthat the formula A isa consequence
of the formulae I". There are several sensible notions of consegquence for three-valued
logics; that underlying LPF is precisely defined in Sect. 2.4. It corresponds to the
intuitive idea that one can draw conclusions that are true from premises that are true
(called strong conclusions and strong premises, respectively, in [KTB88]). Formulae
and sequents are proved by (natural deduction) proofs obtained by using the rules of
inference given below.

Rules of inference

The essential point about LPF is that the law of the excluded middle (A v — A) does
not hold (A might be neither-true-nor-false). Since thisisimplied by

EAll—Az Ak A
-- —|Al

and therule (A-E) given below (which can be used in LPF aswell asin classical logic),
it followsthat the rule (— -1) — or any other rule corresponding to the principle of proof
by contradiction — cannot be used. In consequence, rules concerning the negation of
negations, conjunctionsand universal quantifications are needed in the proof system of
LPF. (Other distinguishing points are discussed after the rules.)

The proof system of LPF is defined by the followingrules of inference:

2

A - = A
a4 R
Al Ap Al AN Ao .
T e LTI

(3

_| _|Ai B f0ri=l,2 - A-E ﬁ(Al/\AZ) _'Al'_A3 _‘A2|—A3

(A]_/\A) Az

x:TI—A VEt:T Vo :T A

Iz T A - [z :=t]4

t: T —e:=t]A “Ve:T Ay z2:T,- Ak Ay

"= Ve T A [-vE] Az '
— t:1 — t1=1 [l‘ ::t]_]A
(et =7 =sub [c=1]A

— 1 =t1 tr =1 — s(t1=12)

6= s(t1=12) IE t1=ti At =1

t=1 s@ T

A typed logic of partial functions 7

A - A AAy AjFA, A FA
[pep=

AAF A, AAE- A S AAFA AAE- A
[~2] ~A A -2 AT

i Restrictionon therule (—V-E): z notfreein A,.

Theruleof reflexivity for equality isslightly adapted from the classical case because
it does not satisfy the usual law in case of non-denoting terms. The additional rules for
equality are also needed because of the extension to the three-valued case —#; = ¢, is
true or false exactly when ¢, and ¢, are denoting.

Similar rules are needed for typing assertions—t¢ : 1" istrue or false exactly when ¢
is denoting.? The other rule concerning typing is needed because variables are always
denoting in LPF.

The rules for * and A are seldom used in practice. However, exactly these rules
are used to justify the derived rules of inference (false-E) and (— false-1) given below.
Further we have the following law of the excluded fourthinLPF: A v = A v = A A,

Proofs

A natural deduction proof consists of:

1. afinite set of formulae, called the hypotheses of the proof;
2. anon-empty finite sequence of formulae and proofs, called the steps of the proof,
the last of which must be aformulawhich is called the conclusion of the proof.

Each step that is a formula must be a hypothesis of the proof or the conclusion of an
instance of an inference rule. In the latter case, each of the ordinary hypotheses of the
rule instance concerned must be a hypothesis or preceding step of the proof (or of an
enclosing proof) and each of the sequent hypotheses of the ruleinstance concerned must
be established by a preceding step of the proof (or of an enclosing proof). A sequent
I' + Alisestablished by astep iff the step isa (sub-)proof, every hypothesis of the proof
isin I" and the conclusion of the proof is A.

A sequent I - A is provableif there exists a proof with " as hypotheses and A as
conclusion. A formula A is provableif the sequent - A isprovable. To indicate this, we
write LPF(X) : I' = A and LPF(Y) : A, respectively.

Derived rules

The following are some derived rules, i.e. for each instance of these rules, if the hy-
potheses are provable then so is the conclusion:

false tFt
z

2 These rules make the rule of reflexivity for equality superfluous.

8 C.B. Jonesand C.A. Middelburg

_ 1=t -tl#tz

thh:11 t2. 1% x:THA
§(t1=12) E

The following derived rules show how weak equality and strong equality are related:

5=’

== t2 tl = tl

U
[7=—=] =1,

The formulae and sequents of LPF are translated to formulae and segquents of
classical infinitary logic (L,,) in Sect. 2.5. The translation concerned has the property
that what can be proved in LPF remains the same after trandation. This implies that
theinference rules of LPF become derived rules of L., after tranglation. The translation
provides onejustification for the inference rules of LPF; another justificationis afforded
by the interpretation given below.

2.4. Interpretation of LPF(X)

The proof system of L PF isbased on the interpretation of terms and formul ae presented
below: the rules of inference preserve validity under thisinterpretation.

Structures

Terms and formulae of L PF(Y) areinterpreted in structureswhich consist of a universal
domain of values and an interpretation of every symbol in the signature ' as well as
the equality symbol. The universal domain of values must be a set containing a special
element | . When aterm is non-denoting, | isused as its interpretation. Analogously,
when aformulais neither true (T) nor false (F), N isused as itsinterpretation.

A structure A, with signature X, consists of:

1. asetY”, thedomainof A, suchthat | € A andU” — {1} #{};
2. forevery T' € T(Y),

aset 7A suchthat 7A C U” — {1 };
3. forevery f € F(2), arity(f) = n,
atotal map fA 1 U x - x UP — UP;
————

n times

4. forevery P € P(Y), arity(P) = n,
atotal map PA 1 YA x - x UM — {T,F,N};
N ——

n times

5. atotal map =* : UA x UM — {T,F,N} suchthat for all d,d’ € U*,

T ifd¥1 and d'# 1 and d=d’
Ad,d)=¢ F ifd# 1 and d # 1 and d¥# d’
N otherwise.

Instead of w” we write w when it is clear from the context that the interpretation of
symbol w in structure A is meant.

A typed logic of partial functions 9

Assignments

An assignment in a structure A with signature X' assigns to variables elements in
the domain of A. However, variables are never mapped to 1. This restriction is in
accordance with the treatment of variables: both free and bound variables alwaysdenote.
The interpretation of terms and formulae of LPF(X) in A is given with respect to an
assignment « in A.

Let A be a structure with signature 2. Then an assignment in A is a function
a:VAR—UA —{1}.

For every assignment « in A, variable symbol = and element d € UA — {1}, we
write a(z — d) for the assignment o’ such that «’(y) = «(y) if y Z « and o’ (z) = d.

Interpretation

The interpretation of terms is given by a function mapping term ¢, structure A and

assignment « in A to the element of /* that is the value of ¢ in A under assignment

«. Similarly, the interpretation of formulae is given by a function mapping formula A,

structure A and assignment « in A to the element of {T,F, N} that is the truth value

of Ain A under assignment «. We write [t]4 and [A]A for these interpretations. The

superscripts are omitted when it is clear from the context which structureis meant.
The interpretation functions for terms and formulae are inductively defined by

=15 a(z) ,
[f(te, ... ta)]A SADL, - [a12)

and
[«1% = N,
[[P(tla sy tn)]]g = PA([[tl]]éa R [[tn]]é))
[t=t0h = =A([tadh, [t212)
T if[t]A# L and [1]4 € T
I[t:71%5 = F if[1% # L and [¢ T4
N otherwise,
A _ T if[A]4=Tor [A]L =F
[AAl. = { F otherwise,
T if[415=F
[- AL = FOf[AIL =T
N otherwise,
T if[Ah=Tand [A]4 =T
[A41 A A5 = F if[Ad4 =For [AJ4=F
N otherwise,
T if forall d e T4, [A]]Q(%d) =T
Ve :T-A]A = F if forsome d € T#, [A]L_q=F
N otherwise.
WewriteA E A[a] for [A]A = T.

10 C.B. Jonesand C.A. Middelburg

Notice that the above interpretation makes conjunction non-strict in both of its
arguments and gives thetruth value F for a universally quantified formulavz : 7"- A in
some cases where the interpretation of A isneither T nor F for some assignments.

For a finite set I of formulae of LPF(X) and a formula A of LPF(Y), A isa
conseguence of I, written I' | A, iff for all structures A with signature X, for all
assignments o in A, if A | A'[«] forall A’ € I'then A E Al«].

Theorem 1. The proof system given above for LPF has the following soundness and
completeness properties:

soundness : if 'FA thenl" EA;
completeness: if ' F A, thenI'+ A .

Proof. The proof for the untyped case in [Che86] extends directly to the typed case.

It is a conseguence of the compositional style adopted for constructing a compl eteness
proof that —in case of incompleteness — the failed proof attempt indicates the origin(s)
of the incompleteness. In fact, the rules (s :-1), (6 :-E), and (x-den), which are needed
for typing assertions, were only discovered when we tried to construct the completeness
proof.

2.5. Embedding LPF into L,

In this subsection, the relationship between LPF and classical infinitary logic is charac-
terized. The terms, formulae and sequents of L PF are trandlated to terms, formulae and
sequents, respectively, of L,,. The mappings concerned provide a uniform embedding
of LPFintoL,,. Thetranslation hasthe property that what can be proved in L PF remains
the same after trangdlation. It provides an illuminating classical explanation of LPF and
justifies the inference rules of LPF logically. Later, extensions of LPF concerning the
base types and type formers used in VDM, subtypes via invariants and recursively de-
fined types and functions are presented. Theinference rules concerned are a so justified
by an embedding intoL,,.

Trandation

In the trandation, a canonical mapping from symbols of LPF to symbols of L, is
assumed. More precisely, we assume a total mapping from)i pe to V) ,; for each
w € Vi pr, Wewritew for the symbol to which w is mapped. Furthermore, the mapping
isassumed to be injective and such that

each type symbol 7" is mapped to a predicate symbol T
with arity(T") = 1,

each function symbol f is mapped to a function symbol f
with arity(f) = arity(f),

each predicate symbol P is mapped to afunction symbol P
with arity(P) = arity(P),

each variable symbol z is mapped to a variable symbol .

A typed logic of partial functions 11

We also use the notation W for the image of W (W C V. gr) under this mapping. We
write:

Tipe for U{,TLPF(E) | e SG},

Lipe for U{LLpe(X) | X € 9SG},

T, for 7L, (D) X € SIGY,

Ly, for J{LL (X)| X € SIG}.

The terms and formulae of LPF are translated by mappings:
(o) : Tipr — 1o, (eD': Lipr— Lo, -

For the translation of formulae, an auxiliary mapping is used as well:
(]:0])f LipE — 'CLw .

For aterm¢ of LPF, theterm (¢]) isthetranglationof ¢ toL . For aformula A of L PF, the
formula (A]! isthetrandation of A to L,,. Intuitively, (A)]' isaformulaof L, stating
that the formula A of LPF istruein LPF. Likewise, (A])) isaformulaof L, stating that
the formula A of LPF isfalsein LPF. In case both (A]) and (A)' are falseinL,,, A is
neither-true-nor-falsein LPF.

The syntactic variables that are used in the definition of these mappings, range over
syntactic objects as follows (subscripts and primes are not shown):

T rangesover TYPE, xz rangesover VAR
f rangesover FUNC, t rangesover 7| pr,
P rangesover PRED, A rangesover L pr.

It isassumed that t,f, | € FUNC, U,B € PRED, y,y1,...,yn € VAR, t,f, 1 of
arity 0 and U, B of arity 1.

The symbol = is used for equality in L,,. This (classical) equality is explained in
Appendix A.

The tranglation mapping for terms isinductively defined by

(=) = =,
(RGN AY)) F(D, -, (D) -

The trand ation mapping for formul ae and the auxiliary mapping are simultaneously and
inductively defined by

(+)! = faise,
(P(y,.. ., t))' = P((taD, ..., (D) =t,
(t1=t)" = @D #TAED#ETA D =D,

@:7)" = @D#1AT(D),

(24D = (A)'V (4],

—A) = (4,

(A1 A A)' = (A" A (42D,
(Ve : T - A)' Vo - T(z) = (A]D',

12 C.B. Jonesand C.A. Middelburg

([>0<])f = false,
(P(ts, -, t)) = P((taD, -, (taD) =T,
(t1=t2)" = @D #1TAUD#T A D # 2D,
@:7)" = @D#1A-T(D),
(24D = —(C(AD)'V (4D,
(—A)' = (4",
(A1 A A)" = (A" Vv (42D,
(Vo:T-A) = Fo- T(x) A (A)".

These trandlation rules strongly resemble the interpretation rules of LPF that are given
in Sect. 2.4: the rules for the mapping (])' correspond to the truth-conditions and the
rules for the mapping (] correspond to the fal sehood-conditions.

A trandlation for sequents of LPF(X") can aso be devised:

(FFA) = Ax(Z, Tu{Ah)u{(aD| A er}r (A),
where

Ax(XZ, ") =
{UM ATy -U) Ay #£THU
{t£fALETATETABO) < b=tvb=fvi=1)}U
{T@y) = V) Ay#T|TeTX)}u _
{UQa) Ao AU(a) = U(F (a, - wn)) | £ € F(D), arity(f) = n}u
{U) A - A U(y) = B(P(ys, - -, y0)) | P € P(Y), arity(P) = n}u
{U@E)Az#T|xefree(I)}.

Ax(X, I'") contains a formula asserting that the domain of values contains at least one
valuein additionto the special element used as the interpretation of non-denoting terms
and a formula asserting that the domain of truth values contains exactly two distinct
truth valuesin addition to the special element used as the interpretation of non-denoting
formulae. It also contains formulae asserting that the types concerned do not contain
the specia element used as the interpretation of non-denotingterms. It further contains
formulae asserting that application of the functions concerned yields values from the
domain of values and formulae asserting that application of the predicates concerned
yields truth values. Finally, it contains formulae asserting that the free variables are
always denoting.

Notethat thefinite fragment of L, suffices for the embedding of LPF. L,, isused be-
cause its countably infinite disjunctionsare needed for the embedding of the extensions
for recursive definitions of functions and typesin Sects. 3 and 5.

Reducibility

Roughly speaking, LPF can be reduced to L,, in the sense that what can be proved in
L PF remains the same after translation.

Theorem 2. LPF canbereduced toL,, i.e.
LPFX): ' A iff L, (XU{UB,tf1}): (I"F A).

A typed logic of partial functions 13

Proof. = isproved by induction over the length of aproof of /"' - A. For <, it suffices
to show that for some structure A of LPF with signature X that is a counter-model for
I' + A, there exists a structure A* of L,, with signature ¥ U {U,B,t,f |} that isa
counter-mode for (1" - A]).

It is assumed that the trandlation of sequents is extended to inference rules in the
obvious way.

Corollary. Thetrandation of theinference rules of LPF are derived rulesin L, .

3. Recursively defined functions

In the previous section, L PF was embedded into L, . Recursive function definitions can
berepresentedinL,, . Thispermitstherulesused for reasoning about recursively defined
functionsin LPF to become derived rulesof L, .

In this section the extension of L PF for recursive function definitions is described.
First, theadditional formationrules, inference rulesand interpretationrulesfor recursive
function definitions are given. Thereafter, their embedding into L, is defined.

3.1. LPF and recursive function definitions

The logic LPF is used in VDM to reason about recursively defined functions. The
treatment of recursive function definitionsin VDM is made precise below by defining
a conservative extension of LPF.

The following additional formation rule for termsis required:

3. if Aisaformulaand ¢ and ¢, are terms, thenif A then t; else ¢t iSaterm.

Terms of thisform are called conditionals. In [BCJ84], conditionals are a so regarded
as terms of an extension of LPF.
The following additional formation rule for formulae is required:

8. if f € F(Y), arity(f) =n, x4, ..., x, aredistinct variable symbols, 71, ..., T,, are
(not necessarily distinct) types and ¢ is a term with free(t) C {«1,...,z,}, then
flz1 1, ..., 2, 2 1,)T 2 tisaformula

Formulae of this form are called recursive function definitions. A recursive function
definition f(z1 : 11,..., 2, : T,) T 2 t defines f directly in terms of a defining term
t in which the function being defined may be recursively used. It corresponds to the
direct definition of f writteninthe VDM notation as

fiTix--xT, =T
flze,. .., zn) 28

The following are additional inference rules for conditionalsand recursive function
definitions:®

3 Thefirst hypothesisof the rule (Func-ind) could be replaced by thesimpler [f(z 1, . .., zy) :=*] A if x
was also regarded as a (non-denoting) term of the extension of L PF.

14 C.B. Jonesand C.A. Middelburg

- A - - A
IE if Athentielsety, ==1; IE if Athentqelsety; == 1,

- ((if Athentqelsety)])

une fler:Th,. . xn)T 2t f(r,...,2,) =1t
_‘(Ul) = [f(l‘l,...,l‘n)::U]A

. Al_[f(l;laaxn):t]A . . . X
Func-ind f(l‘l Ty, T Tn)Tét FA4 t continuousin f, A admissiblein f

Here[f(x1,...,z,) =t] A istheresult of ssimultaneously replacing the occurrences of
the substitution instances of f(z1,...,z,) in A by the corresponding substitution in-
stances of ¢. The function definition hypothesisis usually dropped when it is clear from
the context which definition is meant.

We say that ¢ is continuous in f iff the mapping from functions to functions that
maps f to (thefunctionthat maps «1, . . ., «,, t0) t iscontinuouswith respect tothe ‘less
defined than’ ordering given below. A sufficient syntactic condition for continuity is: in
every term of theformif A’ then 1 else ¢, occurringint¢, f doesnot occur in A’.

We say that A isadmissiblein f iff, for every chainof functions Fo C F3 C Fo C ...
(where C is the ‘less defined than' ordering) contained in the set of all functions f
satisfying A, itsleast upper bound isalso in that set. The following syntactic properties
characterize alarge class of admissible formulae. Formulae of theforms P(ty, . . ., t,),
ty=tp,t' T, =@ :T"),¢] and = (¢']) are admissible if in every term of the form
it A’ then {1 else ¢, occurring in the formula concerned, f does not occur in A’; so
are formulae of the forms —~ P(¢1,...,t,) and t1 ¥ ¢, if additionaly f occurs in at
most one of the terms ¢; (where 7 € {1,...,n} and i € {1,2}, respectively). Also
admissible are formulae in which f does not occur. Furthermore, if A’, A; and A, are
admissibleformulae, thenso are A1 A A, Ay vV AyandVa : T - A’. Sois3a : T - A’
if additionally 7" isafinitetype. If A’ isan admissible formula, then so are all formulae
obtained by replacing one or more occurrences of a subformula A” by — — A’ or vice
versa. From these propertiesit followsamong other thingsthat aformulaof theform A4
= Ay isadmissibleif = A; and A, are admissible.

Strong equality (==) isused instead of weak equality (=) in therules (i-1) and (if-2)
for the sake of conciseness and simplicity of the collection of primitiveinference rules
for conditionals. However, rules involving strong equality, which can only be defined
in LPF by means of the uncommon connective A, can mostly be dispensed with when
reasoning about specifications. The following derived rules for conditionals are more
often used in practice:

- t1=t1 A - to=t, - A
_1/ _o/
IE if Athentielsety =1, IE if Athentyelsety = 1o

M oreover, the method of reasoning about recursive functions discussed below often cir-
cumvents the need to argue about conditionalsdirectly.

In the structures used for interpretation, a partial functionis modelled by atotal map
whose argument domains and result domain contain 1. An argument tuple is mapped
to L if the function concerned is undefined for that argument tuple. This suggests the
following definition, which is used in the additional interpretation rules given below.

A typed logic of partial functions 15

For total maps ', G : U™ x --- x UM — UM, where A isagiven structure, F' isless
—_———

n times

defined than G iff
forall di,...,d, €U F(dy,...,dpy)# L = F(da,...,dy) =Gy, ..., dy).

The following are the additional interpretation rules for conditionals and recursive
function definitions:

[tad% if[ADS =T
[[if A thenty else tz]]g = [¢s if [ADL =F
L otherwise,

[[f(xl:Tla"'a$n Tn)Tét]]g =
T if fAistheleast defined F : U” x - - x U” — UP such that
N —
n times
forall dye T8, ... d, € TN deTh,
[[t]]é(xlﬁdl)m(xn—»dn) =d= F(dla B dn) =d
F otherwise,

where A’ is the structure with signature X such that w?' = w” if w £ f and fA' = F
(weld).

Note that the interpretation of f(xq : T1,..., 2, : T,) T 2 t isnot a set of models
in which f corresponds to the function being defined. Instead it is essentialy the
characteristic function of the set concerned. This interpretation is taken for technical
reasons: function definition hypotheses and other hypotheses can thus be treated alike.

The soundness of the rules (if-1), (if-2), (if-3) and (Func-def) with respect to this
interpretation is obvious. The hypotheses of the rule (Func-ind) imply that A holds for
a countable sequence of approximations of the function f where each approximationis
less defined than the next one: the first approximation is the totally undefined function
and each of the following approximations relies on the previous approximation for the
recursive uses of f in¢. If ¢ is continuous in f, then this sequence converges to the
function being defined according to the interpretation of recursive function definitions
given above. If additionally A isadmissiblein f, A holdsfor that function as well.

In[Jon90], itisinformally explained how arecursive definition of a partial function
can be rendered into inference rules. The inference rules concerned resemble the appro-
priate rules of an inductive definition of the function (for partial functions, such rules
usualy need to be of a particular form). Given the recursive definition, the inference
rules can also be regarded as derived rules of thisextension of LPF. For example,

fac : Z—Z
fac(n) 2 if n = O then 1else n x fac(n — 1)

is a recursive definition of a function on integers which yields the factorial of non-
negative integers and is undefined otherwise. The corresponding inference rules accord-
ing to [Jon90] are

—t:Z t#0 fac(t —1) =t
- fac(0) = 1 @ fac(t) =t « ¢/

They are derived rules of L PF with the extension for recursive function definitions. The

16 C.B. Jonesand C.A. Middelburg

rules (fac-b) and (fac-i) are alowing any fixpoint of the definition instead of requiring
the least fixpoint.* They do not suffice to show that fac is only defined for non-negative
integers, i.e.

Ve :Z-fac(z)] = > 0.

Thejustification of thisleastness result depends among other thingsupontherule (Func-
ind). Note that the uncommon connective A has to be used — at least indirectly — to
formulate leastness results. However, such results are not often needed when reasoning
about specificationsin practice.

3.2. Embedding recursive function definitionsinto L,

Just like formulae of LPF, recursive function definitions can be mapped to formul ae of
L. Therules (if-1), (if-2), (if-3), (Func-def) and (Func-ind) become derived rules of L,
after trandlation. So the translation justifies these additional rules aswell. Consequently,
it also justifies the generation of rules from recursive function definitions according
to [Jon9Q].

Recursive definitionsin L,

InL,,, alarge class of recursive definitions can be expressed as formulae® To describe
the formulae concerned, we use the following notation:

— defined predicates {1, . . ., z,, | A}, with the meaning given by
{$la ceesdn |A}(tla c atn) ~ [$l::tla ceesdn :tn]A,

— predicate operators AP.{xy, ..., 2, | A}, with the meaning given by
(APALzy, ...,z | ADD) ={2y,..., 2, |[P:=D]A};

— afixpoint operator Fix: Fix(®) is the least fixpoint of ¢ for continuous predicate
operators® = AP.{x1,...,x, | A} witharity(P) = n.

All thisis precisely defined as abbreviationsin Appendix A.

This will do to describe the formulae corresponding to recursive predicate defini-
tions. In case of recursive function definitions, the definition concerned has first to be
replaced by a recursive definition of a predicate that uniquely determines the function
concerned. The replacement is also given by the mapping o defined in Appendix A.

EmbeddingintoL,,

Conditionalsrequire that terms are translated to formulae of L, by a mapping
(eD* : Zipr x T, — Lo,

where 7| p denotes the set of all terms of LPF extended for recursive function def-
initions. Intuitively, (tD* is a formula stating that the value of ¢ is «. The required

4 Ingeneral, suchinferencerules are allowing almost any fixpoint. However this qualification appliesonly
to very pathological cases.

5 Therecursivedefinitions concerned are exactly thedefinitions f (w1 : T, ..., on : Tn) T 2 ¢ forwhich
t iscontinuousin f.

A typed logic of partial functions 17

adaptations of the trandlation rules for the terms and formulae of LPF are trivial; e.g.
the rule for the tranglation of function applications becomes:

(f(te, - 1)) =
Jyz, s yn - Uly) Ao AUQR) A DA oAD" A F(ys, .- yn) =u .
The following ruleisfor the translation of conditionalsto formulagof L , :
(if A then 11 else)" =
(CAD' A (taD") V(= AD' A (D) V ((— A AD)' Au=T) .

The following rules are for the tranglation of recursive function definitionsto formulae
of L,:

(fler:To, .. en TH) T A =
Vep, ..., e,y -U(e) A ... AUGE,) AU(Y) =
(f(wla"'awn)=y®
(yiT/\D(wlaawnay))\/
(y=T/_'Ely/'U(y/)/\D(wla"'awnay/)))’
where
D = FxAFA{axy, ..., &0, y|Ti(x) A ... A Tp(e,) A T(y) Ao(((D¥)}),
and
(fe:Th, ..., 20 T)T 2 = =(fer:Th,... a0 TR)T A1),

The inference rules (if-1), (if-2), (if-3), (Func-def) and (Func-ind) become derived
rulesof L,, after trandation.

For the function fac defined above, the translation of the body of the definition, ()Y,
islogically equivalent to

mM=0Ay=1)V(mZOAy=n=x* fac(n — 1))

under the assumption that » : Z. After applying the mapping ¢, we obtain the following
recursive definition of the corresponding predicate:

Fac =

{n, y | (ZD)(n) A (ZD(y) A
(n=0Ay=1)Vm#OA Iz - Facln — 1L 2) Ay=mn=x*2))}.

After applying Fix to the corresponding predicate operator, we obtain adefining formula
logically equivalent to

Vn,y-Um) AU(y) =
(fac(n)=y &

@) Ay=1)V
m<O0OAy=17V
(m=0Ay=21V
(m=1Ay=mn)V
m=2Ay=nxn-1)Vv
m=3Ay=n+m-LD*xn-2)V

18 C.B. Jonesand C.A. Middelburg

4. Basetypes and type formers

In the VDM notation, one has base types such as the boolean type B, whose elements
are the truth values, and the natural type IN, whose elements are the natural numbers.
Other types can be constructed from the base types by means of type formers such as
the set type former e¢-set and the sequence type former ¢*. The elements of 7-set are the
finite sets with elements of type r and the elements of 7 are the finite sequences with
elements of type r. Another useful type former is the union type former e|e. Its useis
necessary in recursive type definitions (treated in Sect. 5). The elements of r |, arethe
valuesthat are elements of m or .

Instead of describing the extension of LPF for base types and type formers fully,
only the adaptations for the natural type, the sequence type former and the union type
former are described in this section. Other base types can be treated in the same vein as
the natural type and other type formers can be treated in the same vein as the sequence
type former. The union type former is quite different from the other type formers.

First, the additional formation rules, inference rules and interpretation rules for the
natural type, the sequence type former and the union type former are given. Theresfter,
their embedding into L, is defined. A meta-rule for the creation of induction rules for
inductively defined typesis also given.

4.1. LPF and types

The logic LPF is aso used in VDM to reason about VDM'’s base types and the types
constructed from them by means of VDM’stype formers. The treatment of these types
can be made precise by defining another conservative extension of LPF. It requires
the introduction of type expressions. The required adaptations of the formation rules,
inference rules, etc. of LPF and the extension for recursive function definitionsto the
introduction of this syntactic category are trivial: type symbols are simply identified
with type expressions. However, the current extension reguires more.
The following formation rules for type expressions are required:

. type symbols are type expressions;

. Nisatype expression;

. if T isatypeexpression, then 7* isatype expression;

. if m and r, are type expressions, then ;| isatype expression.

A OWNPE

The following are additional inference rules concerning the natural type and the
sequence types:

. t: N
- suce(t) N

— [2:=0]4 z:N AF [2:=suce(z)]A
[1vind] T NFA

— t1:17 1o T
T [i

- [x2:=[1]A @17 a2 7% AF [22:=cons(xy, 22)] A
I:S&Hnd T FA

A typed logic of partial functions 19

The rules (N-ind) and (Seg-ind) are induction rules for natural numbers and finite se-
guences, respectively.
The following are additional rules of inference concerning union types:

t:mmVt.m £ t:T]_|T2
Kl BV

A structure A with signature %' has the following additional restrictionson ¢/ A:

la NCur—-{1};
1b. forevery S CUA — {1}, 5* CU”r - {1}.

Here A/ denotesthe set of all natural numbers.
The additiona interpretation function for type expressionsisinductively defined by

[t = 1,

A = AN,

[~1* = @17,
[ralm]® = [rl®ulrd”.

The soundness of theinference rules concerning the natural type, the sequence types
and the union types with respect to this interpretation is obvious.

The VDM notation does not have dependent types. Therefore, the interpretation
of any type expression remains the same under different assignments. Formulae such
as[] # 0 are not excluded syntactically, because typing is not decidable in the VDM
notation — due to its subtyping mechanism (described in Sect. 5).

4.2. Embedding typesinto L,

Type expressions can also be embedded into L,,. They can be mapped to defined
predicates. The inference rules concerning the various types become derived rules of
L, after trandation. So the trandlation justifies these rules as well.

Inductive definitionsin L,

In Sect. 3, defined predicates, predicate operators and afixpoint operator wereintroduced
as abbreviationsto facilitate expressing recursive definitionsas formulae of L. A large
class of inductivedefinitions can al so be expressed as formul ae. To describetheformulae
concerned, we use the following additional notation:

— ¥y, ..., &, withthe meaning given by
T1, . S Tn =Y, Un |1 F 2LV NV Yy F)

— [P*:= D] A istheresult of replacing the defined predicate D for the positive occur-
rences of the predicate symbol P in A.

In the case of an inductive definition A of a predicate P, the formula A is trans-
formed into a continuous predicate operator ¢ with the property that Fix(®) is
the smallest P satisfying A. Under certain mild conditions, the predicate operator
& = AP{xq,...,x, | [PY:=71, ., %,]A} turns out to be appropriate. This is de-
scribed in detail in Appendix A.

20 C.B. Jonesand C.A. Middelburg

EmbeddingintoL,,

Type expressions are translated to defined predicates by a mapping
(o) : Xipr — Do,

where X pr denotesthe set of al type expressionsand D, denotes the set of all defined
predicates. Intuitively, (] is the defined predicate D such that ¢ : = istruein LPF is
stated by Jy - (t)Y A D(y). This mapping isinductively defined by

() = 1,
(D) = Fix(AP{y|=~[P":=7](P(0) A Yy1 - P(y1) = P(succ(y))}),
(") = Fx(1Q{y|-[Q"=7]
(QUD A Vyr, 2 - (7D (1) A Q(y2) = Q(cons(ya, y2))1)
(ralm2D = {y[(D) Vv (D)} -
Note that
P(0) AVYy1- P(y1) = P(suce(yr))
and

QUD AVyr,y2- (7D(y) A Qy2) = Q(cons(yi, v2))

are the usual inductive definitions of the set of all natural numbers and the set of all
finite sequences over a given set (r]), respectively. After replacing 7 for the positive
occurrences of P and (), respectively, in these formulae and taking the negation of the
resulting formulag, we obtain the usual recursive definitions:

P={yly=0V Jy1- P(y1) A y = succ(y1)}

and

Q={yly=[1V 3y, v2- (7Dy1) A Qy2) A y = cons(y, y2)} .
After applying Fix tothe corresponding predi cate operators, we obtain defined predicates
() and (7*]. One easily verifies that

M) < V,y=succ"(0),

where
sued®(t) =t
succ™t) = suce(suce™(t))
and
(D) < V,4n,
where
AO = y= [])
Ansr = Fyns o Une - (PD(Wa) AL A (D (ynea) A

y=cons(yi, ..., cons(Yn+1,[1)) -

These formulae define the predicates concerned correctly. So the transformation works
for theinductive definitionsof (IN]) and (~*]). Thiswasto be expected because theform

A typed logic of partial functions 21

of the inductive definitions (the Horn formulae form) guarantees that the applicability
conditionsfor the transformation are met.

The above showsthat theembeddingin L, for other basetypesand types constructed
by means of other type formers can be easily obtained if we know a way to generate
any element of the type concerned.

It iseasy to seethat theinference rules concerning union types become derived rules
of L,, after trandation. A corollary from one of the justifications of the meta-rule about
inductive definitions given below is that it is also the case for the rules concerning the
natural type and the sequence types.

4.3. A meta-rule about induction rules

All base typesand typesconstructed by means of typeformers can be defined inductively
in LPF by an instance of the following schema:

cL:TN...N¢cp . TA

(Vx}:rll,...,x,lll:Tﬁl~f1(x%,...,xrlll):7')
A
A
(Vo oy il fmET 2)T

Fact 3. If theinductive definition of atype 7 is an instance of the above schema, then
the corresponding instance of the induction rule schema

[t=c1]A ... [x=c,]4
etirt, el it A{le=aflAlnt = b b (2= fa(ed, . 2))]A
et ot ey ol Ale=el]AI =) (= Sl))]A
z:THA

isasound rule of inference.

Proof. After transforming the translation of the inductive definition as described in the
previous subsection, we obtain the following defining formulafor (7]):

(D) < V,4n,
where

Ap = y=ea V... Vy=e,,
An+1 =

22 C.B. Jonesand C.A. Middelburg

A, V
(F=xl, .. .,:1371” .
A GDEHA N\ y=aelA, Ay=fad o al)
ie{i|rlz T} ie{ilTi=7}
vV
vV
[z, ... 2 -
A YA N EallA Ay = Fall, . a2n) .
ic{ilr#T) ig{ilr =7}

This is the construction of the inductive closure of the set {c1,...,¢,} under the
functions fi, ..., fin, expressed in L. The induction rule follows directly from the
induction principlefor inductivesetsand (z :)¢ < (7])(=).

Another justification can be given by showing that the induction rule becomes a
derived rule of L, after tranglation. After translation, we can infer

(Ao = [#:=y](AD") A
An((An = [2:=y1(AD)") = (A = [=:=y](ADY)

from the hypotheses of therule. Then A, (4, = [=:=y](A)") followsby transitivity
of implication. (7)) () = (A)?!, thetranslation of the conclusion of therule, isadirect
conseguence.

It follows immediately from this alternative justification that the inference rules
concerning the natural type and the sequence types become derived rules of L, after
trandlation.

5. Subtypes and recursively defined types

As well as recursive function definitions, recursive type definitions can be represented
inL, . Sothe rules used for reasoning about recursively defined typesin LPF become
also derived rules of L. In addition to type formers and recursion, restriction of types
to subtypesis used in VDM to define types.

In thissection, first the extension of L PF for subtypesis described and thereafter the
extension for recursive type definitions. For both extensions, the additional formation
rules, inference rules and interpretation rules as well as the translation rules for the
embedding intoL,, are given.

5.1. Subtypes

Inthe VDM notation, atype can also be a subtype of another type specified by means of
aninvariant. For example, sequences without repeating elements are defined as follows:

Useq = Elem”
inv inv-Useq(s) £ is-uniques(s)

An obvious definition of is-uniquesis

A typed logic of partial functions 23

isuniques : Elem* — B
isuniques(s) &2 Vi, j i Ny-i,j €indss A1 % j = s(i) # s(j)

For aprecise treatment of these subtypesin afurther extension of L PF, thefollowing
additional formation rule for type expressions is required:

5. if z isavariable symbol, 7 is atype expression and A is aformulawith free(A) C
{z},then<z : 7| A> isatype expression.

< : 7| A> corresponds to the subtype of ~ denoted in the VDM notation by
Tinvinv-T(z) & A

(7" isaname introduced for the subtype).
The following are additional inference rules concerning subtypes:

t:r AN[z=t]A ti<e:T|A>
I@t:<x:r|A> I@t:r/\[r::t]fl
The following isthe additional interpretation rule for subtypes:

[<z:7]A>]* = {de 1" [Al0e—a}

where « isan arbitrary assignment in A. The soundness of theinference rulesconcerning
subtypes with respect to thisinterpretationis obvious.

The following additional tranglation rulefor type expressions makes these inference
rules derived rules of L, after trandation:

(<e:7|A>) = {x[(D(=) A (4D}

So subtypes can aso be embedded into L.

Justification of induction rules for subtypes by means of the inference rules given
above generaly requires proofsby induction. For sequences without repeating elements,
the appropriate inductionruleis:

l U gé[xz::[]]AA F () A
- x1 . F em,xp . USE(, x1 ¢ elemsxy, T =cons(x1, T2
I@ zo UseqF A

is-uniques can just as well be defined as follows:

isuniques : Flem* — B
isuniques(s) &
s=[1V
3h: Elem,t : Elem* -isuniquedt) A h ¢ elemst A s = cons(h,t)

This definition shows the restrictions under which the generation of sequences yields
exactly the sequences without repeating elements. Such constructive definitions of
invariants make it easy to create induction rules for subtypes.

We can capture the creation of an induction rule for a subtype from an associated
constructively defined invariant in a meta-rule as well, because the approach described
for base types and type formers generalizes to types that can be defined inductively in
LPF by an instance of the following schema:

24 C.B. Jonesand C.A. Middelburg

c1L:TN...N¢cp . TA

(Vx%:rll,...,xrlllirﬁl~A1 = fl(x},...,xrlll)ir)
A
A
A R e R T L C1 A L B) I

where theformulae As, . . ., A, donot contain .

5.2. Recursive type definitions

Inthe VDM notation, atype can also beintroduced by arecursive type definition7” = .
For example, LISP-like lists can be defined by L = IN|L*. The use of the union type
former is necessary in recursive type definitions.

For a precise treatment of recursive type definitions, an additional formation rule
for formulaeis required:

9. if T'e T(X) and r isatype expression, then 7' = r isaformula.

Intherulesused for reasoning about recursively defined types, recursive type definitions
are used as formulae.
Additional inference rules are:®

Type-def tr

g [T={NA AF[T:=1]A i inT A admissbleinT
ype-in T=7F A T continuousin 1, missiblein

Thetypedefinition hypothesisis usually dropped whenitisclear from the context which
definition is meant.

We say that = is continuous in 7" iff the mapping from types to types that maps
T to 7 is continuous with respect to the ‘less than’ ordering given below. A sufficient
syntactic conditionis: in every type expression of theform <« : 7/ | A’ > occurring in
7, T doesnat occur in A’.

We say that A isadmissiblein 7" iff, for every chain of typesSo € S1 € S2 C ...
(where C isthe ‘less than' ordering) contained in the set of all types 7" satisfying A,
itsleast upper bound isaso in that set. The following syntactic properties characterize
a large class of admissible formulae. Formulae of the forms¢ : 77, = (¢ : T7") and
A" : T") are admissibleif in every term of the formif A’ then {1 else ¢, occurring in
the formula concerned, 7" does not occur in A’. Also admissible are formulae in which
T does not occur. The preservation properties are as in case of functions (treated in
Sect. 3).

For sets S, 5" CU — {L}, Sislessthan &’ iff S C 5.

The following is the additional interpretation rule for recursive type definitions:

[7=71% =
T if T*isthelesstS C UA — {1} suchthat S = [T~
F otherwise,

6 Here { } denotes the empty type. The use of terms that denote sets as types is described in the next
section.

A typed logic of partial functions 25

where A’ isthe structure with signature X7 such that w?’ = w™ if w £ T and TA" = 5.
The soundness of the inference rules concerning recursive type definitions with
respect to thisinterpretationis seen in a similar way to recursive function definitions.
The following additional trandation rules make them derived rules of L, after
trandlation:

(T=7) = Vy T() & FXAUT{yly#1 A (DO,
(T=7) = -(T=r)".

So recursive type definitions can also be embedded into L, .
Induction rules for recursively defined types can be justified by means of the rule
(Type-ind). For the LISP-like list, theinductionrule

z:NFA [z:=[]1A
IE xy1: Loag: L [e=a1] A, [x =] A F [2 = cons(xy, 22)] A
o ©:LFA

can be derived. The derivation issimilar to the derivation of (structural) inductionrules
from the fixpoint induction rule of PPA in[Pau87]. Notethat thisresultisin accordance
with the meta-rule about induction rules (think of theinductive definition of thetype L).
One might doubt the type correctness of substituting « , for « in A above, but z, : L*
implies «, : L according to the rules (| -I) and (Type-def).

6. Miscellaneous matters

In the VDM notation, terms of type B are used as formulae and vice versa. This re-
quirestrivial additional formation rules and interpretation rules for terms and formulae
as well as a restriction on the structures in which they are interpreted. The following
aretheinferencerulesconcerning theinterchangesbility of formulae and termsof typeB:

5(4) t:B _ A e A
-]B%'I AR - 6(t) - A= A,
Notethat formulaet, wheret isatermthat isnot of typeB, are not excluded syntactically

— because typing is not decidablein VDM. The last rule permits derivation of therule:

t:B
t =true V { = false

B -exh

The following additional translation rules make the inference rules concerning the
interchangeability of formulae and terms of type B derivablein L, after trandation:

(A" (@A A u=t) Vv ((AD'Au=H V(A Y (AD) Au=1),
@' = @,
W = @,
Intheright-hand sideof thelasttworules, (]t and (¢])* areapplicationsof theembedding
function for terms.

Inthe VDM notation, terms of set types are used astypesaswell. Thisalso requires
some simple adaptations. The following additional rules of inference are needed:

26 C.B. Jonesand C.A. Middelburg

tt

—tet _ t': T-set
R e

Note that typing assertions ¢ : ¢’ where ¢’ is a term that is not of a set type cannot be
excluded syntactically. For thisreason, the first hypothesis of the second inference rule
is needed.

The followingisthe rule for set comprehension appropriate for set types:

- {e 7| A} T-set
@te{x:rm} & tiT A[zi=t]A

A direct consequence isthe following derived rule:

— {e 7| A} T-set
:—as-ype ti{r:7|A} & ti<z:iT|A>

The (common) hypothesisof theserulesisneeded because the set denotedby {« : 7| A}
may be infinite.

The following additional translation rule makes the inference rules concerning the
use of terms of set type as types derivablein L, after trandation:

() = {3y @ ryey).

7. Closing remarks

This paper gives a comprehensive description of a typed version of the logic known
as LPF (Sect. 2) and some extensions which are used with VDM (Sects. 3, 4 and 5).
The logical justification of the inference rules concerned — by means of an embedding
into classical infinitary logic—isnew. Further discussion of problems of finding a proof
theory for VDM can be found in [FM93]; material which shows how theories are built
using the proof theory is covered in [BFL93].

The induction rules for recursively defined functions (Sect. 3) and types (Sect. 5)
— which are reminiscent of the fixpoint induction principle — as well as the meta-rule
about induction rules for base types and types constructed by means of type formers
(Sect. 4), were not presented before. They give a firm foundation to the way in which
recursive definitions of functions and types are rendered into inference rulesin VDM.
Itis further demonstrated that constructive definitions of invariants (Sect. 5) are useful
in devising induction rules for subtypes.

From the experience with VVSL [Mid93], we know that the extensions for other
aspects of VDM such asimplicit specification of functionsand operations can betreated
in the same vein. The proof obligations associated with such implicit specifications as
well as the proof obligations associated with data reification and operation decomposi-
tion can aso be given alogical justification. Hence it appears that VDM as described
in[Jon90] can be justified entirely in classical (infinitary) logic. As a matter of course,
higher-order and polymorphic functions need heavier machinery.

Acknowledgement. Our thanks go to Gerard Renardel de Lavalette for his help related to this paper. We are
also grateful to an anonymousreferee for his detailed and val uable comments on a draft of the paper.

A typed logic of partial functions 27

References

[BCJIB4] Barringer, H., Cheng, JH., Jones, C.B.: A logic covering undefinednessin program proofs. Acta
Informatica, 21, 251-269 (1984)

[BFL93] Bicarregui, J.C., Fitzgerad, J.S, Lindsay, PA., Moore, R., Ritchie, B.: Proof in VDM: A Practi-
tioner's Guide. FACIT, Springer-Verlag 1993

[Che86] Cheng, JH.: A Logic for Partial Functions. PhD thesis UMCS-86-7-1, University of Manchester,
Department of Computer Science, 1986

[C391] Cheng, JH., Jones, C.B.: Ontheusability of logicswhich handlepartial functions. In: Morgan, C.,
Woodcock, J.C.P. (eds.) 3rd Refinement Workshop, pp. 51-69. Workshops in Computing Series,
Springer-Verlag 1991

[FM93] Fitzgerald, J.S., Moore, R.: Experiences in developing a proof theory for VDM specifications.
Technical Report TR424, University of Newcastle upon Tyne, Department of Computing Science,
1993. Alsoin: Andrews, D.J., Groote, J.F, Middelburg, C.A. (eds.) Semantics of Specification
Languages. Workshopsin Computing Series, Springer-Verlag (to appear)

[Jon90] Jones, C.B.: Systematic Software Development Using VDM (2nd edition). Prentice-Hall Interna-
tional Seriesin Computer Science, Prentice-Hall 1990

[Kei71] Keisler, H.J.: Model Theory for Infinitary Logic. Studiesin Logic, vol. 62, North-Holland 1971

[KR89] Koymans, C.PJ., Renardel de Lavalette, G.R.: Thelogic MPL,,. In: Wirsing, M., Bergstra, JA.
(eds.) Algebraic Methods: Theory, Toolsand Applications, pp. 247-282. Lect. Notes Comput. Sci.,
vol. 394, Springer-Verlag 1989

[KTB88] Konikowska, B., Tarlecki, A., Blikle, A.: A three-valued logic for software specification and
validation. In: Bloomfield, R., Marshdl, L, Jones, R. (eds.) VDM '88, pp. 218-242. Lect. Notes
Comput. Sci., vol. 328, Springer-Verlag 1988

[Mid93] Middelburg, C.A.: Logicand Specification—Extending VDM-SL for advanced forma specification.
Computer Science: Research and Practice, vol. 1, Chapman & Hall 1993

[MR91] Middelburg, C.A., Renardel de Lavalette, G.R.: LPF and MPL., —A logical comparison of VDM-
SL and COLD-K. In: Prehn, S., Toetenel, W.J. (eds.) VDM '91, vol. 1, pp. 279-308. Lect. Notes
Comput. Sci., vol. 551, Springer-Verlag 1991

[Pau87] Paulson, L.C.: Logic and Computation. Cambridge Tractsin Theoretical Computer Science, vol. 2,
Cambridge University Press 1987

[Ren89] Renardel de Lavalette, G.R.: COLD-K?2, the static kernel of COLD-K. Report RP/mod-89/8,
Software Engineering Research Centrum, Utrecht, 1989

[Sco67] Scott, D.S.: Existence and description in formal logic. In: Schoenman, R. (ed.) Bertrand Russell,
Philosopher of the Century, pp. 181-200. Allen & Unwin 1967

[Sun83] Sundhold, G.: Systemsof deduction. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philosophical
Logic, Chap. I.2. D. Reidel Publishing Company 1983

A. L,

In this appendix, L., isreviewed in brief. For a comprehensive discussion of thislogic,
seee.g. [Kei71]. How recursive definitionsand inductive definitions can be expressed as
formulae of L, isaso described in this appendix. The method concerned was worked
out (for MPL) by Renardel in [Ren89].

Introductionto L,

In L, there are no type symbols. A signature is just a set of function symbols and
predicate symbols. The formulae that contain only function symbols and predicate
symbols from a signature X’ constitute the language of L, over X' or the language
of L, (X). The corresponding proof system is analogously caled the proof system of
L. (X).

The language of L, (X) contains terms and formulae. The terms of L, (Y) are
inductively defined by the following formation rules:

28 C.B. Jonesand C.A. Middelburg

1. variable symbols are terms;
2. if f € F(Y), arity(f) = nandty, ..., t, areterms, then f(¢1, ..., ¢,) isaterm.

The formulae of L., (L) are inductively defined by the following formation rules:

. false isaformula;

if P e P(Y), arity(P) =nandty, ..., t, areterms, then P(t4, . .., t,) isaformuly
. if t; and ¢, areterms, thent; =, isaformula;

. if Aisformula, then — A isaformula;

Cif {(Ap)ncw = (Ao, A1, ...y areformulae, then A, A, isaformula;

. if Aisaformulaand « isavariable symbol, thenVz - A isaformula

O, WNPE

The string representation of formulae as suggested by these formation rules can lead to
syntactic ambiguities. Parentheses are used to avoid such ambiguities.

The symbol = is used for equality inL,,. It is classical equality: t; = ¢, istrue if
t1 and ¢, denote the same object and ¢; = ¢, is false otherwise. So classical equality
differs from weak equality (=) in LPF and coincides with strong equality (==) in LPF.

Countable disiunctions and binary conjunctions are defined as abbreviations as
follows:

\/nA” = _‘/\nﬁA”’
AiNA4y = N, A, whereAj=A;and A, = A for0<n<w.

Binary disiunction, implication, equivalence and existential quantification are defined
as abbreviations as for LPF.

The proof system of L, isformulated here as a sequent cal culusfor proofsin natural
deduction style. It is defined by the following rules of inference:

E
| AiF Ay, A1 A = A A4
- - Ap -_'- A

2

A </\”>”<“’ foralln
w1} VﬁA [v-e] [:9:6:.{]414

— — t1=1o [l‘ ::t]_]A
=1 = [z =t3]A

The following are some derived rules:
— Aq F false -, Ay A
Bk - A false
AL Ay AL N As .
AZ' fore=1,2

J

]
J
|]
h

T

A typed logic of partial functions 29

Recursive definitionsin L,

InL,,, alarge class of recursive definitionsof functionscan be expressed asformulae. To
show how theseformul ae can be obtai ned, weintroduce some notation and abbreviations.

A defined predicate isan expression of theform {«1, ..., 2, | A}, wherezy, ... 2,
are distinct variable symbols and A is a formula; » is called the arity of the defined
predicate. Fortermsty, ..., ty, {@1, ..., @0 | A}l1, . . ., 1) isdefined asan abbreviation
of aformulaby

{l‘l,...,l‘n|A}(t1,...,tn) = [l‘]_::t]_,...,l‘n ::tn]A.
A predicate symbol P of arity » isidentified with the defined predicate
{$la"'axn|P($la"'axn)} :

A recursive function definition f(z1 : 71,..., 2, : 1,,) T £ can be expressed as a
formulaif there exists adefined predicate [that uniquely determinesthe function being
definedinthesensethatthevalueof f at xy, . . ., 2, isyifftheformulaD(zq, . .., 2., y)
istrue.

The following abbreviations of defined predicates are used:

@, = A{x1,...,z,|false}

UAzs - anlAn} = ol V,, And

meEwW

The arity indication n as subscript of @ is dropped when it is clear from the context or
unimportant which arity is meant.

Inclusion and extensional equality between defined predicates are defined as abbre-
viations of formulae by

{l‘l,...,l‘n|A1}g{l‘l,...,l‘n|A2} = Vl‘l,...,l‘n'A1:>A2,
{l‘l,...,l‘n|A1}:{l‘l,...,l‘n|A2} = Vl‘l,...,l‘n'A]_@Az.

Substitution for predicate symbols is defined as for variable symbols. Let P be a
predicate symbol, D be a defined predicate and A be aformula. Then [P := D] A isthe
result of replacing the defined predicate D for the occurrences of the predicate symbol
P in A, avoiding that free variablesin /) become bound.

If apredicateis recursively defined, then the definition determines a mapping from
predicatesto predicates. Itsleast fixpoint is considered to be the predicate being defined.
Predicate operators correspond to mappings from predicates to predicates.

A predicate operator is an expression of the form AP.D, where P is a predicate
symbol and D = {z;,...,2, | A} isadefined predicate. For a defined predicate I of
the same arity as P, (A P.D)(I') is defined as an abbreviation of a defined predicate by

(AP{zy, ... 2n |ADND) = A{rq,..., 2, |[P:=D1A}.

For a predicate operator ¢ = AP.D where P and D are of the same arity, Fix(®),
the fixpoint of @, is defined as an abbreviation of a defined predicate by

Fix@) = | o™(@),

meEwW

where

30 C.B. Jonesand C.A. Middelburg

@%(D) D,
o™YDY = @) .
If @ isacontinuous predi cate operator, then one can prove that Fix(®) isindeed the least

fixpoint of &.
A predicate operator ¢ = AP.D is continuous iff

{Din € Dpsa |m < w} Fo(|) D)= | &(Dn)

mew mew
isprovable for arbitrary defined predicates Dy, Do, . . . of the same arity as P.

Fact 4. If the predicate operator & = AP.D iscontinuousand P and D are of the same
arity, then Fix(®) isthe least fixpoint of @, i.e.

P(Fix(?)) = Fix(®) and®(P) C P = Fix(®)C P
are provable.

Proof. Fix(®)isKleene'sleast fixpoint construction (which stops at w for a continuous
operator), expressed in L, .

This guarantees that alarge class of recursive predicate definitions can be expressed
as formulae.
The following are derived rules:

@ BFEX@)) = FIX@) & continuous

____[Pi=¢]A AF[P:=0(P)A
[Fixcind] [P =Fix(@®)]A

@ continuous, A admissible

where @ = AP.D with P and D of the same arity. The latter ruleis afixpoint induction
rule. Formula A isadmissibleiff

{Dn € Dpsa|m <w}b AL [P=Dp]A = [Pi= | | Dy]A

meEwW

isprovable for arbitrary defined predicates Dy, Do, . . . of the same arity as P.

In case of arecursive function definition, thedefinitionisfirst replaced by arecursive
definition of apredicate that uniquely determines the function concerned. For afunction
f and corresponding predicate 7', the replacement is given by the mapping ¢ defined
below. It is assumed that, in a formulacontaining f, every occurrence of f is provided
withauniqueindex ¢ (toindicate thiswewrite ;). For each index ¢, z; denotesadistinct
variable symbol not free in the transformed term or formula. The mapping ¢ and an
auxiliary mapping ¢ are simultaneously defined by the following rules:

A typed logic of partial functions 31

e(?) = true if fnotint,
E(fi(tla"'atn)) :F(U(tl)a"'aa(tn)axi))

@t 1)) Ze(t) A A elt) if g different from f,
o(t) =t if fnotint,

o(fits, ..., tn)) =i,

o(gi, - 1) = g(otn), ..., o(tm)) if g different from f,
(P, .. 1)) = Plta, ... 1) if £ notints,. ..,
O'(t]_:tz) =i1=1o if fnotinty, o,

U(P(tla B tm)) =

Jea, ..,z e@) A A elEn) A P(o(t1), ..., 0(t)) if finty, ... ty,
O'(t]_ =t2) =

deq, ..., 2 G(t]_) A G(tz) A O'(t]_) = O'(tz) if finty, ts,
where zy, . . ., z; arethevariables z; occurringine(ty) A ... A e(t,,) and
e(t1) A e(t2), respectively,

o commutes with thelogical connectives and quantifiers.

Inductive definitionsin L,

The previous subsection shows how recursive predicate definitions can be expressed as
formulae of L. In case of an inductive definition A of a predicate P, the idea isto
transform the formula A into a continuous predicate operator ¢ with the property that
Fix(®) isthe smallest P satisfying A. To show how the predicate operator concerned
can be obtained, we introduce some additional notation and abbreviations.

The following abbreviation of defined predicates is used:

L1, Tn = {ylaayn|yl¢l‘l\/\/3}n¢l’n}

Let P be a predicate symbol, D be a defined predicate and A be a formula. Then
[P*:=D]A and [P~ := D] A aretheresults of replacing the defined predicate D for the
positive occurrences and the negative occurrences, respectively, of the predicate symbol
P in A, avoiding that free variablesin /) become bound.

For an inductive definition A of a predicate P (of arity »), the predicate operator
&= AP{xy,...,x, |~ [P:=7T1, ., %,] A} turns out to be appropriate under certain
conditions.

The formula A is complement preserving for P iff

[P={z1,...,2, | =[P =71, -, En]A}]A
is provable.

Fact5. If ® = AP{xy,...,z, |- [P*:=71,. ., %,] A} isa continuous predicate op-
erator and [P~ =] A is complement preserving for P, then Fix(®) is the smallest
predicate P satisfying A, i.e.

[P=Fix(P)]Aand A = Fix(®)C P
are provable.

Proof. Thisis proved amost exactly as Theorem D.2.5. in [Ren89].

32 C.B. Jonesand C.A. Middelburg

This guaranteesthat alarge class of inductive predicate definitions can be expressed
asformulae. For example, if apredicate P isinductively defined by a (finite or infinite)
conjunction of formulae of the form

Vo, ...,x1- Aa AN N AL = P(tl,...,tn),

where every formula 4; is of the form P(t, .. .,t,,) or does not contain P, then the
definition can be expressed asaformulain L.

This article was processed by the author using the LATEX stylefile pljour1 from Springer-Verlag.

