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1. Introduction

In this paper, we study a process algebraic approach to the theory of distributed systems with a known,
possibly time-dependent, spatial distribution.

In ACP-style process algebras, in common with most other process algebras, there is only one action
left when two or more actions are performed synchronously. The reason for this is that two or more
actions are considered to be performed synchronously if they are performed jointly at the same point
of time. This is, for example, not the case for actions that are performed at the same point of time at
different locations in a distributed system. Such actions are performed independently at the same point
of time. Just like the situation that actions are to be performed jointly at the same point of time, the
situation that actions are to be performed independently at the same point of time arises from processes
that proceed in parallel. In process algebras with timing in which the possibility of two or more actions to
be performed at the same point of time is excluded, such as the process algebras with continuous timing
from [2], it requires an artifice such as multi-actions (see also [2]) to deal with the latter situation.

Many process algebras with timing, including the ACP-style process algebras with continuous timing
from [6], feature urgent actions. This means that it is possible for two or more actions to be performed
consecutively at the same point of time. Because of this feature, which is justified in [16], those process
algebras from [6] can deal in a simple way with the situation that two or more actions are to be per-
formed independently at the same point of time: interleaving sees to it that the actions concerned can be
performed consecutively at the same point of time in any order.

As mentioned above, actions that are performed at different locations in a distributed system cannot
be performed synchronously, in the strict sense that they cannot be performed jointly at the same point
of time. In [3], an adaptation of ACPρ, the process algebra with continuous absolute timing from [2],
is introduced which enforces this. For the enforcement, processes that are capable of performing an
action at a fixed location in space, and then terminating successfully, at point of time 0 are taken as
atomic processes. This adaptation, called ACPσρ, is further extended in [3] with a state operator and
a maximal progress operator to model communication between processes at different places in space,
which involves non-zero transmission times.

In this paper, we present a reformulation of the material presented in [3] in a setting with urgent
actions. We propose a process algebra obtained by adapting ACPsrt, the process algebra with continuous
relative timing from [6], to spatially located actions like in [3]. In accordance with [3], we extend this
adaptation, called ACPsrt

la , with a state operator and a maximal progress operator. As a result of the sim-
pler way in which is dealt with the situation that two or more actions are to be performed independently
at the same point of time, the state operator and the maximal progress operator are far less complicated
than in [3].

In [6], a coherent collection of four process algebras with timing, each dealing with timing in a
different way, is presented. The time scale on which the time is measured is either discrete or continuous,
and the timing of actions is either relative or absolute. There is no other reason to choose for relative
timing in this paper but the fact that it is generally considered to be simpler than absolute timing. This
does not mean that relative timing has only merits, see e.g. [18].

Various constants and operators of the process algebra with continuous relative timing have coun-
terparts in the other versions from the above-mentioned collection. A notational distinction is made
between a constant or operator of one version and its counterpart in another version, by means of dif-
ferent decorations of a common symbol, if they should not be identified in case versions are integrated.
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So long as one uses a single version, one can safely omit those decorations. However, we refrain from
omitting them in this paper because we think that change of notation in a series of scientific publications
is undesirable.

We distinguish between the process algebra that is the mere adaptation of ACPsrt to spatially located
actions and extensions that are useful in many applications. Integration, which provides for alternative
composition over a continuum of differently timed alternatives, and guarded recursion, which allows
for the description of (potentially) non-terminating processes, are needed in many applications of the
proposed process algebra. Both integration and guarded recursion are treated as extensions. What is also
needed in many applications is action renaming, providing for change of actions, and spatial replacement,
providing for time-dependent change of locations. Spatial replacement makes it possible to describe the
behaviour of processes of which the location in space changes while time passes, i.e. processes that move
in space. Action renaming and spatial replacement are also treated as extensions.

The structure of this paper is as follows. First of all, we introduce the adaptation of the process alge-
bra with continuous relative timing from [6] to spatially located actions (Section 2). Next, we consider
the addition of integration and recursion (Section 3), the addition of action renaming and spatial replace-
ment (Section 4), and the addition of the state operator and the maximal progress operator (Section 5).
After that, we illustrate the use of the whole by means of an example concerning data transmission via a
mobile intermediate station (Sections 6 and 7). Finally, some concluding remarks are made (Section 8).

In the remainder of this paper, we will mostly refer to process algebras by name. As mentioned
above, the process algebra with continuous relative timing from [6] is called ACPsrt and the new process
algebra proposed in this paper is called ACPsrt

la . Both process algebras are extensions of ACP [8, 9]. We
will also refer to BPA and BPAδ, which are names of subtheories of ACP that do not cover parallelism
and communication. The difference between them is that BPA does not cover deadlock and BPAδ does.
ACPsrt was first introduced in [5]. In this paper, we mostly refer to [6] because it contains a more
extensive treatment of ACPsrt.

2. ACPsrt with Spatially Located Actions

ACPsrt
la is an adaptation of ACPsrt [6] to spatially located actions. In ACPsrt, timing is relative to the time

at which the preceding action is performed and time is measured on a continuous time scale. Roughly
speaking, ACPsrt is ACP [8, 9] extended with two operators to deal with timing: relative delay and
relative undelayable time-out. The first operator is a basic one and the second operator is an auxiliary
one.

In ACPsrt
la , the atomic processes are undelayable located actions and undelayable deadlock. Let a

be an action and ξ ∈ R3. Then undelayable action a located at ξ, written ˜̃a(ξ), is the process that
immediately performs action a at location ξ, at the current point of time, and then terminates successfully.
Undelayable located actions are idealized in the sense that they are treated as if they are performed
instantaneously at a point in space. In order to deal with unsuccessful termination, we need an additional
atomic process that is neither capable of performing any action nor capable of idling beyond the current
point of time. This process, written ˜̃δ, is called undelayable deadlock.

ACPsrt
la has the following operators:

• the relative delay of P for a period of time r, written σr
rel(P ), is the process that idles for a period

of time r and then behaves like P ;
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• the alternative composition of P1 and P2, written P1 + P2, is the process that behaves either like
P1 or like P2, but not both;

• the sequential composition of P1 and P2, written P1 · P2, is the process that first behaves like P1,
but when P1 terminates successfully it continues by behaving like P2;

• the parallel composition of P1 and P2, written P1 ‖ P2, is the process that proceeds with P1 and
P2 in parallel;

• the left merge of P1 and P2, written P1 ��P2, is the same as P1 ‖P2 except that P1 ��P2 starts with
performing an action of P1;

• the communication merge of P1 and P2, written P1 | P2, is the same as P1 ‖ P2 except that P1 | P2

starts with performing an action of P1 and an action of P2 synchronously;

• the encapsulation of P with respect to H , written ∂H(P ), keeps P from performing actions in H;

• the relative undelayable time-out of P , written νrel(P ), keeps P entirely from idling.

These operators are essentially the same as the corresponding ones of ACPsrt, with the exception of the
following: in the case where a process proceeds with two processes in parallel, the processes concerned
are not able to perform actions synchronously if they cannot perform them at the same location. For a
more comprehensive informal explanation of the operators, the reader is referred to [6]. Here, we only
point at the most important issues:

• In P1 + P2, there is an arbitrary choice between P1 and P2. The choice is resolved on one of
them performing its first action, and not otherwise. Consequently, the choice between two idling
processes will always be postponed until at least one of the processes can perform its first action.
Only when both processes cannot idle any longer, further postponement is not an option. If the
choice has not yet been resolved when one of the processes cannot idle any longer, the choice will
simply not be resolved in its favour. For example, the process σ3

rel(˜̃a(ξ)) + σ1
rel(˜̃b(ξ

′)) behaves
the same as the process σ1

rel(˜̃b(ξ
′) + σ2

rel(˜̃a(ξ))). Both processes idle for a period of 1 time unit,
and after that either (i) first perform action b at location ξ′ and then terminate successfully or (ii)
idle further for a period of 2 time units, and after that first perform action a at location ξ and then
terminate successfully.

• P1 ‖P2 can behave in the following ways: (i) first either P1 or P2 performs its first action and next
it proceeds in parallel with the process following that action and the process that did not perform an
action; (ii) if their first actions can be performed synchronously, first P1 and P2 perform their first
actions synchronously and next it proceeds in parallel with the processes following those actions.
However, P1 and P2 may have to idle before they can perform their first action. Therefore, P1 ‖P2

can only start with: (i) performing an action of P1 or P2 if it can do so before or at the ultimate
point of time for the other process to start performing actions or to deadlock; (ii) performing an
action of P1 and an action of P2 synchronously if both processes can do so at the same point
of time. For example, the process (σ2

rel(˜̃a(ξ)) + σ3
rel(˜̃a(ξ))) ‖ σ3

rel(˜̃b(ξ)) behaves the same as the
process σ2

rel(˜̃a(ξ) · σ1
rel(˜̃b(ξ))) + σ3

rel(˜̃a(ξ) · ˜̃b(ξ)) + σ3
rel(˜̃b(ξ) · ˜̃a(ξ)) + σ3

rel(˜̃c(ξ)) if performing a
and b synchronously yields c.
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Table 1. Axioms of BPAsrt
la (p, q ≥ 0)

x + y = y + x A1

(x + y) + z = x + (y + z) A2

x + x = x A3

(x + y) · z = (x · z) + (y · z) A4

(x · y) · z = x · (y · z) A5

x + ˜̃δ = x A6SR

˜̃δ · x = ˜̃δ A7SR

σ0
rel(x) = x SRT1

σp
rel(σ

q
rel(x)) = σp+q

rel (x) SRT2

σp
rel(x) + σp

rel(y) = σp
rel(x + y) SRT3

σp
rel(x) · y = σp

rel(x · y) SRT4

It is assumed that a fixed but arbitrary set A of actions has been given. We write Aδ for A∪ {δ}. It is
also assumed that a fixed but arbitrary communication function, i.e. a partial commutative and associative
function γ : A × A → A, has been given. The function γ is regarded to give the result of synchronously
performing any two actions for which this is possible, and to be undefined otherwise.

We shall henceforth use x, y, x′, y′, . . . as variables ranging over processes. Furthermore, we shall
henceforth use a, b, c, . . . to stand for arbitrary elements of Aδ in the context of equations and for arbitrary
elements of A in the context of transition rules (unless explicitly indicated otherwise), p, q, r, . . . to stand
for arbitrary closed terms denoting non-negative real numbers, and ξ, ξ′, ξ′′, . . . to stand for arbitrary
closed terms denoting points in R3. We write ULA for the set {˜̃a(ξ) | a ∈ A, ξ ∈ R3} of undelayable
located actions and ULAδ for ULA∪{˜̃δ}. We shall henceforth use α, β, . . . to stand for arbitrary elements
of ULAδ. Let H ⊆ A. Then we write UL(H) for {˜̃a(ξ) ∈ ULA | a ∈ H}.

In the axiom system of ACPsrt
la , like in all ACP-style axiom systems, we distinguish a subsystem,

called BPAsrt
la , which does not cover parallelism and communication.

The axiom system of ACPsrt
la consists of the equations given in Tables 1 and 2. Many axioms in these

tables and coming ones are actually axiom schemas. In Tables 1 and 2, for example, α and β stand for
arbitrary members of ULAδ, a, b and c stand for arbitrary members of Aδ, ξ and ξ′ stand for arbitrary
closed terms denoting members of R3, p and q stand for arbitrary closed terms denoting members of
R≥0, and r stands for an arbitrary closed term denoting a member of R>0. Axioms A1–A5 are the
axioms of BPA. Axioms A6SR and A7SR are simple reformulations of axioms A6 and A7 of BPAδ:
δ has been replaced by ˜̃δ. For a detailed introduction to BPA and BPAδ, see [8]. Axioms SRT1 and
SRT2 point out that a delay of 0 time units has no effect and that consecutive delays count up. Axiom
SRT3, called the time-factorization axiom, shows that a delay by itself cannot determine a choice. Axiom
SRT4 reflects that timing is relative. Axioms CM1, CM4, CM8, CM9, D3 and D4 are in common with
the additional axioms for ACP. Axioms CM2SRLA, CM3SRLA, CM5SRLA–CM7SRLA, CF1SRLA,
CF2SRLA, D1SRLA and D2SRLA are simple reformulations of axioms CM2, CM3, CM5–CM7, CF1,
CF2, D1 and D2 of ACP: a, b, c and δ have been replaced by α or ˜̃a(ξ), β or ˜̃b(ξ), ˜̃c(ξ) and ˜̃δ, respectively.
The use of α and β is meant to simplify matters. Axioms SRCM1a, SRCM1b, SRCM2–SRCM5 and
SRD are new axioms concerning the interaction of relative delay with left merge, communication merge
and encapsulation. Axioms SRU1LA and SRU2–SRU4 make clear that relative undelayable time-out
prevents a process from idling at the start.

The axioms of ACPsrt
la are the axioms of ACPsrt without the deadlocked process (see [6]), but with

˜̃a replaced by α or ˜̃a(ξ), ˜̃b replaced by β or ˜̃b(ξ) and ˜̃c replaced by ˜̃c(ξ), and on top of that axioms
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Table 2. Additional axioms for ACPsrt
la (α, β ∈ ULAδ, a, b, c ∈ A, ξ, ξ′ ∈ R3, r > 0)

x ‖ y = x �� y + y �� x + x | y CM1

α �� x = α · x CM2SRLA

α · x �� y = α · (x ‖ y) CM3SRLA

σr
rel(x) �� νrel(y) = ˜̃δ SRCM1a

σr
rel(x) �� (νrel(y) + z) = σr

rel(x) �� z SRCM1b

σr
rel(x) �� σr

rel(y) = σr
rel(x �� y) SRCM2

(x + y) �� z = x �� z + y �� z CM4

α · x | β = (α | β) · x CM5SRLA

α | β · x = (α | β) · x CM6SRLA

α · x | β · y = (α | β) · (x ‖ y) CM7SRLA

νrel(x) | σr
rel(y) = ˜̃δ SRCM3

σr
rel(x) | νrel(y) = ˜̃δ SRCM4

σr
rel(x) | σr

rel(y) = σr
rel(x | y) SRCM5

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

˜̃a(ξ) | ˜̃δ = ˜̃δ LACF1

˜̃δ | ˜̃a(ξ) = ˜̃δ LACF2

˜̃a(ξ) | ˜̃b(ξ) = ˜̃c(ξ) if γ(a, b) = c CF1SRLA

˜̃a(ξ) | ˜̃b(ξ) = ˜̃δ if γ(a, b) undefined CF2SRLA

ξ �= ξ′ ⇒ ˜̃a(ξ) | ˜̃b(ξ′) = ˜̃δ LACF3

∂H(α) = α if α �∈ UL(H) D1SRLA

∂H(α) = ˜̃δ if α ∈ UL(H) D2SRLA

∂H(σr
rel(x)) = σr

rel(∂H(x)) SRD

∂H(x + y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

νrel(α) = α SRU1LA

νrel(σ
r
rel(x)) = ˜̃δ SRU2

νrel(x + y) = νrel(x) + νrel(y) SRU3

νrel(x · y) = νrel(x) · y SRU4

LACF1–LACF3. In the process algebras with timing from [6], axioms like LACF1 and LACF2 are not
needed. The counterparts of these axioms are special cases of the counterparts of axiom CF2SRLA. In
ACPsrt

la , it is not like that because actions are located but deadlock is not located. Axiom LACF3 is the
crucial axiom of ACPsrt

la . It points out that two actions cannot be performed synchronously if they are to
be performed at different locations.

The need to use parentheses is reduced by using the associativity of the operators +, · and ‖, and
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Table 3. Transition rules for BPAsrt
la (a ∈ A, ξ ∈ R3, r, s > 0)

˜̃a(ξ)
a(ξ)−−−→ √

x
a(ξ)−−−→ x′

σ0
rel(x)

a(ξ)−−−→ x′

x
a(ξ)−−−→ √

σ0
rel(x)

a(ξ)−−−→ √
x

r	−→ x′

σ0
rel(x)

r	−→ x′

σr+s
rel (x)

r	−→ σs
rel(x) σr

rel(x)
r	−→ x

x
s	−→ x′

σr
rel(x)

r+s	−−−→ x′

x
a(ξ)−−−→ x′

x + y
a(ξ)−−−→ x′

y
a(ξ)−−−→ y′

x + y
a(ξ)−−−→ y′

x
a(ξ)−−−→ √

x + y
a(ξ)−−−→ √

y
a(ξ)−−−→ √

x + y
a(ξ)−−−→ √

x
r	−→ x′, y � r	−→

x + y
r	−→ x′

x � r	−→, y
r	−→ y′

x + y
r	−→ y′

x
r	−→ x′, y

r	−→ y′

x + y
r	−→ x′ + y′

x
a(ξ)−−−→ x′

x · y a(ξ)−−−→ x′ · y
x

a(ξ)−−−→ √

x · y a(ξ)−−−→ y

x
r	−→ x′

x · y r	−→ x′ · y

by ranking the precedence of the binary operators. Throughout this paper we adhere to the following
precedence rules: (i) the operator + has lower precedence than all others, (ii) the operator · has higher
precedence than all others, (iii) all other operators have the same precedence. The commutativity and
associativity of the operator + permit the use of the notation

∑
i∈I ti, where I = {i1, . . . , in}, for

ti1 + . . . + tin . We further use the convention that
∑

i∈I ti stands for ˜̃δ if I = ∅.
The structural operational semantics of ACPsrt

la is described by the transition rules given in Tables 3
and 4. The following transition relations are used:

• a binary action step relation
a(ξ)−−−→ for each a ∈ A, ξ ∈ R3;

• a unary action termination relation
a(ξ)−−−→ √

for each a ∈ A, ξ ∈ R3;

• a binary time step relation
r�−→ for each r ∈ R>0.

We write t � r�−→ for the set of all transition formulas ¬(t r�−→ t′) where t′ is a closed term of ACPsrt
la . The

three kinds of transition relations can be explained as follows:

t
a(ξ)−−−→ t′: process t is capable of first performing action a at location ξ,

at the current point of time, and then proceeding as process t′;

t
a(ξ)−−−→ √

: process t is capable of first performing action a at location ξ,

at the current point of time, and then terminating successfully;

t
r�−→ t′: process t is capable of first idling for a period of time r and

then proceeding as process t′.

The time step relations are defined such that t
r�−→ t′ and t

r�−→ t′′ only if t′ and t′′ are the same. In other
words, the time steps of a process are combined in the operational semantics of ACPsrtla .
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Table 4. Additional transition rules for ACPsrt
la (a, b, c ∈ A, ξ ∈ R3, r > 0)

x
a(ξ)−−−→ x′

x ‖ y
a(ξ)−−−→ x′ ‖ y

y
a(ξ)−−−→ y′

x ‖ y
a(ξ)−−−→ x ‖ y′

x
a(ξ)−−−→ √

x ‖ y
a(ξ)−−−→ y

y
a(ξ)−−−→ √

x ‖ y
a(ξ)−−−→ x

x
a(ξ)−−−→ x′, y

b(ξ)−−→ y′

x ‖ y
c(ξ)−−→ x′ ‖ y′ γ(a, b) = c

x
a(ξ)−−−→ x′, y

b(ξ)−−→ √

x ‖ y
c(ξ)−−→ x′ γ(a, b) = c

x
a(ξ)−−−→ √

, y
b(ξ)−−→ y′

x ‖ y
c(ξ)−−→ y′ γ(a, b) = c

x
a(ξ)−−−→ √

, y
b(ξ)−−→ √

x ‖ y
c(ξ)−−→ √ γ(a, b) = c

x
r	−→ x′, y

r	−→ y′

x ‖ y
r	−→ x′ ‖ y′

x
a(ξ)−−−→ x′

x �� y
a(ξ)−−−→ x′ ‖ y

x
a(ξ)−−−→ √

x �� y
a(ξ)−−−→ y

x
r	−→ x′, y

r	−→ y′

x �� y
r	−→ x′ �� y′

x
a(ξ)−−−→ x′, y

b(ξ)−−→ y′

x | y c(ξ)−−→ x′ ‖ y′ γ(a, b) = c
x

a(ξ)−−−→ x′, y
b(ξ)−−→ √

x | y c(ξ)−−→ x′ γ(a, b) = c

x
a(ξ)−−−→ √

, y
b(ξ)−−→ y′

x | y c(ξ)−−→ y′ γ(a, b) = c
x

a(ξ)−−−→ √
, y

b(ξ)−−→ √

x | y c(ξ)−−→ √ γ(a, b) = c

x
r	−→ x′, y

r	−→ y′

x | y r	−→ x′ | y′

x
a(ξ)−−−→ x′

∂H(x)
a(ξ)−−−→ ∂H(x′)

a �∈ H
x

a(ξ)−−−→ √

∂H(x)
a(ξ)−−−→ √ a �∈ H

x
r	−→ x′

∂H(x)
r	−→ ∂H(x′)

x
a(ξ)−−−→ x′

νrel(x)
a(ξ)−−−→ x′

x
a(ξ)−−−→ √

νrel(x)
a(ξ)−−−→ √

The transition rules for the operational semantics of ACPsrt
la are the transition rules for the operational

semantics of ACPsrt without the deadlocked process (see [6]), but with a replaced by a(ξ), b replaced by
b(ξ) and c replaced by c(ξ). Thus, there are no transition rules allowing actions at different locations to
be performed synchronously.

Bisimulation based on the transition rules for ACPsrt
la is defined as usual. Bisimulation equivalence

is a congruence on the algebra of closed terms of ACPsrt
la , which follows immediately from the fact that

the transition rules for ACPsrt
la constitute a complete transition system specification in panth format. For

more information on the panth format and the related congruence result, see e.g. [1, 17]. The quotient
algebra of the algebra of closed terms of ACPsrt

la by bisimulation equivalence is a model of the axioms of
ACPsrt

la .

Theorem 2.1. (Soundness)
All axioms of ACPsrt

la hold in the quotient algebra of the algebra of closed terms of ACPsrtla by bisimula-
tion equivalence.

Models of this kind are called bisimulation models. The axioms of ACPsrt
la make all equations between
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closed terms that hold in its bisimulation model derivable.

Theorem 2.2. (Completeness)
All equations between closed terms that hold in the quotient algebra of the algebra of closed terms of
ACPsrt

la by bisimulation equivalence are derivable from the axioms of ACPsrtla , under the assumption that
we can derive all valid formulas about R≥0 and R3 that are needed.

The soundness and completeness proofs for ACPsrt
la go completely analogous to the soundness and com-

pleteness proofs for ACPsrt without the deadlocked process, except for some minor differences where
communication merge is involved. It is worth noticing that ACPsrt

la is a generalization of ACPsrt.

Theorem 2.3. (Embedding)
ACPsrt without the deadlocked process can be embedded in ACPsrt

la .

Proof:
Fix an arbitrary location ξ0. Consider the function ε from the terms of ACPsrt to the terms of ACPsrt

la

that simply replaces each occurrence of a constant ˜̃a by ˜̃a(ξ0). Clearly, ε is term structure preserving and
injective. Moreover, it is easy to see that for all closed terms t and t′ of ACPsrt, if t = t′ is derivable
from the axioms of ACPsrt, then ε(t) = ε(t′) is derivable from the axioms of ACPsrt

la . �

For more information on the construction of bisimulation models, soundness and completeness proofs
for process algebras with timing, and embeddings, see e.g. Appendix B of [6].

We will use the conventions for synchronous communication between two processes that were intro-
duced for ACP in [10]. It is assumed that a fixed but arbitrary set I of ports and a fixed but arbitrary set
Di of data for each i ∈ I have been given. It is further assumed that A contains for each i ∈ I and d ∈ Di

the following special actions:

• si(d), the sending of datum d at port i;

• ri(d), the receiving of datum d at port i;

• ci(d), the communication of datum d at port i;

and that γ is defined such that for all i ∈ I, d ∈ Di and a ∈ A:

γ(si(d), ri(d)) = ci(d)

γ(si(d), a) undefined if a �= ri(d)

γ(a, ri(d)) undefined if a �= si(d) .

3. Integration and Recursion

In this section, we extend ACPsrt
la with integration and guarded recursion. These extensions will be

needed in virtually all applications. The use of integration and guarded recursion will be illustrated in
Section 6, where we consider a protocol transmitting data via a mobile intermediate station.
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Table 5. Axioms for integration (p ≥ 0)∫
u∈U

F (u) =
∫

u′∈U
F (u′) INT1∫

u∈∅F (u) = ˜̃δ INT2∫
u∈{p}F (u) = F (p) INT3∫
u∈U∪U′F (u) =

∫
u∈U

F (u) +
∫

u∈U′F (u) INT4

U �= ∅ ⇒ ∫
u∈U

x = x INT5

(∀u ∈ U • F (u) = G(u)) ⇒ ∫
u∈U

F (u) =
∫

u∈U
G(u) INT6

U, U ′ unbounded ⇒ ∫
u∈U

σu
rel(˜̃δ) =

∫
u∈U′σ

u
rel(˜̃δ) INT8SR

sup U = p, p ∈ U ⇒ ∫
u∈U

σu
rel(

˜̃δ) = σp
rel(

˜̃δ) INT9SR∫
u∈U

σp
rel(F (u)) = σp

rel(
∫

u∈U
F (u)) INT10SR∫

u∈U
(F (u) + G(u)) =

∫
u∈U

F (u) +
∫

u∈U
G(u) INT11∫

u∈U
(F (u) · x) = (

∫
u∈U

F (u)) · x INT12∫
u∈U

νrel(F (u)) = νrel(
∫

u∈U
F (u)) INT13

3.1. Integration

In order to cover processes that are capable of performing an action at all points in a certain time interval,
we add integration to ACPsrt

la . Integration is represented by the variable-binding operator
∫

. Let P be
an expression, possibly containing variable u, such that P [p/u] (P with p substituted for u) represents a
process for all p ∈ R≥0; and let U ⊆ R≥0. Then the integration

∫
u∈UP behaves like one of the processes

P [p/u] for p ∈ U . Hence, integration is a form of alternative composition over a set of alternatives that
may even be a continuum.

We shall henceforth use F and G as variables ranging over functions that map each p ∈ R≥0 to
a process and can be represented by terms containing a designated free variable ranging over R≥0. For
more information on such second-order variables, see e.g. [15, 17]. Furthermore, we shall henceforth use
u, u′, . . . as variables ranging over R≥0. It is assumed that each first-order definable set of non-negative
real numbers can be denoted by a closed term, and we shall henceforth use U,U′, . . . to stand for arbitrary
closed terms denoting first-order definable sets of non-negative real numbers.

The additional axioms for integration are the equations given in Table 5. Axiom INT1 is similar to
the α-conversion rule of λ-calculus. Axioms INT2–INT4 show that integration is a form of alternative
composition over a set of alternatives. Axiom INT5 can be regarded as the counterpart of axiom A3 for
integration. Axiom INT6 is an extensionality axiom. The remaining axioms are easily understood by
realizing that integration is a form of alternative composition over a set of alternatives. Axioms INT10SR,
INT11, INT12 and INT13 can simply be regarded as variants of axioms SRT3, A2, A4 and SRU3,
respectively. Axioms INT8SR and INT9SR are both reminiscent of the equation σp+q

rel (˜̃δ) + σp
rel(

˜̃δ) =
σp+q

rel (˜̃δ), which is derivable from axioms A6SR, SRT2 and SRT3.
The structural operational semantics for integration is described by the transition rules given in

Table 6. The complexity of the transition rule concerning the time-related capabilities of a process∫
u∈UF (u) is caused by the fact that the processes F (p) with p ∈ U that are capable of idling need not

change uniformly while idling. For more information on this phenomenon, see e.g. [6, 18]. A bisimula-
tion model of the axioms of ACPsrt

la with integration can be constructed in the same way as for ACPsrt
la .
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Table 6. Transition rules for integration (a ∈ A, ξ ∈ R3, p, q ≥ 0, r > 0)

F (p)
a(ξ)−−−→ x′∫

u∈U
F (u)

a(ξ)−−−→ x′ p ∈ U
F (p)

a(ξ)−−−→ √
∫

u∈U
F (u)

a(ξ)−−−→ √ p ∈ U

{F (q)
r	−→ F1(q) | q ∈ U1},

. . . ,

{F (q)
r	−→ Fn(q) | q ∈ Un},

{F (q) � r	−→ | q ∈ Un+1}∫
u∈U

F (u)
r	−→ ∫

u∈U1
F1(u) + . . . +

∫
u∈Un

Fn(u)

{U1, . . . , Un} partition of U \ Un+1,

Un+1 ⊂ U

Table 7. Axioms for recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

3.2. Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes, we add guarded recursion
to ACPsrt

la .
A recursive specification over ACPsrt

la is a set of recursive equations E = {X = tX | X ∈ V } where
V is a set of variables and each tX is a term of ACPsrt

la that only contains variables from V . We write
V(E) for the set of all variables that occur on the left-hand side of an equation in E. A solution of a
recursive specification E is a set of processes (in some model of ACPsrt

la ) {PX | X ∈ V(E)} such that
the equations of E hold if, for all X ∈ V(E), X stands for PX .

Let t be a term of ACPsrt
la containing a variable X. We call an occurrence of X in t guarded if t has a

subterm of the form ˜̃a ·t′ or σr
rel(t

′), where a ∈ A, r ∈ R>0 and t′ a term of ACPsrt
la , with t′ containing this

occurrence of X. A recursive specification over ACPsrt
la is called a guarded recursive specification if all

occurrences of variables in the right-hand sides of its equations are guarded or it can be rewritten to such
a recursive specification using the axioms of ACPsrt

la and the equations of the recursive specification. A
guarded recursive specification has a unique solution.

For each guarded recursive specification E and each variable X ∈ V(E), we introduce a constant
〈X|E〉 which is interpreted as the unique solution of E for X. We often write X for 〈X|E〉 if E is clear
from the context. In such cases, it should also be clear from the context that we use X as a constant.

We will also use the following notation. Let t be a term of ACPsrt
la and E be a guarded recursive

specification. Then we write 〈t|E〉 for t with, for all X ∈ V(E), all occurrences of X in t replaced by
〈X|E〉.

We shall henceforth use X,Y, . . . as variables ranging over processes in the case where they occur
in a recursive specification. Furthermore, we shall henceforth use tX , tY , . . . to stand for arbitrary terms
of ACPsrt

la in the case where they occur in a recursive specification, and E,E′, . . . to stand for arbitrary
guarded recursive specifications.

The additional axioms for recursion are the equations given in Table 7. A side condition is added
to restrict the variables, terms and guarded recursive specifications for which X, tX and E stand. The
additional axioms for recursion are known as the recursive definition principle (RDP) and the recursive
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Table 8. Transition rules for recursion (a ∈ A, ξ ∈ R3, r > 0)

〈tX |E〉 a(ξ)−−−→ x′

〈X|E〉 a(ξ)−−−→ x′ X = tX ∈ E
〈tX |E〉 a(ξ)−−−→ √

〈X|E〉 a(ξ)−−−→ √ X = tX ∈ E

〈tX |E〉 r	−→ x′

〈X|E〉 r	−→ x′ X = tX ∈ E

specification principle (RSP). The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants
〈X|E〉 make up a solution of E. The conditional equations E ⇒ X = 〈X|E〉 express that this solution
is the only one.

It is sometimes helpful to rewrite guarded recursive specifications. The following useful fact about
the rewriting of guarded recursive specifications can be proven. Let E and E′ be two guarded recursive
specifications over ACPsrt

la , where E′ is E rewritten using the axioms of ACPsrt
la and the equations of E.

Then the equation 〈X|E〉 = 〈X|E′〉 is derivable for all X ∈ V(E).
The structural operational semantics for recursion is described by the transition rules given in Table 8.

A bisimulation model of the axioms of ACPsrt
la with integration and guarded recursion can be constructed

in the same way as for ACPsrt
la .

4. Action Renaming and Spatial Replacement

In this section, we extend ACPsrt
la with action renaming and spatial replacement. These extensions will

be needed in many applications. In common with the use of integration and guarded recursion, the use
of action renaming and spatial replacement will be illustrated in Section 6.

4.1. Action Renaming

Action renaming provides for change of actions. It facilitates dealing with a number of processes that
only differ in the ports and/or channels used for communication.1 Let P be a process and f : A → A.
Then the action renaming of P according to f , written ρf (P ), behaves like P , but with located actions
˜̃a(ξ) replaced by ˜̃f(a)(ξ).

The additional axioms for action renaming are given in Table 9. In this table, we use a to stand for
elements of A. The axioms for action renaming do not need further explanation.

The structural operational semantics for action renaming is described by the transition rules given in
Table 10. A bisimulation model of the axioms of ACPsrt

la with integration and action renaming, with or
without guarded recursion, can be constructed in the same way as for ACPsrtla .

4.2. Spatial Replacement

Spatial replacement facilitates dealing with a number of processes that only differ in the locations at
which they perform their actions. It provides for time-dependent change of locations. In this way, the
behaviour of processes that move in space can be described. Let P be a process and f : R3 × R≥0 → R3

1In Section 6.1, we introduce channels for asynchronous communication in space.
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Table 9. Axioms for action renaming (a ∈ A, ξ ∈ R3, r > 0)

ρf (˜̃δ) = ˜̃δ LARN1

ρf (˜̃a(ξ)) = ˜̃f(a)(ξ) LARN2

ρf (˜̃a(ξ) · x) = ˜̃f(a)(ξ) · ρf (x) LARN3

ρf (σr
rel(x)) = σr

rel(ρf (x)) LARN4

ρf (x + y) = ρf (x) + ρf (y) LARN5

ρf (
∫

u∈U
F (u)) =

∫
u∈U

ρf (F (u)) LARN6

Table 10. Transition rules for action renaming (a ∈ A, ξ ∈ R3, r > 0)

x
a(ξ)−−−→ x′

ρf (x)
f(a)(ξ)−−−−−→ ρf (x′)

x
a(ξ)−−−→ √

ρf (x)
f(a)(ξ)−−−−−→ √

x
r	−→ x′

ρf (x)
r	−→ ρf (x′)

Table 11. Axioms for spatial replacement (a ∈ A, ξ ∈ R3, r > 0)

�ρf (˜̃δ) = ˜̃δ LASR1

�ρf (˜̃a(ξ)) = ˜̃a(f(ξ, 0)) LASR2

�ρf (˜̃a(ξ) · x) = ˜̃a(f(ξ, 0)) · �ρf (x) LASR3

�ρf (σr
rel(x)) = σr

rel(�ρf+r(x)) LASR4

�ρf (x + y) = �ρf (x) + �ρf (y) LASR5

�ρf (
∫

u∈U
F (u)) =

∫
u∈U

�ρf (F (u)) LASR6

be a continuous function. Then the spatial replacement of P according to f , written ρf (P ), behaves like
P , but performing located actions ˜̃a(ξ) at location f(ξ, t), where t is the time passed since the start of P ,
instead of location ξ. Spatial replacement is reminiscent of action renaming.

As an example, we consider the process of which the recursive specification consists of the equation
X = ˜̃a(ξ1) · σ1

rel(X) and the replacement function f defined by f(ξ, t) = ξ + υ · t + ξ0 − ξ1, where υ is
a velocity vector. Now the process ρf (X) behaves as

˜̃a(ξ0) · σ1
rel(˜̃a(ξ0 + 1υ)) · σ1

rel(˜̃a(ξ0 + 2υ)) · σ1
rel(˜̃a(ξ0 + 3υ)) · · · · .

Note that + stands here for addition of vectors instead of alternative composition. From now on, it
depends on the context in which + occurs whether it stands for addition or alternative composition.

The additional axioms for spatial replacement are given in Table 11. In this table, we use a to stand
for elements of A. In axiom LASR4, we write f + r for the function f′ : R3 × R≥0 → R3 such that, for
all ξ ∈ R3 and p ∈ R≥0, f ′(ξ, p) = f(ξ, p + r). Only axiom LASR4 may need further explanation: the
absolute time is taken into account by changing the replacement function f with each relative delay.

The structural operational semantics for spatial replacement is described by the transition rules given
in Table 12. A bisimulation model of the axioms of ACPsrt

la with integration, action renaming and spatial
replacement, with or without guarded recursion, can be constructed in the same way as for ACPsrtla .
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Table 12. Transition rules for spatial replacement (a ∈ A, ξ ∈ R3, r > 0)

x
a(ξ)−−−→ x′

�ρf (x)
a(f(ξ,0))−−−−−−→ �ρf (x′)

x
a(ξ)−−−→ √

�ρf (x)
a(f(ξ,0))−−−−−−→ √

x
r	−→ x′

�ρf (x)
r	−→ �ρf+r(x

′)

5. State Operator and Maximal Progress Operator

In this section, we extend ACPsrt
la with a state operator and a maximal progress operator. The state oper-

ator enables processes to interact with a state. The maximal progress operator makes it possible to give
performing certain actions priority over idling. Both extensions are useful in modeling communication
between processes at different places in space. Just like the extensions of Sections 3 and 4, the use of
these extensions will be illustrated in Section 6.

5.1. State Operator

The state operator makes it easy to represent the execution of a process in a state. The basic idea is
that the execution of an action in a state has effect on the state, i.e. it causes a discrete change of state.
Moreover, there is an action left when an action is executed in a state. For example, in case the states are
queues of data, when the action of instructing the addition or removal of a certain datum is executed in
a state, the action of adding or removing that datum is left. The operator introduced here generalizes the
state operator added to ACP without timing in [8]. The main difference with that operator is that idling
may cause a continuous change of state.

It is assumed that a fixed but arbitrary set S of states has been given, together with functions act :A×
R3 × S → Aδ, eff : A×R3 × S → S and eff ′ : R>0 × S → S such that eff′(r + r′, s) = eff ′(r, eff ′(r′, s))
for all r, r′ ∈ R>0 and s ∈ S.

The state operator λs (s ∈ S) allows, given the functions act, eff and eff′, processes to interact with
a state. Let P be a process. Then λs(P ) is the process P executed in state s. The function act gives, for
each action a, location ξ and state s, the action that results from executing a in state s at location ξ. The
function eff gives, for each action a, location ξ and state s, the state that results from executing a in state
s at location ξ. The function eff′ gives, for each period of time r and state s, the state that results from
idling for a period of time r from state s. The restriction on function eff′ stems from axiom SRT2.

As an example, we consider the process of which the recursive specification consists of the equation
X = ˜̃a(ξ1) ·σ1

rel(X), and a state operator with N as set of states and the functions act, eff and eff′ defined
such that act(a, ξ, n) = an, eff(a, ξ, n) = n + 1 and eff ′(r, n) = n. Now the process λ0(X) behaves as

˜̃a0(ξ1) · σ1
rel( ˜̃a1(ξ1)) · σ1

rel( ˜̃a2(ξ1)) · σ1
rel( ˜̃a3(ξ1)) · · · · .

The additional axioms for the state operator λs (s ∈ S) are given in Table 13. In this table, we use
a to stand for elements of A. The axioms for the state operator reflect the intended meaning of the state
operator clearly. Except for axiom LASO4, they are simple reformulations of the axioms for the state
operator added to ACP without timing in [8]: roughly speaking, a has been replaced by˜̃a(ξ).

The structural operational semantics of the state operator is described by the transition rules given
in Table 14. A bisimulation model of the axioms of ACPsrt

la with integration and the state operator,
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Table 13. Axioms for state operator (a ∈ A, ξ ∈ R3, r > 0, s ∈ S)

λs(˜̃δ) = ˜̃δ LASO1

λs(˜̃a(ξ)) = ˜̃act(a, ξ, s)(ξ) LASO2

λs(˜̃a(ξ) · x) = ˜̃act(a, ξ, s)(ξ) · λeff(a,ξ,s)(x) LASO3

λs(σ
r
rel(x)) = σr

rel(λeff′(r,s)(x)) LASO4

λs(x + y) = λs(x) + λs(y) LASO5

λs(
∫

u∈U
F (u)) =

∫
u∈U

λs(F (u)) LASO6

Table 14. Transition rules for state operator (a ∈ A, ξ ∈ R3, r > 0, s ∈ S)

x
a(ξ)−−−→ x′

λs(x)
act(a,ξ,s)(ξ)−−−−−−−−→ λeff(a,ξ,s)(x

′)
act(a, ξ, s) �= δ

x
a(ξ)−−−→ √

λs(x)
act(a,ξ,s)(ξ)−−−−−−−−→ √ act(a, ξ, s) �= δ

x
r	−→ x′

λs(x)
r	−→ λeff′(r,s)(x

′)

with or without action renaming and spatial replacement, and with or without guarded recursion, can be
constructed in the same way as for ACPsrt

la .

5.2. Maximal Progress Operator

The maximal progress operator is a means to express that certain actions must take place as soon as
possible. In case performing one of these actions and idling are both options, performing the action gets
priority over idling. Let P be a process and H be a set of actions. Then P with maximal progress for H ,
written θH(P ), behaves like P , but performing actions a ∈ H is given priority over idling. The maximal
progress operator is a variant of the priority operator added to ACP without timing in [8]. The main
difference with that operator is that performing an action can have priority over idling instead of priority
over performing certain other actions.

As an example, we consider the process θ{a}(
∫
u∈[p,∞)σ

u
rel(˜̃a(ξ))). This process behaves the same as

the process σp
rel(˜̃a(ξ)).

The additional axioms for the maximal progress operator are given in Table 15. Axioms LAMP2 and
LAMP4–LAMP10 are reformulations of the axioms for the maximal progress operator added to a version
of ACP for hybrid systems in [11]. They are adapted to the absence of conditional proceeding, signal
emission, signal evolution and signal transition. Axiom LAMP8 makes use of the auxiliary relative
delayable time-out operator νrel axiomatized by the equations given in Table 16. These axioms make
clear that this operator generalizes the relative undelayable time-out operator: it keeps a process from
idling for a period of time longer than a certain period of time. Obviously, we have that the equation
νrel(t) = ν0

rel(t) is derivable for all closed terms t. Note that the operator differs from the operator υrel
from [6]: the latter keeps a process from idling for a period of time longer than or equal to a certain
period of time. The condition in axiom LAMP8 expresses that the equation only applies to processes y
that cannot perform any action for a period of time that is longer than r. Axioms LAMP9 and LAMP10
are additional axioms for integration. The condition in axiom LAMP9 expresses that the equation only
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Table 15. Axioms for maximal progress operator (α ∈ ULA δ, r > 0)

θH(˜̃δ) = ˜̃δ LAMP2

θH(α + x) = α + θH(x) if a �∈ UL(H) LAMP4

θH(α · x + y) = α · θH(x) + θH(y) if a �∈ UL(H) LAMP5

θH(α + x) = α + θH(νrel(x)) if a ∈ UL(H) LAMP6

θH(α · x + y) = α · θH(x) + θH(νrel(y)) if a ∈ UL(H) LAMP7

νr
rel(y) = ˜̃δ ⇒ θH(σr

rel(x) + y) = σr
rel(θH(x)) + θH(y) LAMP8

∂A\H(νrel(
∫

u∈U
F (u))) = ˜̃δ ⇒ θH(

∫
u∈U

F (u)) =
∫

u∈U
θH(F (u)) LAMP9∫

u∈U
F (u) = νrel(

∫
u∈U

F (u)) ⇒ θH(
∫

u∈U
F (u)) =

∫
u∈U

θH(F (u)) LAMP10

Table 16. Axioms for relative delayable time-out operator (α ∈ ULA δ , p ≥ 0, r > 0)

νp
rel(α) = α SRD1

ν0
rel(σ

r
rel(x)) = ˜̃δ SRD2

νp+r
rel (σr

rel(x)) = σr
rel(ν

p
rel(x)) SRD3

νp
rel(x + y) = νp

rel(x) + νp
rel(y) SRD4

νp
rel(x · y) = νp

rel(x) · y SRD5

∫
u∈U

νp
rel(F (u)) = νp

rel(
∫

u∈U
F (u)) INT14

Table 17. Transition rules for maximal progress operator (a ∈ A, ξ ∈ R 3, r > 0)

x
a(ξ)−−−→ x′

θH(x)
a(ξ)−−−→ θH(x′)

x
a(ξ)−−−→ √

θH(x)
a(ξ)−−−→ √

x
r	−→ x′, FH

r (x)

θH(x)
r	−→ θH(x′)

Table 18. Transition rules for relative delayable time-out (a ∈ A, ξ ∈ R 3, p ≥ 0, r > 0)

x
a(ξ)−−−→ x′

νp
rel(x)

a(ξ)−−−→ x′

x
a(ξ)−−−→ √

νp
rel(x)

a(ξ)−−−→ √
x

r	−→ x′

νp+r
rel (x)

r	−→ νp
rel(x

′)

applies to processes
∫
u∈UF (u) that cannot perform any action from H at the current point of time. The

condition in axiom LAMP10 expresses that the equation only applies to processes
∫
u∈UF (u) that cannot

idle at the current point of time.
The structural operational semantics for the maximal progress operator and the relative delayable

time-out operator are described by the transition rules given in Tables 17 and 18, respectively. Additional
transition relations FH

r ( ), for H ⊆ A and r ∈ R>0, are used in Table 17. These auxiliary failure
relations can be explained as follows:

FH
r (t): process t is not capable of performing an action from H before r time units are past.

Transition rules defining these relations can be given in the format used for all transition rules given
in this paper, viz. the panth format from [23]. However, we will not give those transition rules here.
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Instead, we confine ourselves to give a property that characterizes the failure relations in terms of the
other transition relations. We have for all closed terms t, H ⊆ A, and r ∈ R>0:

FH
r (t) iff

for all a ∈ H, ξ ∈ R3 : t � a(ξ)−−−→ and

for all closed terms t′, s < r :

if t
s�−→ t′ , then for all a ∈ H, ξ ∈ R3 : t′ � a(ξ)−−−→ .

We write t � a(ξ)−−−→ for the set that consists of all transition formulas ¬(t a(ξ)−−−→ t′) where t′ is a closed term,

as well as the transition formula ¬(t a(ξ)−−−→ √
).

The structural operational semantics for the maximal progress operator is tricky. As a matter of
fact, wrong transition rules were given in [6] for the maximal progress operator added there to a version
of ACP with continuous absolute timing. A bisimulation model of the axioms of ACPsrtla with integra-
tion, the state operator and the maximal progress operator, with or without action renaming and spatial
replacement, and with or without guarded recursion, can be constructed in the same way as for ACPsrtla .

6. Data Transmission via a Mobile Intermediate Station

In this section, we consider a protocol transmitting data via a mobile intermediate station. First of all,
we introduce a kind of asynchronous communication which is suitable in the case where processes are
located at different places in space. Next, we introduce the protocol used for the data transmission
from the sender to the intermediate station and the data transmission from the intermediate station to the
receiver. After that, we introduce a buffer needed by the intermediate station. Finally, we describe the
protocol transmitting data via the mobile intermediate station.

6.1. Asynchronous Communication in Space

Communication between processes at different places in space calls for a kind of asynchronous commu-
nication. Characteristic of this kind of asynchronous communication is that a datum sent at one location
can only be received at another location at the point of time that it reaches that location, and that it may
subsequently be received at still other locations lying at a greater distance.

This kind of asynchronous communication can be modelled using the state operator and the maximal
progress operator as introduced in Section 5.

It is assumed that a fixed but arbitrary finite set C of asynchronous channels and a fixed but arbitrary
finite set Dc of data for each c ∈ C have been given. It is further assumed that A contains for each c ∈ C
and d ∈ Dc the following special actions:

• c ↑ d, the potential sending of datum d along asynchronous channel c;

• c⇑ d, the effectuated sending of datum d along asynchronous channel c;

• c ↓ d, the potential receiving of datum d along asynchronous channel c;

• c⇓ d, the effectuated receiving of datum d along asynchronous channel c.
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Moreover, it is assumed that a fixed but arbitrary transmission speed v has been given. Let c ∈ C. Then
we write c⇓ for the set {c⇓ d | d ∈ Dc}.

We define a special state operator λc
V (V a finite subset of Dc × R3 × R≥0) for asynchronous com-

munication along channel c. The functions actc, effc and eff ′
c are defined as follows:

actc(c ↑ d, ξ, V ) = c⇑ d

actc(c ↓ d, ξ, V ) = c⇓ d if ∃ (d, ξ′, r) ∈ V • |ξ − ξ′| = v · r
= δ otherwise

actc(a, ξ, V ) = a if a �∈ {c ↑ d | d ∈ Dc} ∪ {c ↓ d | d ∈ Dc} ,

effc(c ↑ d, ξ, V ) = V ∪ {(d, ξ, 0)}
effc(a, ξ, V ) = V if a �∈ {c ↑ d | d ∈ Dc} ,

eff ′
c(r, V ) = {(d, ξ, r + r′) | (d, ξ, r′) ∈ V } .

Here, we write |ξ − ξ′| for the distance between ξ and ξ′. Note that the state of a channel (V ) records,
for each datum that has been sent along that channel, the location from which it has been sent and the
time passed since it has been sent. The state does not change when a datum is received because it may
later be received at a location further away from the location from which it has been sent. It is possible
that two or more data arrive simultaneously at the same location. Note that, at the point of time upon
which this situation arises, each datum may be received at the location concerned. There is no ordering
imposed. We think that there is no sense in imposing an ordering, possibly with the exception of a few
special cases.

Note further that ˜̃c ↓ d(ξ) is transformed into ˜̃c⇓ d(ξ) at the one point of time, say t0, that datum d has
arrived at location ξ. Otherwise, it is transformed into ˜̃δ. The process

∫
t∈[0,∞)σ

t
rel( ˜̃c ↓ d(ξ)) is capable

of waiting till datum d has arrived at location ξ. However, this process may bypass the right alternative,
i.e. σt0

rel( ˜̃c ↓ d(ξ)), waiting too long before trying to receive, and then no further action is possible. The

solution is to enforce that ˜̃c⇓ d(ξ) takes place as soon as possible, by means of the maximal progress
operator introduced in Section 5.2. Examples of this use of the maximal progress operator are given in
other subsections of the current section.

6.2. Asynchronous Version of the PAR Protocol

We introduce an asynchronous version of the communication protocol known as the PAR (Positive Ac-
knowledgement with Retransmission) protocol [22]. The sender waits for an acknowledgement before a
new datum is transmitted. If an acknowledgement is not received within a complete protocol cycle, the
old datum is retransmitted. In order to avoid duplicates due to retransmission, data are labeled with an
alternating bit from B = {0, 1}. The protocol uses the kind of asynchronous communication introduced
in Section 6.1.

We have a sender process S, a receiver process R, and two asynchronous channels K and L. The
process S checks with a certain frequency whether a datum d is offered at an external port (port 1). When
a datum is offered, S consumes it, packs it with an alternating bit b in a frame (d, b), and then delivers
the frame at one end of channel K. Next, S waits until an acknowledgement ack is offered at one end of
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channel L. When the acknowledgement does not arrive within a certain time period, S delivers the same
frame again and goes back to waiting for an acknowledgement. When the acknowledgement arrives
within that time period, S goes back to checking whether a datum is offered. The process R waits until a
frame with a datum and an alternating bit (d, b) is offered at the other end of channel K. When a frame
is offered, R consumes it, unpacks it, and then delivers the datum d at an external port (port 2) if the
alternating bit b is the right one and in any case an acknowledgement ack at the other end of channel L.
After that, R goes back to waiting for a frame, but the right bit changes to (1−b) if the alternating bit was
the right one. The time tS is the time after which the sender checks again whether a datum is offered in
the case of an unsuccessful attempt. The time t′S is the time after which the sender retransmits a datum in
the case where it is still waiting for an acknowledgement. The time tR is the time that it takes the receiver
to process a frame. The time t′R is the time that it takes the receiver to produce an acknowledgement.
The locations ξS and ξR are the locations of the processes S and R. The ends of channel K are located
at ξS + εS and ξR + εR. The ends of channel L are located at ξR − εR and ξS − εS .

We assume that the times tS , t′S , tR and t′R are non-zero. We also assume a finite set of data D. Let
F = D × B be the set of frames. For d ∈ D and b ∈ B, we also write d, b for the frame (d, b). We
use the standardized notation for handshaking communication introduced in Section 2. The recursive
specification of the sender consists of the following equations:

S = S0 ,

Sb = ˜̃r1(error)(ξS) · σtS
rel(Sb) +

∑
d∈D

˜̃r1(d)(ξS) · σtS
rel(SFd,b)

(for every b ∈ B),

SFd,b = ˜̃K ↑(d, b)(ξS + εS)

·
(∫

t∈[0,t′S)
σt

rel

(
˜̃L ↓ ack(ξS − εS)

)
·S1−b + σ

t′S
rel(SFd,b)

)
(for every d ∈ D and b ∈ B).

The recursive specification of the receiver consists of the following equations:

R = R0 ,

Rb =
∫

t∈[0,∞)

∑
d∈D

σt
rel

(
˜̃K ↓(d, b)(ξR + εR)

)
· σtR

rel

(
˜̃s2(d)(ξR)

)
· σt′R

rel

(
˜̃L ↑ ack(ξR − εR)

)
· R1−b

+
∫

t∈[0,∞)

∑
d∈D

σt
rel

(
˜̃K ↓(d, 1 − b)(ξR + εR)

)
· σt′R

rel

(
˜̃L ↑ ack(ξR − εR)

)
· Rb

(for every b ∈ B).
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Now consider the protocol described by the following term:

θK ⇓(λK
∅ (θL⇓(λL

∅ (S ‖ R)))) .

This protocol is not very interesting with asynchronous communication as introduced in Section 6.1:
frames and acknowledgements are transmitted through channels in which nothing will ever get lost.
The protocol is intended for the case where channels are unreliable, i.e. the case where frames and
acknowledgements may get lost.

Frames or acknowledgements may get lost, for example, in the case where the sender and/or the
receiver move in space and there is a solid object (through which transmission is impossible) that is
sometimes in between the sender and receiver. For instance, suppose that the sender is stationary and
the receiver moves on a line between location ξR and location ξ′R, starting at location ξR, such that its
location at time t, say ξR(t), is given by

ξR + (1
2 − 1

2 cos(ωRt)) · (ξ′R − ξR) .

Moreover, suppose that the solid object is stationary. Because of the presence of this solid object, we
have to impose a more restrictive condition than in Section 6.1 on actc(c ↓ d, ξ, V ) to yield c⇓ d: there
must exist a (d, ξ′, r) ∈ V such that |ξ − ξ′| = v · r and the line segment from ξ to ξ′ does not intersect
the solid object. Now consider the protocol described by the following term:

θK ⇓(λK
∅ (θL⇓(λL

∅ (S ‖ ρfR
(R))))) ,

where fR is defined such that

fR(ξ, t) = ξ + (1
2 − 1

2 cos(ωRt)) · (ξ′R − ξR)

for all ξ ∈ R3 and t ∈ R≥0. A necessary condition for this protocol to be correct is that the retransmission
time t′S is longer than the longest duration of a complete protocol cycle, i.e.

t′S > tK + tR + t′R + tL ,

where

tK = sup{|(ξS+εS)−(ξR(t)+εR)| | t∈R≥0}
v ,

tL = sup{|(ξS−εS)−(ξR(t)−εR)| | t∈R≥0}
v .

If the retransmission time is shorter than a complete protocol cycle, the retransmission is called prema-
ture. In that case, while an acknowledgement is still on the way, the sender will retransmit the current
frame. When the acknowledgement finally arrives, the sender will treat this acknowledgement as an
acknowledgement of the retransmitted frame. However, an acknowledgement of the retransmitted frame
may be on the way. If the next frame transmitted gets lost and the latter acknowledgement arrives, no
retransmission of that frame will follow and the protocol will fail.
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6.3. Buffer

We introduce a buffer that is able to consume data at any rate and to deliver them at any rate. This
buffer is needed by the mobile intermediate station used for data transmission in Section 6.4 because the
transmission from the sender to the intermediate station or the transmission from the intermediate station
to the receiver may be blocked by impeding solid objects. The recursive specification of such a buffer
consists of the following equations:

B = Bε ,

Bε =
∫

t∈[0,∞)
σt

rel

(
˜̃s4(error)(ξB + εB)

)
· Bε

+
∫

t∈[0,∞)

∑
d∈D

σt
rel

(
˜̃r3(d)(ξB − εB)

)
· Bd ,

Bσd =
∫

t∈[0,∞)
σt

rel

(
˜̃s4(d)(ξB + εB)

)
· Bσ

+
∫

t∈[0,∞)

∑
d′∈D

σt
rel

(
˜̃r3(d′)(ξB − εB)

)
· Bd′σd

(for every d ∈ D, σ ∈ D∗).

The process B is always ready to deliver output. If there is no datum in the buffer, an error message is
delivered.

6.4. Putting the Whole Thing Together

We describe a protocol transmitting data via a mobile intermediate station. The protocol concerned uses
the asynchronous version of the PAR protocol from Section 6.2 for the data transmission from the sender
to the intermediate station and the data transmission from the intermediate station to the receiver. The
intermediate station consists of three parts: a receiving part, a buffering part and a sending part. The
buffer from Section 6.3 is used for the buffering part. The required variants of the PAR protocol and the
buffer are obtained by means of action renaming and spatial replacement.

The intermediate station moves on a line between location ξT and location ξ′T , starting at location
ξT , such that its location at time t, say ξT (t), is given by

ξT + (1
2 − 1

2 cos(ωT t)) · (ξ′T − ξT ) .

The receiving part, buffering part and sending part of the intermediate station are located at ξT − εT , ξT

and ξT + εT , respectively.
We use the following spatial replacement functions:

• for the starting position of the receiving part, the buffering part and the sending part of the inter-
mediate station:

fTR
(ξ, t) = ξ + (ξT − εT ) − (ξR + εR) ,

fTB
(ξ, t) = ξ + ξT − ξB ,

fTS
(ξ, t) = ξ + (ξT + εT ) − (ξS + εS) ,
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respectively;

• for the movement of the intermediate station:

fM(ξ, t) = ξ + (1
2 − 1

2 cos(ωT t)) · (ξ′T − ξT ) .

We use the following action renaming functions:

• for the receiving part and the sending part of the intermediate station:

gTR
(s2(d)) = s3(d) for all d ∈ D ,

gTS
(r1(d)) = r4(d) for all d ∈ D ∪ {error}

gTS
(K ↑(d, b)) = K ′ ↑(d, b) for all (d, b) ∈ D × B

gTS
(L ↓ ack) = L′ ↓ ack ;

• for the receiver:
gR(K ↓(d, b)) = K ′ ↓(d, b) for all (d, b) ∈ D × B

gR(L ↑ ack) = L′ ↑ ack .

The functions gTR
, gTS

and gR leave all unmentioned actions unchanged.
The functions actc, for c ∈ {K,L,K ′, L′}, have to be adapted to the presence of solid objects that

are sometimes in between the sender and the intermediate station or the intermediate station and the
receiver. This goes similar to the adaptation outlined at the end of Section 6.2. In Section 7.1, we will
present a mathematically precise way to deal with transmission limitations resulting from solid objects
that are in the way.

The receiving part, the buffering part and the sending part of the intermediate station are defined as
follows:

TR = ρgTR
(ρfM

(ρfTR
(R))) ,

TB = ρfM
(ρfTB

(B)) ,

TS = ρgTS
(ρfM

(ρfTS
(S))) .

The variants of the PAR protocol for the data transmission from the sender to the intermediate station
and the data transmission from the intermediate station to the receiver are defined as follows:

PAR = θK ⇓(λK
∅ (θL⇓(λL

∅ (S ‖ TR)))) ,

PAR′ = θK ′ ⇓(λK ′
∅ (θL′ ⇓(λL′

∅ (TS ‖ ρgR
(R))))) .

The whole system is described by the following term:

∂H(PAR ‖ TB ‖ PAR′) ,

where
H = {s3(d), r3(d) | d ∈ D} ∪ {s4(d), r4(d) | d ∈ D ∪ {error}} .
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A necessary condition for this protocol to be correct is that the retransmission time t′S is longer than the
longest duration of a complete cycle of PAR or PAR′, i.e.

t′S > max{tK + tR + t′R + tL, tK ′ + tR + t′R + tL′} ,

where
tK = sup{|(ξS+εS)−((ξT (t)−εT )+εR)| | t∈R≥0}

v ,

tL = sup{|(ξS−εS)−((ξT (t)−εT )−εR)| | t∈R≥0}
v ,

tK ′ = sup{|(ξR+εR)−((ξT (t)+εT )+εS)| | t∈R≥0}
v ,

tL′ = sup{|(ξR−εR)−((ξT (t)+εT )−εS)| | t∈R≥0}
v .

Even if the retransmission time is long enough, the protocol may have shortcomings. One shortcoming
would be that the buffer size increases permanently because solid objects between the intermediate sta-
tion and the receiver are in the way more often than solid objects between the sender and the intermediate
station. Another shortcoming would be that the first datum ever transmitted by the sender never reaches
the receiver because there are solid objects in the way on all transmission attempts of the sender or all
transmission attempts of the intermediate station. Whether these shortcomings occur, depends not only
on timing details of the protocol and motion details of the intermediate station, but also on motion details
of the solid objects concerned.

7. Elaboration on the Foregoing

In this section, we elaborate on what is presented in Section 6. First, we introduce a way to deal uniformly
with all transmission limitations resulting from solid objects that are in the way. Secondly, we introduce
a variant of the kind of asynchronous communication introduced earlier which is based on frequencies
instead of channels.

7.1. Transmission with Solid Objects in the Way

Until now, we have dealt in an ad hoc way with transmission limitations resulting from solid objects that
are in the way, using sentences like “the line segment from ξ and ξ′ does not intersect the solid object”.
In order to deal uniformly with all transmission limitations resulting from solid objects that are in the
way, we add a parameter to the special state operators for asynchronous communication and adapt the
functions actc uniformly for all c ∈ C. The parameter is an occupancy function μ : R≥0 → P(R3). The
function μ is regarded to give for any point of time the points in space that are occupied by solid objects.
This provides for dealing with both stationary and moving solid objects.

The function actc (c ∈ C) is adapted as follows:

actc(c ↑ d, ξ, V ) = c⇑ d

actc(c ↓ d, ξ, V ) = c⇓ d if ∃ (d, ξ′, r) ∈ V • |ξ − ξ′| = v · r ∧
∀ r′ ≤ r • ξ′ + v · r′ · ξ−ξ′

|ξ−ξ′| �∈ μ(r′)

= δ otherwise

actc(a, ξ, V ) = a if a �∈ {c ↑ d | d ∈ Dc} ∪ {c ↓ d | d ∈ Dc} .
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With this adaptation, a datum sent at one location cannot be received at another location if at some
point of time during the transmission from the former location to the latter location a point in space was
reached that was occupied at that point of time by a solid object according to the function μ. Notice that
we get back the kind of asynchronous communication in space introduced in Section 6.1 by taking the
unique μ such that μ(t) = ∅ for all t ∈ R≥0.

Consider again the protocol described in Section 6.4. Suppose that there are two moving solid balls
O and O′ with radius ρO and ρO′ , respectively. Ball O moves on a line between location ξO and location
ξ′O, and ball O′ moves on a line between location ξO′ and location ξ′O′ . The location of ball O at time t,
say ξO(t), and the location of ball O′ at time t, say ξO′(t), are given by

ξO + (1
2 − 1

2 cos(ωOt)) · (ξ′O − ξO) ,

ξO′ + (1
2 − 1

2 cos(ωO′t)) · (ξ′O′ − ξO′) .

To make the example somewhat realistic, we impose the following conditions on ξO ξ′O, ωO, ρO, ξO′ ,
ξ′O′ , ωO′ , ρO′ :

• there exist a t ∈ R≥0 and a ξ ∈ R3 such that |ξ − ξO(t)| ≤ ρO and either ξ is on the line segment
(ξS + εS , (ξT (t) − εT ) + εR) or ξ is on the line segment (ξS − εS, (ξT (t) − εT ) − εR);

• there exists a t ∈ R≥0 such that there does not exist a ξ ∈ R3 such that |ξ−ξO(t)| ≤ ρO and ξ is on
the line segment (ξS + εS , (ξT (t) − εT ) + εR); and there exists a t ∈ R≥0 such that there does not
exist a ξ ∈ R3 such that |ξ−ξO(t)| ≤ ρO and ξ is on the line segment (ξS −εS, (ξT (t)−εT )−εR);

• there exist a t ∈ R≥0 and a ξ ∈ R3 such that |ξ − ξO′(t)| ≤ ρO′ and either ξ is on the line segment
((ξT (t) + εT ) + εS , ξR + εR) or ξ is on the line segment ((ξT (t) + εT ) − εS , ξR − εR);

• there exists a t ∈ R≥0 such that there does not exist a ξ ∈ R3 such that |ξ − ξO′(t)| ≤ ρO′ and ξ is
on the line segment ((ξT (t)+εT )+εS , ξR+εR); and there exists a t ∈ R≥0 such that there does not
exist a ξ ∈ R3 such that |ξ−ξO′(t)| ≤ ρO′ and ξ is on the line segment ((ξT (t)+εT )−εS , ξR−εR);

• (ξO, ξ′O)⊥(ξT , ξ′T );

• (ξO′ , ξ′O′)⊥(ξT , ξ′T ).

If these conditions are met, the solid object O blocks the transmission along channel K or channel L
regularly, but neither of them permanently, the solid object O′ blocks the transmission along channel K′

or channel L′ regularly, but neither of them permanently, and the lines on which the solid objects O and
O′ move are perpendicular to the line on which the intermediate station T moves.

The following occupancy function gives for any point of time the points in space that are occupied
by O or O′:

μ(t) = {ξ | |ξ − ξO(t)| ≤ ρO} ∪ {ξ | |ξ − ξO′(t)| ≤ ρO′} .

With this occupancy function, and the adapted functions actc given above, we have made precise what
the sentence “The functions actc, for c ∈ {K,L,K ′, L′}, have to be adapted to the presence of solid
objects that are sometimes in between the sender and the intermediate station or the intermediate station
and the receiver” from Section 6.4 referred to.
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Using this occupancy function as actual parameter of the parametrized state operators for asyn-
chronous communication introduces above, the protocol from Section 6.4 can be described by the fol-
lowing term:

∂H(PAR ‖ TB ‖ PAR′) ,

where

PAR = θK ⇓(λ[μ]K∅ (θL⇓(λ[μ]L∅ (S ‖ TR)))) ,

PAR′ = θK ′ ⇓(λ[μ]K
′

∅ (θL′ ⇓(λ[μ]L
′

∅ (TS ‖ ρgR
(R))))) ,

and where the processes S, R, TR, TB , TS , the set of actions H , and the renaming function gR are
defined as in Section 6.

The conditions imposed above on the solid objects O and O′ exclude the really uninteresting cases,
viz. the case where these objects never block the transmission and the case where they always block the
transmission. However, the conditions do not guarantee that the shortcomings mentioned at the end of
Section 6.4 do not occur. The description of the protocol given here provides all that may be needed to
check whether a given condition is sufficient for that.

7.2. From Channels to Frequencies

Until now, data was communicated along different channels to prevent that data meant to be communi-
cated between certain processes to a certain end would be mixed up with data meant to be communicated
between other processes or to another end. In concrete cases, this effect is reached by communicating
data at different frequencies. The abstraction made by using channels may hide details that are relevant to
the behaviour of the system concerned. In order to support asynchronous communication at frequencies
as well, we introduce a variant of the kind of asynchronous communication introduced earlier.

In the case of asynchronous communication along channels, we have chosen for a separate state
operator for each channel. This choice emphasizes that data communicated along different channels
are not mixed up. We could have chosen for a common state operator for all channels as well. In the
case of asynchronous communication at frequencies, we have chosen for a common state operator for all
frequencies. This choice emphasizes that in concrete cases all data transmission concerned takes place
through the same medium, no matter what frequency is used.

It is assumed that a fixed but arbitrary finite set D of data has been given. It is further assumed that
A contains for each frequency ν ∈ R>0 and d ∈ D the following special actions:

• ν ↑ d, the potential sending of datum d at frequency ν;

• ν ⇑ d, the effectuated sending of datum d at frequency ν;

• ν ↓ d, the potential receiving of datum d at frequency ν;

• ν ⇓ d, the effectuated receiving of datum d at frequency ν.

We define a state operator λ[μ]V (V a finite subset of D × R>0 × R3 × R≥0) for asynchronous
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communication at any frequency. The functions act, eff and eff′ are defined as follows:

act(ν ↑ d, ξ, V ) = ν ⇑ d

act(ν ↓ d, ξ, V ) = ν ⇓ d if ∃ (d, ν, ξ′, r) ∈ V • |ξ − ξ′| = v · r ∧
∀ r′ ≤ r • ξ′ + v · r′ · ξ−ξ′

|ξ−ξ′| �∈ μ(r′)

= δ otherwise

act(a, ξ, V ) = a if a �∈ {ν ↑ d | d ∈ D} ∪ {ν ↓ d | d ∈ D} ,

eff(ν ↑ d, ξ, V ) = V ∪ {(d, ν, ξ, 0)}
eff(a, ξ, V ) = V if a �∈ {ν ↑ d | d ∈ D} ,

eff ′(r, V ) = {(d, ν, ξ, r + r′) | (d, ν, ξ, r′) ∈ V } .

Note that the state now records, for each datum that has been sent, in addition to the location from which
it has been sent and the time passed since it has been sent, the frequency at which it has been sent.

Consider again the asynchronous version of the PAR protocol from Section 6.2. Simply changing the
channels into frequencies is not very interesting. More interesting is to add details to the protocol that
cannot be described by means of channels, for example, fluctuations that may occur in the frequencies
used. Therefore, suppose that the frames that were previously communicated along channel K are now
communicated at a frequency between νK and ν′

K , and the acknowledgements that were previously
communicated along channel L are now communicated at a frequency between νL and ν′

L.
Obviously, fluctuations may be caused by inaccuracies of transmission hardware at the sending side.

However, the Doppler effect is usually the most important source of fluctuations if not both the sender
and the receiver are stationary. The Doppler effect makes it appear to the receiver that the sender has
used a frequency different from the frequency that actually has been used. As a result, the Doppler effect
can be modelled by arranging for fluctuations in the frequency used by the sender. The bounds of the
Doppler effect can be calculated by means of physical laws.

We replace the sender S and the receiver R by the more concrete processes S∗ and R∗. The recursive
specification of S∗ consists of the following equations:

S∗ = S∗
0 ,

S∗
b = ˜̃r1(error)(ξS) · σtS

rel(S
∗
b ) +

∑
d∈D

˜̃r1(d)(ξS) · σtS
rel(SF∗

d,b)

(for every b ∈ B),

SF∗
d,b =

∫
ν∈(νK ,ν′

K)

˜̃ν ↑(d, b)(ξS + εS)

·
(∫

t∈[0,t′S)

∫
ν∈(νL,ν′

L)
σt

rel

(
˜̃ν ↓ ack(ξS − εS)

)
· S∗

1−b + σ
t′S
rel(SF∗

d,b)
)

(for every d ∈ D and b ∈ B).
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The recursive specification of R∗ consists of the following equations:

R∗ = R∗
0 ,

R∗
b =

∫
t∈[0,∞)

∫
ν∈(νK ,ν′

K)

∑
d∈D

σt
rel

(
˜̃ν ↓(d, b)(ξR + εR)

)
· σtR

rel

(
˜̃s2(d)(ξR)

)
·
∫

ν∈(νL,ν′
L)

σ
t′R
rel

(
˜̃ν ↑ ack(ξR − εR)

)
· R∗

1−b

+
∫

t∈[0,∞)

∫
ν∈(νK ,ν′

K)

∑
d∈D

σt
rel

(
˜̃ν ↓(d, 1 − b)(ξR + εR)

)
·
∫

ν∈(νL,ν′
L)

σ
t′R
rel

(
˜̃ν ↑ ack(ξR − εR)

)
· R∗

b

(for every b ∈ B).

The more concrete version of the protocol from Section 6.2 is described by the following term:

θH(λ[μ]∅(S∗ ‖ ρfR
(R∗))) ,

where

H = {ν ⇓(d, b) | ν ∈ (νK , ν ′
K), (d, b) ∈ D × B} ∪ {ν ⇓ ack | ν ∈ (νL, ν ′

L)} ,

where the replacement function fR for the movement of the receiver is defined as in Section 6.2, and
where the occupancy function μ is defined similar to the one defined in Section 7.1. To prevent that data
being communicated are unintensionally mixed up, we generally use frequency ranges that are disjunct.
In this particular case, this is not needed because frames will never be mixed up with acknowledgements.

8. Concluding Remarks

A process algebra has been presented which makes it possible to deal with the behaviour of systems
with a known, possibly time-dependent, spatial distribution. This process algebra is a process algebra
with timing and located actions. It is intended as an algebraic framework for the description and analysis
of spatially distributed systems. The application of the framework has been illustrated by means of an
example concerning data transmission via a mobile intermediate station.

The presented process algebra is a reformulation of the real space process algebra from [3] in a
setting with urgent actions. Other process algebras featuring urgent actions include the ACP-style process
algebras with timing presented in [6], ATP [20], the different versions of CCS with timing [12, 19, 24],
Timed CSP [13], TIC [21], and TPL [14].

The presented process algebra is obtained by adapting ACPsrt, one of the process algebras with
timing from [6], to spatially located actions. As a result of the simpler way in which is dealt with the
situation that two or more actions are to be performed independently at the same point of time, the state
operator and the maximal progress operator turn out to be far less complicated than in [3]. We have
found that those operators are useful to model the kind of asynchronous communication to be used in the
case where processes are located at different places in space.



28 J.A. Bergstra and C.A. Middelburg / Located Actions in Process Algebra with Timing

We further call to mind the power of spatial replacement. The example worked out in this paper
demonstrates that by means of spatial replacement a communication protocol between a stationary sender
and a stationary receiver can easily be turned into one of which the sender or the receiver moves in space.

The process algebra presented in this paper does not incorporate abstraction from internal actions.
This issue is not even fully understood in process algebras with timing that do not support located actions.
The version of branching bisimulation equivalence for processes with discrete relative timing proposed
in [4] for this purpose, and adapted to continuous relative timing in [6], is too fine for many applications.
A slightly coarser equivalence is proposed in [7], but unfortunately the definition given in that paper is
faulty.

To the best of our knowledge, there is no related work, other than the work on real space process
algebra presented in [3]. One of the options for further work that we consider is to investigate how the
possibility to deal with the behaviour of systems with a known time-dependent spatial distribution can
be incorporated in the process algebra for hybrid systems from [11].
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