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Abstract

We present an extension of discrete time process algebra with relative timing
where recursion, propositional signals and conditions, a counting process cre-
ation operator, and the state operator are combined. Except the counting pro-
cess creation operator, which subsumes the original process creation operator,
these features have been developed earlier as largely separate extensions of time
free process algebra. The change to the discrete time case and the combination
of the features turn out to be far from trivial. We also propose a semantics
for a simplified version of SDL, using this extension of discrete time process
algebra to describe the meaning of the language constructs. This version covers
all behavioural aspects of SDL, except for communication via delaying channels
– which can easily be modelled. The semantics presented here facilitates the
generation of finitely branching transition systems for SDL specifications and
thus it enables validation.
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1 Introduction

In this chapter, we present an extension of discrete time process algebra with relative
timing where recursion, propositional signals and conditions, a counting process cre-
ation operator, and the state operator are combined. We also propose a semantics for

∗The work presented in this chapter has been partly carried out while the second and third author
were at UNU/IIST (United Nations University, International Institute for Software Technology) in
Macau.



a simplified version of SDL, called ϕ−SDL, using this extension of discrete time pro-
cess algebra with relative timing to describe the meaning of the language constructs.
The choice of a process algebra in the style of ACP [8, 9] as the basis of the presented
semantics is obvious. This algebraic approach to concurrency represents a large body
of relevant theory. In particular, many features of ϕ−SDL are related to topics that
have been studied extensively in the framework of ACP. Besides, the axiom system
and operational semantics of an ACP-style process algebra facilitate advances in the
areas of validation and verification.

We take the remainder of this introductory section to introduce ϕ−SDL, to moti-
vate the choices made in the selection of this dramatically simplified version of SDL,
and to describe its close connection with full SDL. We also explain the need for a se-
mantics that deals properly with the time related aspects of SDL in case one intends
to validate SDL specifications, or to justify design steps made using SDL by formal
verification.

1.1 Background

At present, SDL [10, 18] is widely used in telecommunications for describing struc-
ture and behaviour of generally complex systems at different levels of abstraction. It
originated from an informal graphical description technique already commonly used
in the telecommunications field at the time of the first computer controlled telephone
switches. Our starting-point is the version of SDL defined in [33], the ITU-T Rec-
ommendation Z.100 published in 1994. There, a subset of SDL, called Basic SDL, is
identified and used to describe the meaning of the language constructs of SDL that
are not in Basic SDL. This subset is still fairly complicated.

ϕ−SDL is a simplified version of Basic SDL.1 The following simplifications have
been made:

• blocks and channels are removed;

• all variables are revealed and they can be viewed freely;

• timer setting is regarded as just a special use of signals;

• timer setting is based on discrete time.

Besides, ϕ−SDL does not deal with the specification of abstract data types. An
algebraic specification of all data types used in a ϕ−SDL specification is assumed as
well as an initial algebra semantics for it. The pre-defined data types Boolean and
Natural, with the obvious interpretation, should be included.

We decided to focus in ϕ−SDL on the behavioural aspects of SDL. We did so for
the following two reasons. Firstly, the structural aspects of SDL are mostly of a static
nature and therefore not very relevant from a semantic point of view. Secondly, the
part of SDL that deals with the specification of abstract data types is well understood
– besides, it can easily be isolated and treated as a parameter.2 For practical reasons,

1This subset is called ϕ−SDL, where ϕ stands for flat, as it does not cover the structural aspects
of SDL, and − indicates that delaying channels are left out.

2The following is also worth noticing: (1) ETSI discourages the use of abstract data types other
than the pre-defined ones in European telecommunication standards (see [31]); (2) ASN.1 [32] is
widely used for data type specification in the telecommunications field, and there is an ITU-T
Recommendation, Z.105, for combining SDL and ASN.1 (see [36]).
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we also chose not to include initially procedures, syntypes with a range condition and
process types with a bound on the number of instances that may exist simultaneously.
Similarly, the any expression is omitted as well. Services are not supported by ϕ−SDL
for the following reasons: the semantics of services is hard to understand, ETSI forbids
for this reason their use in European telecommunication standards (see [31]), and the
SDL community discusses its usefulness.

In [14], we introduced a simplified version of SDL, called ϕSDL, which covers all
behavioural aspects of SDL, including communication via delaying channels. ϕ−SDL
is ϕSDL without communication via delaying channels. The process algebra seman-
tics of ϕSDL proposed in [14] made clear that ϕSDL specifications can always be
transformed to semantically equivalent ones in ϕ−SDL. Apart from the data type def-
initions, SDL specifications can be transformed to ϕSDL specifications, and hence to
ϕ−SDL specifications, provided that no use is made of facilities that are not included
initially. The transformation from SDL to ϕSDL has, apart from some minor adapta-
tions, already been given. The first part of the transformation is the mapping for the
shorthand notations of SDL which is given informally in the ITU-T Recommendation
Z.100 [33] and defined in a fully precise manner in its Annex F.2 [34]. The second
and final part is essentially the mapping extract-dict defined in its Annex F.3 [35].

The semantics of ϕ−SDL agrees with the semantics of SDL as far as reasonably
possible. This means in the first place that obvious errors in [35] have not been
taken over. For example, the intended effect of SDL’s create and output actions
may sometimes be reached with interruption according to [35] – allowing amongst
other things that a process ceases to exist while a signal is sent to it instantaneously.
Secondly, the way of dealing with time is considered to be unnecessarily complex and
inadequate in SDL and has been adapted as explained below.

In SDL, real numbers are used for times and durations. So when a timer is set, its
expiration time is given by a real number. However, the time considered is the system
time which proceeds actually in a discrete manner: the system receives ticks from the
environment which increase the system time with a certain amount (how much real
time they represent is left open). Therefore, the timer is considered to expire when
the system receives the first tick that indicates that its expiration time has passed. So
nothing is lost by adopting in ϕ−SDL a discrete time approach, using natural numbers
for times and durations, where the time unit can be viewed as the time between two
ticks but does not really rely upon the environment. This much simpler approach also
allows us to remove the original inadequacy to relate the time used with timer setting
to the time involved in waiting for signals by processes.

We generally had to make our own choices with respect to the time related aspects
of SDL, because they are virtually left out completely in the ITU-T Recommendation
Z.100. Our choices were based on communications with various practitioners from the
telecommunications field using SDL, in particular the communications with Leonard
Pruitt [26]. They provided convincing practical justification for the premise of our
current choices: communication with the environment takes a good deal of time,
whereas internal processing takes a negligible deal of time. Ease of adaptation to
other viewpoints on time in SDL is guaranteed relatively well by using a discrete
time process algebra, PA−drt (see [5]) without immediate deadlock, as the basis of the
presented semantics.

In the telecommunications field, SDL is increasingly used for describing generally
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complex telecommunications systems, including switching systems, services and pro-
tocols, at different levels of abstraction – from initial specification till implementation.
Initial specification of systems is done with the intention to analyse the behavioural
properties of these systems and thus to validate the specification. There is also a
growing need to verify whether the properties represented by one specification are
preserved in another, more concrete, specification and thus to justify design steps.
However, neither SDL nor the tools and techniques that are used in conjunction with
SDL provide appropriate support for validation of SDL specifications and verifica-
tion of design steps made using SDL. The main reason is that the semantics of SDL
according to the ITU-T Recommendation Z.100 is at some points inadequate for ad-
vanced validation and formal verification. In particular, the semantics of time related
features, such as timers and delaying channels, is insufficiently precise. Moreover,
the semantics is at some other points unnecessarily complex. Consequently, rules of
logical reasoning, indispensable for formal verification, have not yet been developed
and most existing analysis tools, e.g. GEODE [2] and SDT [37], offer at best a limited
kind of model checking for validation.

Prerequisites for advanced validation and formal verification is a dramatically sim-
plified version of SDL and an adequate semantics for it. Only after that possibilities
for advanced analysis can be elaborated and proof rules for formal verification de-
vised. The language ϕ−SDL and the presented semantics for it are primarily intended
to come up to these prerequisites.

1.2 Organization of this chapter

The structure of this chapter is as follows. In Section 2, we present the extension of
discrete time process algebra with relative timing that is used for the process algebra
semantics of ϕ−SDL proposed in Section 4. An overview of ϕ−SDL is given in Section 3.
Following the overview, in Section 4, we present the proposed semantics of ϕ−SDL
in two steps. First, a semantics of ϕ−SDL process definitions, which are the main
elements of ϕ−SDL specifications, is given. This semantics abstracts from dynamic
aspects of process behaviour such as process creation and process execution in a
state. A semantics of ϕ−SDL system definitions, i.e. complete ϕ−SDL specifications,
is then given in terms of the semantics of ϕ−SDL process definitions using the counting
process creation operator and the state operator. In Section 5, we give an overview of
related work and we explain how the semantics presented in Section 4 can be used to
transform ϕ−SDL specifications to transition systems that can be used for advanced
validation. There are appendices about notational conventions used (Appendix A)
and details concerning the contexts used to model scope in the presented semantics
(Appendix B). Small examples of specification in ϕ−SDL and the meaning of the
process definitions being found in these examples are also presented (in Section 3 and
Section 4, respectively).
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2 Process algebra

2.1 Introduction

In this section, we present an extension of discrete time process algebra with rela-
tive timing where recursion, propositional signals and conditions, a counting process
creation operator, and the state operator are combined. Its signature, axioms and a
structural operational semantics are given and it is shown that strong bisimulation
equivalence is a congruence for all operations. Except the counting process creation
operator, which subsumes the original process creation operator, these features have
been developed earlier as largely separate extensions of time free process algebra.
However, both the change to the discrete time case and the combination of the fea-
tures turn out to be far from trivial. Besides, some of the features are slightly adapted
versions of the original ones in order to meet the needs of the semantics of ϕ−SDL.

In Section 2.2, we present discrete relative time process algebra without immediate
deadlock and delayable actions (PA−drt-ID). In Section 2.3, we add propositional signals
and conditions to PA−drt-ID. In the discrete relative time case, this addition requires
some axioms to be refined. We introduce a new guarded command operator that
yields a deadlock in the current time slice if the condition does not hold at the start,
i.e. waiting is no option if the condition does not hold. In Section 2.4, we add recursion
to the extension presented in Section 2.3. The main definitions related to recursion,
such as the definitions of recursive specification, solution and guardedness, are given
here for the case with relative timing in discrete time as well as propositional signals
and conditions.

In Section 2.5 and 2.6, we describe the counting process creation operator and
the state operator, respectively, for the discrete relative time case in the presence
of propositional signals and conditions. The counting process creation operator is a
straighforward extension of the original process creation operator that allows to assign
a unique “process identification value” to each process created. The state operator
presented here allows to deal with conditions whose truth depends on the state and
with state changes due to progress of time to the next time slice.

The main reference to discrete time process algebra in the style of ACP is [5]. The
features with which it is combined here are discussed as separate extensions of time
free process algebra in [6] (propositional signals and conditions, state operator), [8]
(recursion) and [11] (process creation). Our discussion of axioms is concentrated on
the crucial axioms for the discrete time case and each of these features, and on the
alterations and additions needed if all this is combined. For a systematic introduction
to process algebra in the style of ACP, the reader is referred to [8] and [9].

2.2 Discrete relative time process algebra

In this subsection, we present discrete relative time process algebra without immediate
deadlock and delayable actions. The term discrete time is used here to indicate that
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time is divided into time slices and timing of actions is done with respect to the time
slices in which they are performed – within a time slice there is only the order in which
actions are performed. Additionally, performance of actions and passage to the next
time slice are separated here. This corresponds to the two-phase functioning scheme
for modeling timed processes [25]. Note that it means that processes are supposed to
be capable of performing certain actions, like in time free process algebra, as well as
passing to the next time slice. A coherent collection of versions of ACP with timing
where performance of actions and passage of time are separated, is presented in [7].

First we treat the basic discrete relative time process algebra BPA−drt-ID. Then
we treat PA−drt-ID, the extension of BPA−drt-ID with parallel composition in which no
communication between processes is involved. ACP−drt-ID, the extension of BPA−drt-ID
with parallel composition in which synchronous communication between processes is
involved, will not be treated. BPA−drt-ID, PA−drt-ID and ACP−drt-ID are presented in
detail in [27]. We also present the extension of PA−drt-ID with encapsulation, described
before for the discrete relative time case without immediate deadlock in [4].

2.2.1 Basic process algebra

In BPA−drt-ID, we have the sort P of processes, the constants a (one for each action a)
and δ, the unary operator σrel (time unit delay), and the binary operators · (sequential
composition) and + (alternative composition). The constants a stand for a in the
current time slice. Similarly, the constant δ stands for a deadlock in the current time
slice. The process σrel(x) is the process x delayed till the next time slice. The process
x·y is the process x followed after successful termination by the process y. The process
x + y is the process that proceeds with either the process x or the process y, but
not both. We also have the auxiliary unary operator νrel (now) in BPA−drt-ID. This
operator makes an elegant axiomatization of PA−drt-ID possible. The process νrel(x) is
the part of x that is not delayed till the next time slice.

It is assumed that a fixed but arbitrary set A of actions has been given.

Signature of BPA−drt-ID The signature of BPA−drt-ID consists of the undelayable
action constants a : → P (for each a ∈ A), the undelayable deadlock constant δ : →
P, the alternative composition operator + : P × P → P, the sequential composition
operator · : P × P → P, the time unit delay operator σrel : P → P, and the now
operator νrel : P→ P.

We assume that an infinite set of variables (of sort P) has been given. Given the
signature of BPA−drt-ID, terms of BPA−drt-ID, often referred to as process expressions,
are constructed in the usual way. The need to use parentheses is reduced by ranking
the precedence of the operators. Throughout this chapter we adhere to the following
precedence rules: (i) all unary operators have the same precedence, (ii) unary op-
erators have a higher precedence than binary operators, (iii) the operator · has the
highest precedence amongst the binary operators, (iv) the operator + has the lowest
precedence amongst the binary operators, and (v) all other binary operators have
the same precedence. We will also use the following abbreviation. Let (pi)i∈I be an
indexed set of terms of BPA−drt-ID where I = {i1, . . . , in}. Then we write

∑
i∈I pi for

pi1 + . . . + pin . We further use the convention that
∑

i∈I pi stands for δ if I = ∅.
We denote variables by x, x′, y, y′, . . .. We use the convention that a, a′, b, b′, . . .

denote elements of A ∪ {δ} in the context of an equation, but elements of A in the
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context of an operational semantics rule. Furthermore, H denotes a subset of A. We
write Aδ for A ∪ {δ}.

Axioms of BPA−drt-ID The axiom system of BPA−drt-ID consists of the equations
A1-A5, DRT1-DRT4A and DCS1-DCS4 given in Table 1.

x+ y = y + x A1 σrel(x) + σrel(y) = σrel(x+ y) DRT1

(x+ y) + z = x+ (y + z) A2 σrel(x) · y = σrel(x · y) DRT2

x+ x = x A3 δ · x = δ DRT3

(x+ y) · z = x · z + y · z A4 x+ δ = x DRT4A

(x · y) · z = x · (y · z) A5 νrel(a) = a DCS1

νrel(x+ y) = νrel(x) + νrel(y) DCS2

νrel(x · y) = νrel(x) · y DCS3

νrel(σrel(x)) = δ DCS4

Table 1: Axioms of BPA−drt-ID (a ∈ Aδ)

Axioms DRT1 and DRT2 represent the interaction of time unit delay with alternative
composition and sequential composition, respectively. Axiom DRT1, called the time
factorization axiom, expresses that passage to the next time slice by itself can not
determine a choice. Axiom DRT2 expresses that timing is relative to the performance
of the previous action.

In [27], a structural operational semantics of BPA−drt-ID is presented and proofs
are given of the soundness and completeness of the axiom system of BPA−drt-ID for the
set of closed BPA−drt-ID terms modulo (strong) bisimulation equivalence. This notion
is precisely defined in [8]. Roughly, bisimilarity of two processes means that if one
process is capable of doing a certain step, i.e. performing some action or passing to
the next time slice, and next going on as a certain follow-up process then the other
process is capable of doing the same step and next going on as a process bisimilar to
the follow-up process.

2.2.2 Parallel composition

In PA−drt-ID, we have, in addition to sequential and alternative composition, parallel
composition of processes. In PA−drt-ID, unlike in ACP−drt-ID, parallel composition does
not involve communication between processes. The parallel composition operator ‖
of PA−drt-ID is called free merge to indicate that no communication is involved. The
process x ‖ y is the process that proceeds simultaneously with the processes x and
y. In order to get a finite axiomatization, we also have the auxiliary operator bb (left
merge) in PA−drt-ID. The processes x bb y and x ‖ y are the same except that x bb y
must start with a step of x.

Signature of PA−drt-ID The signature of PA−drt-ID is the signature of BPA−drt-ID
extended with the free merge operator ‖: P × P → P and the left merge operator
bb: P× P→ P.

We will use the following abbreviation. Let (pi)i∈I be an indexed set of terms of
PA−drt-ID where I = {i1, . . . , in}. Then, we write ‖i∈I pi for pi1 ‖ . . . ‖ pin .
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x ‖ y = x bb y + y bb x DRTM1

a bb x = a · x DRTM2

a · x bb y = a · (x ‖ y) DRTM3

(x+ y) bb z = x bb z + y bb z DRTM4

σrel(x) bb νrel(y) = δ DRTM5

σrel(x) bb (νrel(y) + σrel(z)) = σrel(x bb z) DRTM6

Table 2: Additional axioms for PA−drt-ID (a ∈ Aδ)

Axioms of PA−drt-ID The axiom system of PA−drt-ID consists of the axioms of
BPA−drt-ID and the equations DRTM1-DRTM6 given in Table 2.

Axioms DRTM5 and DRTM6 represent the interaction between time unit delay and
left merge. These axioms express that passage to the next time slice of parallel
processes must synchronize.

In [27], a structural operational semantics of PA−drt-ID is presented and proofs are
given of the soundness and completeness of the axiom system of PA−drt-ID for the set
of closed PA−drt-ID terms modulo (strong) bisimulation equivalence.

2.2.3 Encapsulation

We extend the signature of PA−drt-ID with the encapsulation operator ∂H : P → P.
This operator turns all undelayable actions a, where a in H ⊆ A, into undelayable
deadlock. The encapsulation operator is defined by the equations DRTD1-DRTD5
given in Table 3.

∂H(a) = a if a 6∈ H DRTD1

∂H(a) = δ if a ∈ H DRTD2

∂H(x · y) = ∂H(x) · ∂H(y) DRTD3

∂H(x+ y) = ∂H(x) + ∂H(y) DRTD4

∂H(σrel(x)) = σrel(∂H(x)) DRTD5

Table 3: Axioms for encapsulation (a ∈ Aδ)

An operational semantics of encapsulation is presented in [4].

2.3 Propositional signals and conditions

In [6], process algebra with propositional signals and conditions is introduced for the
time free case. In this subsection, we adapt it for discrete relative time. The result is
referred to by PApsc

drt . In later sections, we will call propositional signals “propositions”
in order to avoid ambiguity with signals of ϕ−SDL.

In process algebra with propositional signals and conditions, propositions are used
both as signals that are emitted by processes and as conditions that are imposed on
processes to proceed. Condition testing is looked upon as signal inspection. The intu-
ition is that the signal emitted by a process, as well as each of its logical consequences,
holds at the start of the process. The signal emitted by a process is called its root
signal.
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Like in the time free case we have ⊥ (non-existence) as additional constant and̂q (root signal emission) and :→ (guarded command) as additional operators. Like
the constant δ, the constant ⊥ stands for a process that is incapable of doing any step
and incapable of terminating successfully. In addition, going on as ⊥ after performing
an action is impossible. The process φ ̂q x is the process x where the proposition
φ holds at its start. Broadly speaking, the process φ :→ x is the process that may
proceed as the process νrel(x) if the proposition φ holds at its start, but may also
proceed as the process σrel(φ :→ y) in case x = νrel(x) + σrel(y). In other words, with
the guarded command operator :→, it is possible to wait till a proposition holds. This
agrees with the original intention of the operator to make actions conditional.

We also have a non-waiting version of the guarded command operator, namely
the operator ...→ (strict guarded command). The process φ ...→ x is the process that
proceeds as the process x if the proposition φ holds at its start, and otherwise yields
a deadlock in the current time slice. Both guarded commands agree with the one in
the time free case for processes that are not capable of passing to the next time slice.

Lifting propositional signals and conditions to the discrete time case requires the
axioms for left merge to be adapted. If these axioms are not adapted, the equation
σrel(x bb y) = δ becomes derivable – unless axiom NE1 (Table 5) is not adopted.
Without adaptations, the root signal of x bb y would be the root signal of the process
x. With the chosen adaptations, the root signal of x bb y is the conjunction of the root
signals of the processes x and y. Thus, different from the time free case, the process
x bb y is neither capable of performing an action nor capable of passing to the next
time slice if the root signal of y is equal to f. This difference is not relevant to the free
merge operator because the root signal of x ‖ y is the conjunction of the root signals
of x and y anyhow.

It is assumed that a fixed but arbitrary set Bat of atomic propositions has been
given. From now on we have, in addition to the sort P of processes, the sort B of
propositions over Bat; with constants t, f (true, false) and operators ¬, ∨, ∧, →, ↔
(negation, disjunction, conjunction, implication, bi-implication). In case Bat is empty,
B represents the boolean algebra over the set B = {t, f}.

We denote propositions by φ, ψ, . . .. In derivations we may always use logical equiv-
alences of (classical) propositional logic. So we are actually using equivalence classes
of formulas, with respect to logical equivalence, instead of the formulas themselves.

A valuation v of atomic formulas is a function v : Bat → B. Any valuation v can
be extended to B in the usual homomorphic way, i.e.:

v(κ) = κ for the constants κ ∈ {t, f},
v(¬φ) = ¬v(φ),
v(φ o ψ) = v(φ) o v(ψ) for the binary operators o ∈ {∨,∧,→,↔}.

We will use the same name for a valuation v and its extension to B. If a proposition
φ is satisfied by a valuation v (v(φ) = t), we write v |= φ to indicate this.

Signature of PApsc
drt The signature of PApsc

drt is the signature of the PA−drt-ID extended
with the encapsulation operator, the non-existence constant ⊥ : → P, the strict
guarded command operator ...→: B × P → P, the root signal emission operator ̂q :
B× P→ P and the weak guarded command operator :→: B× P→ P.

Axioms of PApsc
drt The axiom system of PApsc

drt consists of the axioms of BPA−drt-ID
and the equations DRTM1, DRTM4 from Table 2, the equations DRTM2′, DRTM3′,
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DRTM5′, DRTM6′ from Table 4, the equations NE1-NE3 from Table 5, the equa-
tions SGC1-SGC6, MSGC from Table 6, the equations SRSE1-SRSE7, MSRSE from
Table 7, the equations DCS5, DCS6, DRTM7 from Table 8, the equations DGC1-
DGC8 from Table 9, the equations DRTD1-DRTD5 from Table 3, and the equations
PD1-PD3 from Table 10.

a bb x = a · x+ ∂A(νrel(x)) DRTM2′

a · x bb y = a · (x ‖ y) + ∂A(νrel(y)) DRTM3′

σrel(x) bb νrel(y) = ∂A(νrel(y)) DRTM5′

σrel(x) bb (νrel(y) + σrel(z)) = σrel(x bb z) + ∂A(νrel(y)) DRTM6′

Table 4: Adapted axioms for left merge (a ∈ Aδ)

x+⊥ = ⊥ NE1

⊥ · x = ⊥ NE2

a · ⊥ = δ NE3

Table 5: Axioms for non-existence (a ∈ Aδ)

t
...→ x = x SGC1

f
...→ x = δ SGC2

φ
...→ (x+ y) = (φ

...→ x) + (φ
...→ y) SGC3

(φ ∨ ψ)
...→ x = (φ

...→ x) + (ψ
...→ x) SGC4

φ
...→ (ψ

...→ x) = (φ ∧ ψ)
...→ x SGC5

φ
...→ (x · y) = (φ

...→ x) · y SGC6

(φ
...→ x) bb y = φ

...→ (x bb y) MSGC

Table 6: Axioms for strict guarded command

(φ̂q x) · y = φ̂q (x · y) SRSE1

(φ̂q x) + y = φ̂q (x+ y) SRSE2

φ̂q (ψ ̂q x) = (φ ∧ ψ) ̂q x SRSE3

t ̂qx = x SRSE4

f ̂qx = ⊥ SRSE5

φ
...→ (ψ ̂q x) = (φ→ ψ) ̂q (φ

...→ x) SRSE6

φ̂q (φ
...→ x) = φ̂q x SRSE7

(φ̂q x) bb y = φ̂q (x bb y) MSRSE

Table 7: Axioms for root signal emission

νrel(φ
...→ x) = φ

...→ νrel(x) DCS5

νrel(φ̂q x) = φ̂q νrel(x) DCS6

σrel(x) bb ((φ
...→ y) + z) = (φ

...→ (σrel(x) bb (y + z))) + (¬φ ...→ (σrel(x) bb z)) DRTM7

Table 8: Additional axioms for time unit delay and now operator
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φ :→ δ = δ DGC1

φ :→ a = φ
...→ a DGC2

φ :→ (a · x) = (φ :→ a) · x DGC3

φ :→ (ψ
...→ x) = ψ

...→ (φ :→ x) DGC4

φ :→ (x+ y) = (φ :→ x) + (φ :→ y) DGC5

φ :→ σrel(x) = σrel(φ :→ x) DGC6

φ :→ νrel(x) = νrel(φ :→ x) DGC7

φ :→ (ψ ̂q x) = ψ ̂q (φ :→ x) DGC8

Table 9: Axioms for weak guarded command (a ∈ Aδ)

∂H(φ
...→ x) = φ

...→ ∂H(x) PD1

∂H(φ :→ x) = φ :→ ∂H(x) PD2

∂H(φ̂q x) = φ̂q ∂H(x) PD3

Table 10: Additional axioms for encapsulation

The axioms A3, DRT3 and DRT4A of BPA−drt-ID (Table 1) are derivable from the
axioms SGC1, SGC2, SGC4 and SGC6 (Table 6).

The axioms DRTM2′, DRTM3′, DRTM5′ and DRTM6′ (Table 4) are the axioms
DRTM2, DRTM3, DRTM5 and DRTM6 of PA−drt-ID (Table 2) where a summand is
added to the right hand side of the axioms, viz. ∂A(νrel(x)) in case of DRTM2 and
∂A(νrel(y)) in case of the other axioms. Thus is expressed that the root signal of
the left merge of two processes is always the conjunction of the root signals of both
processes.

The axioms NE1-NE3, SGC1-SGC6, SRSE1-SRSE7, MSGC and MSRSE (Ta-
bles 5-7) are straightforward reformulations of corresponding axioms for the time free
case, i.e. axioms of PAps, given in [6]. The constants a and the constant δ have been
replaced by the constants a and the constant δ, respectively; and the operator :→ has
been replaced by the operator ...→. The axioms NE1 and NE2 (Table 5) are deriv-
able from the axiom A1 of BPA−drt-ID and the axioms SRSE1, SRSE2 and SRSE5
(Table 7). Axiom NE3 expresses that going on as ⊥ after performing an action is
impossible. We do not have σrel(⊥) = δ, an equation expressing that going on as ⊥
after passing to the next time slice is impossible. The reason is that σrel(x) = δ would
become derivable. In view of this mismatch between a · ⊥ and σrel(⊥), in retrospect,
axiom NE3 may be considered to be a wrong choice in [6]. Axiom SRSE5 expresses
that a process where falsity holds at its start is non-existent. The crucial axioms are
SRSE6 and SRSE7 which represent the interaction between the root signal emission
operator and the strict guarded command. Axiom SRSE6 expresses that if a proposi-
tion holds at the start of a process and that process is guarded by another proposition
then at the start of the whole the former proposition holds or the latter proposition
does not hold. Axiom SRSE7 expresses that it is superfluous to guard a process by a
proposition if the proposition holds at the start of the whole.

The additional axioms DCS5, DCS6 and DRTM7 (Table 8) are needed because
propositional signals and conditions are lifted to the discrete time case. The strict
guarded command is non-waiting, i.e. we do not have φ ...→ σrel(x) = σrel(φ

...→ x).
Root signal emission is non-persistent, i.e. we do not have φ̂qσrel(x) = σrel(φ̂qx).
Axiom DRTM7 is necessary for the elimination of parallel composition. This axiom
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expresses that if processes are capable of passing to the next time slice conditionally
then their parallel composition can do so if all conditions concerned hold. Note that
from DRTM7 we can derive σrel(x) bb (φ ...→ y) = φ ...→ (σrel(x) bb y).

The axioms DGC1-DGC8 (Table 9) define the weak guarded command with which,
unlike with the strict guarded command, it is possible to wait till a proposition holds.
From these axioms we can derive

x = νrel(x) ⇒ φ :→ x = (φ ...→ x) + ∂A(νrel(x))

x = νrel(x) + σrel(y) ⇒ φ :→ x = (φ ...→ νrel(x)) + σrel(φ :→ y) + ∂A(νrel(x))

which gives a full picture of the differences between the two guarded commands.

Semantics of PApsc
drt We shall give a structural operational semantics for PApsc

drt using
rules in the style of Plotkin to define the following unary and binary relations on the
closed terms of PApsc

drt :

a unary relation
v,a−−→
√

for each valuation v and a ∈ A,

a binary relation
v,a−−→ for each valuation v and a ∈ A,

a binary relation
v,σ−−→ for each valuation v,

a unary relation v ∈ [sρ( )] for each valuation v.

These relations can be explained as follows:

t
v,a−−→
√

: under valuation v, t is capable of first performing a in the current
time slice and then terminating successfully;

t
v,a−−→ t′: under valuation v, t is capable of first performing a in the current

time slice and then proceeding as t′;

t
v,σ−−→ t′: under valuation v, t is capable of first passing to the next time slice

and then proceeding as t′;
v ∈ [sρ(t)]: v makes the root signal of t true.

The rules have the form
p1, . . . , pm
c1, . . . , cn

s, where s is optional. They are to be read as

“if p1 and . . . and pm then c1 and . . . and cn, provided s”. As usual, p1, . . . , pm and
c1, . . . , cn are called the premises and the conclusions, respectively. The conclusions
are positive formulas of the form t

v,a−−→
√

, t
v,a−−→ t′, t

v,σ−−→ t′ or v ∈ [sρ(t)], where
t and t′ are open terms of PApsc

drt . The premises are positive formulas of the above
forms or negative formulas of the form t 6v,σ−−→. A negative formula t 6v,σ−−→ means that
for all closed terms t′ of PApsc

drt not t
v,σ−−→ t′. The rules are actually rule schemas.

The optional s is a side-condition restricting the valuations over which v ranges, the
actions over which a ranges, the propositions over which φ ranges, and the sets of
actions over which H ranges. If m = 0 and there is no side-condition, the horizontal
bar is left out.

The signature of PApsc
drt together with the rules that will be given constitute a term

deduction system in panth format as defined in [29]. It is known from [29] that if a term
deduction system in panth format is stratifiable, (strong) bisimulation equivalence is a
congruence for the operators in the signature concerned. For a comprehensive intro-
duction to rule formats guaranteeing that bisimulation equivalence is a congruence,
the reader is referred to [1].
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Let T be a term deduction system and PF(T ) be the set of positive formulas
occurring in the rules of T . Then a mapping S : PF(T )→ α for an ordinal α is called

a stratification for T if for all rules
P

C
of T , formulas c in C, and closed substitutions

σ the following conditions hold:

for all positive formulas p in P , S(σ(p)) ≤ S(σ(c));

for all negative formulas t¬R in P ,S(σ(tRt′)) < S(σ(c)) for all closed terms t′;

for all negative formulas ¬Pt in P ,S(σ(Pt)) < S(σ(c)).

Recall that the rules that will be given are actually rule schemas. Within the frame-
work of term deduction systems, the instances of the rule schemas that satisfy the
stated side-conditions should be taken as the rules under consideration. For the rest,
we continue to use the word rule in the broader sense.

A structural operational semantics of PApsc
drt is described by the rules given in

Tables 11, 12, 13 and 14. Note that we write t 6v,σ−−→ instead of t ¬ v,σ−−→ .

a
v,a−−→
√

σrel(x)
v,σ−−→ x

x
v,a−−→
√

φ ...→ x
v,a−−→
√ v |= φ

x
v,a−−→ x′

φ ...→ x
v,a−−→ x′

v |= φ
x

v,σ−−→ x′

φ ...→ x
v,σ−−→ x′

v |= φ

x
v,a−−→
√

φ :→ x
v,a−−→
√ v |= φ

x
v,a−−→ x′

φ :→ x
v,a−−→ x′

v |= φ
x

v,σ−−→ x′

φ :→ x
v,σ−−→ φ :→ x′

x
v,a−−→
√

φ̂q x
v,a−−→
√ v |= φ

x
v,a−−→ x′

φ̂q x
v,a−−→ x′

v |= φ
x

v,σ−−→ x′

φ̂q x
v,σ−−→ x′

v |= φ

x
v,a−−→
√
, w ∈ [sρ(y)]

x · y v,a−−→ y

x
v,a−−→ x′

x · y v,a−−→ x′ · y
x

v,σ−−→ x′

x · y v,σ−−→ x′ · y
x

v,a−−→
√
, v ∈ [sρ(y)]

x+ y
v,a−−→
√
, y + x

v,a−−→
√ x

v,a−−→ x′, v ∈ [sρ(y)]

x+ y
v,a−−→ x′, y + x

v,a−−→ x′

x
v,σ−−→ x′, y

v,σ−−→ y′

x+ y
v,σ−−→ x′ + y′

x
v,σ−−→ x′, y 6v,σ−−→, v ∈ [sρ(y)]

x+ y
v,σ−−→ x′, y + x

v,σ−−→ x′

Table 11: Rules for basic operators of PApsc
drt (a ∈ A)

x
v,a−−→
√
, v ∈ [sρ(y)]

x ‖ y v,a−−→ y, y ‖ x v,a−−→ y, x bb y v,a−−→ y

x
v,a−−→ x′, v ∈ [sρ(y)], w ∈ [sρ(x

′)], w ∈ [sρ(y)]

x ‖ y v,a−−→ x′ ‖ y, y ‖ x v,a−−→ y ‖ x′, x bb y v,a−−→ x′ ‖ y
x

v,σ−−→ x′, y
v,σ−−→ y′

x ‖ y v,σ−−→ x′ ‖ y′, x bb y v,σ−−→ x′ bb y′

Table 12: Rules for parallel composition (a ∈ A)

All rules are in panth format. In order to prove the fact that strong bisimulation
is a congruence, we only have to find a stratification. We define a stratification S as
follows:
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v ∈ [sρ(a)] v ∈ [sρ(δ)] v ∈ [sρ(σrel(x))]

v ∈ [sρ(x)]
v ∈ [sρ(φ

...→ x)] v ∈ [sρ(φ
...→ x)]

v 6|= φ

v ∈ [sρ(x)]
v ∈ [sρ(φ :→ x)]

v ∈ [sρ(x)]
v ∈ [sρ(φ̂q x)]

v |= φ

v ∈ [sρ(x)]
v ∈ [sρ(x · y)]

v ∈ [sρ(x)], v ∈ [sρ(y)]
v ∈ [sρ(x+ y)], v ∈ [sρ(x ‖ y)], v ∈ [sρ(x bb y)]

Table 13: Rules for v ∈ [sρ( )]

x
v,a−−→
√

νrel(x)
v,a−−→
√ x

v,a−−→ x′

νrel(x)
v,a−−→ x′

v ∈ [sρ(x)]
v ∈ [sρ(νrel(x))]

x
v,a−−→
√

∂H(x)
v,a−−→
√ a 6∈ H

x
v,a−−→ x′

∂H(x)
v,a−−→ ∂H(x′)

a 6∈ H

x
v,σ−−→ x′

∂H(x)
v,σ−−→ ∂H(x′)

v ∈ [sρ(x)]
v ∈ [sρ(∂H(x))]

Table 14: Rules for now operator and encapsulation (a ∈ A)

S(t
v,σ−−→ t′) = n+(t) and S(t

v,a−−→
√

) = S(t
v,a−−→ t′) = S(v ∈ [sρ(t)]) = 0,

where n+(t) stands for the number of occurrences of + in t. So S(F ) is the number
of occurrences of + in the terms t occurring as the left-hand side of the formulas in
F that have the form t

v,σ−−→ t′. It is straightforward to prove that the mapping S is
a stratification. We have to check all rules. This is trivial except for the only rule
with a negative formula in its premises, viz. the last rule of Table 11. The number of
occurrences of + in the conclusion of that rule is strictly greater than the number of
occurrences of + in the negative formula in the premises.

Note that the two rules for alternative composition concerning passage to the next
time slice (Table 11) have complementary conditions. Together they enforce that the
choice between two processes that both can pass to the next time slice is postponed
till after the passage to the next time slice. This corresponds to the property reflected
by the axiom DRT1 of BPA−drt-ID (Table 1).

In order to rule out processes that are capable of performing an action and then
going on as ⊥, there are premises in the first rule for sequential composition (Table 11)
and the second rule for parallel composition (Table 12) concerning the existence of
valuations that makes the root signal of certain processes true. This corresponds to
the property reflected by the axiom NE3 of PApsc

drt (Table 5).
The rule for time unit delay (Table 11), shows that σrel(t) is capable of passing

to the next time slice under all valuations instead of only the valuations under which
t is capable of doing things. This excludes persistency of root signal emission and
waiting of the strict guarded command because all rules for these operators restrict
the valuations under which the resulting processes are capable of doing things.
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2.4 Recursion

In this subsection, we add recursion to PApsc
drt . Recursive specification, solution, guard-

edness, etc. are defined in a similar way as for BPA in [8].
Let V be a set of variables (of sort P). A recursive specification E = E(V ) in

PApsc
drt is a set of equations E = {X = sX | X ∈ V } where each sX is a PApsc

drt term
that only contains variables from V . We shall use X,X ′, Y, Y ′, ... for variables bound
in a recursive specification. A solution of a recursive specification E(V ) is a set of
processes {〈X|E〉 | X ∈ V } in some model of PApsc

drt such that the equations of E(V )
hold if, for all X ∈ V , X stands for 〈X|E〉. Mostly, we are interested in one particular
variable X ∈ V .

We can now introduce the equational theory of PApsc
drtrec.

Signature of PApsc
drtrec The signature of PApsc

drtrec consists of the signature of PApsc
drt

extended with a constant 〈X|E〉 :→ P for each X ∈ V and each recursive specification
E(V ).

Let t be an open term in PApsc
drt and E = E(V ) be a recursive specification. Then we

write 〈t|E〉 for t with, for all X ∈ V , all occurrences of X in t replaced by 〈X|E〉.

Axioms of PApsc
drtrec The axiom system of PApsc

drtrec consists of the axioms of PApsc
drt

and an equation 〈X|E〉 = 〈sX |E〉 for each X ∈ V and each recursive specification
E(V ).

Let t be a term of PApsc
drt containing a variable X. We call an occurrence of X in t

guarded if t has a subterm of the form a · t′ or σrel(t
′) with t′ a PApsc

drt term containing
this occurrence of X. We call a recursive specification guarded if all occurrences of
all its variables in the right-hand sides of all its equations are guarded or it can be
rewritten to such a recursive specification using the axioms of PApsc

drt and its equations.
An interesting form of guarded recursive specification is linear recursive specification.
We call a recursive specification E(V ) linear if each equation in E has the form

X =
∑
i<n

φi
...→ ai ·Xi +

∑
i<m

ψi
...→ bi +

∑
i<k

χi
...→ σrel(X

′
i) + ξ ̂q δ

for certain actions ai and bi, propositions φi, ψi, χi and ξ, and variables X,Xi, X
′
i ∈ V .

Note that, without loss of generality we can assume that for all i and j such that i 6= j:
ai ·Xi 6≡ aj ·Xj, bi 6≡ bj , X

′
i 6≡ X ′j and χi 6≡ χj. We can also assume that φi, ψi and

χi are not f.

Principles of PApsc
drtrec The (restricted) recursive definition principle (RDP(−)) is

the assumption that every (guarded) recursive specification has a solution. The re-
cursive specification principle (RSP) is the assumption that every guarded recursive
specification has at most one solution.

Note that the axioms 〈X|E〉 = 〈sX |E〉 for a fixed E express that the constants 〈X|E〉
make up a solution of E, i.e. RDP holds for any model of PApsc

drtrec. The conditional
equations E ⇒ X = 〈X|E〉 express that this solution is the only one. So RSP can
be described by means of conditional equations – as already mentioned in [28].
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〈sX |E〉
v,a−−→
√

〈X|E〉 v,a−−→
√ 〈sX |E〉

v,a−−→ y

〈X|E〉 v,a−−→ y

〈sX |E〉
v,σ−−→ y

〈X|E〉 v,σ−−→ y

v ∈ [sρ(〈sX |E〉)]
v ∈ [sρ(〈X|E〉)]

Table 15: Rules for recursion (a ∈ A)

Semantics of PApsc
drtrec A structural operational semantics of PApsc

drtrec is described
by the rules for PApsc

drt and the rules given in Table 15.

The rules added for recursion are also in panth format. We define a stratification
S as follows:

S(t
v,σ−−→ t′) = ω ·nsol(t)+n+(t) and S(t

v,a−−→
√

) = S(t
v,a−−→ t′) = S(v ∈ [sρ(t)]) = 0,

where nsol(t) stands for the number of unguarded occurrences of constants 〈X|E〉 in
t and n+(t) stands for the number of occurrences of + in t. The addition of the
summand ω · nsol(t) for formulas t

v,σ−−→ t′ solves the problem that the conclusion
of the rule for recursion concerning passage to the next time slice does not contain
occurrences of +.

Let E = {X = sX | X ∈ V } be a recursive specification. Then roughly, the
rules for recursion come down to looking upon 〈X|E〉 as the process sX with, for all
X ′ ∈ V , all occurrences of X ′ in sX replaced by 〈X ′|E〉.

2.5 Counting process creation

In this subsection, we introduce the counting process creation operator En
Φ that is

used for the semantics of ϕ−SDL. This operator subsumes the original process creation
operator introduced in [11]. The latter process creation operator was used in [14] for
the semantics of ϕSDL. But the approach used there does not guarantee that a unique
process identification is assigned to each created process.

It is assumed that a fixed but arbitrary set D of data has been given together
with a function Φ : N×D → P, and that there exist actions cr(d) and cr(n, d) for all
d ∈ D and n ∈ N. The process creation operator En

Φ allows, given the function Φ, the
use of actions cr(d) to create processes Φ(n, d).

The counting process creation operator En
Φ : P → P is defined by the equations

PRCR1-PRCR8 given in Table 16. The crucial axiom is PRCR4. It expresses that
counting process creation applied to a process, with the counter set to n, leaves the
action cr(n, d) as a trace and starts a process Φ(n, d) in parallel with the remaining
process when it comes across an undelayable process creation action cr(d). Besides,
it increases the counter by one. The counting process creation operator En

Φ is an
extension of the process creation operator Eφ from [11]. We can write En

Φ = Eφ if
Φ(n, d) = φ(d) for all n ∈ N and d ∈ D.

A structural operational semantics for the counting process creation operator is
described by the rules given in Table 17. The stratification introduced for PApsc

drtrec
still works if we add the rules for the counting process creation operator.
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EnΦ(a) = a if a 6= cr(d) for d ∈ D PRCR1

EnΦ(cr(d)) = cr(n, d) · En+1
Φ (Φ(n, d)) PRCR2

EnΦ(a · x) = a · EnΦ(x) if a 6= cr(d) for d ∈ D PRCR3

EnΦ(cr(d) · x) = cr(n, d) · En+1
Φ (Φ(n, d) ‖ x) PRCR4

EnΦ(x+ y) = EnΦ(x) + EnΦ(y) PRCR5

EnΦ(σrel(x)) = σrel(E
n
Φ(x)) PRCR6

EnΦ(φ
...→ x) = φ

...→ EnΦ(x) PRCR7

EnΦ(φ̂q x) = φ̂q EnΦ(x) PRCR8

Table 16: Axioms for counting process creation (a ∈ Aδ)

x
v,a−−→
√

En
Φ(x)

v,a−−→
√ a 6= cr(d)

x
v,cr(d)−−−−→

√
, w ∈ [sρ(Φ(n, d))]

En
Φ(x)

v,cr(n,d)−−−−−→ En+1
Φ (Φ(n, d))

x
v,a−−→ x′

En
Φ(x)

v,a−−→ En
Φ(x′)

a 6= cr(d)
x

v,cr(d)−−−−→ x′, w ∈ [sρ(Φ(n, d))], w ∈ [sρ(x
′)]

En
Φ(x)

v,cr(n,d)−−−−−→ En+1
Φ (Φ(n, d) ‖ x′)

x
v,σ−−→ x′

En
Φ(x)

v,σ−−→ En
Φ(x′)

v ∈ [sρ(x)]
v ∈ [sρ(E

n
Φ(x))]

Table 17: Rules for counting process creation (a ∈ A)

2.6 State operator

In this subsection, we introduce a state operator for PApsc
drt . It generalizes and extends

the state operator for ACPps proposed in [6]: the truth value of propositional signals
and conditions may depend upon the state and passage to the next time slice may
have an effect on the state. The possibility of non-deterministic behaviour as the
result of applying the operator is included as well, like for the extended state operator
Λ (see e.g. [8]).

It is assumed that a fixed but arbitrary set S of states has been given, together
with functions:

act : A× S → Pfin(A)
eff : A× S ×A→ S
eff σ: S → Pfin(S) \ {∅}
sig : S → B
val : Bat × S → B

The state operator λs (s ∈ S) allows, given these functions, processes to interact with
a state. The process λs(x) is the process x executed in a state s. The function act
gives, for each action a and state s, the set of actions that may be performed if a is
executed in state s. The function eff gives, for each action a, state s and action a′,
the state that results when a is executed in state s and a′ is the action that is actually
performed as the result of the execution. The function eff σ gives, for each state s, the
set of states that may result when time passes to the next time slice in state s. The
function sig gives, for each state s, the propositional signal that holds at the start of
any process executed in state s. The function val gives, for each state s, the valuation
val( , s) of the atomic propositions in state s. The valuation val( , s) can be extended
to all propositions in the usual homomorphic way as any other valuation. We will use
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the notation val( , s) to refer to the extension as well.
The state operator λs : P → P is defined by the equations SO1-SO6 given in

Table 18. The axioms SO1-SO3 are straightforward reformulations – in the same

λs(a) = sig(s) ̂q∑
a′∈act(a,s) a ′ SO1

λs(a · x) = sig(s) ̂q∑
a′∈act(a,s)(a ′ · λeff (a,s,a′)(x)) SO2

λs(x+ y) = λs(x) + λs(y) SO3

λs(σrel(x)) = sig(s) ̂q σrel(
∑
s′∈effσ(s) λs′(x)) SO4

λs(φ
...→ x) = sig(s) ̂q (val(φ, s)

...→ λs(x)) SO5

λs(φ̂q x) = val(φ, s) ̂q λs(x) SO6

Table 18: Axioms for state operator (a ∈ A)

way as for PApsc
drt – of corresponding axioms given in [6] for the time free case. The

additional axiom SO4 expresses how passage to the next time slice has influence on the
execution of a process in a state. The axioms SO5 and SO6 are also reformulations
of corresponding axioms given in [6]. In these axioms the proposition φ has been
replaced by val(φ, s). Thus the case is covered where the truth value of propositional
signals and conditions may depend upon the state. Note that from SO5 we can derive
λs(δ) = δ.

A structural operational semantics for the state operator is described by the rules
given in Table 19. Note that the rules added for the state operator have a common
side-condition given at the bottom of the table. The stratification introduced for

x
v,a−−→
√

λs(x)
v′,a′−−−→

√ a′ ∈ act(a, s)

x
v,a−−→ x′, w ∈ [sρ(x

′)]

λs(x)
v′,a′−−−→ λeff (a,s,a′)(x

′)
a′ ∈ act(a, s) ∧ w |= sig(eff (a, s, a′))

x
v,σ−−→ x′

λs(x)
v′,σ−−→ λs′(x

′)
s′ ∈ effσ(s)

v ∈ [sρ(x)]
v′ ∈ [sρ(λs(x))]

for all v, v′ and s such that v′ |= sig(s) ∧ ∀φ.v |= φ↔ v′ |= val(φ, s)

Table 19: Rules for state operator (a ∈ A)

PApsc
drtrec still works if we add the rules for the state operator.

3 Overview of ϕ−SDL

3.1 Introduction

In this section, we give an overview of ϕ−SDL, i.e. ϕSDL without delaying channels.
ϕSDL is a small subset of SDL, introduced in [14], which covers all behavioural aspects
of SDL, including communication via delaying channels, timing and process creation.
Leaving out delaying channels simplifies the presentation. Besides work on the pro-
cess algebra semantics of ϕSDL made clear that ϕSDL specifications can always be
transformed to semantically equivalent ones in ϕ−SDL. At the end of Section 4 is
shown how to model a delaying channel by means of a ϕ−SDL process.
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In Sections 3.2, 3.3 and 3.4, the syntax of ϕ−SDL is described by means of pro-
duction rules in the form of an extended BNF grammar (the extensions are explained
in Appendix A). The meaning of the language constructs of the various forms distin-
guished by these rules is explained informally. Some peculiar details of the semantics,
inherited from full SDL, are left out to improve the comprehensibility of the overview.
These details will, however, be taken into account in Section 4, where the process
algebra semantics of ϕ−SDL is presented. In Section 3.5, some remarks are made
about the context-sensitive conditions for syntactic correctness of ϕ−SDL specifica-
tions. The syntactic differences with full SDL are summarized in this section as well.
In Section 3.6 some examples of ϕ−SDL specifications are given.

In line with full SDL, we can define a graphical representation for ϕ−SDL speci-
fications. We pay no attention to this practically important point because it is not
relevant to the subject of this chapter.

3.2 System definition

First of all, the ϕ−SDL view of a system is explained in broad outline.
Basically, a system consists of processes which communicate with each other and

the environment by sending and receiving signals via signal routes. A process pro-
ceeds in parallel with the other processes in the system and communicates with these
processes in an asynchronous manner. This means that a process sending a signal
does not wait until the receiving process consumes it, but it proceeds immediately.
A process may also use local variables for storage of values. A variable is associated
with a value that may change by assigning a new value to it. A variable can only
be assigned new values by the process to which it is local, but it may be viewed by
other processes. Processes can be distinguished by unique addresses, called pid values
(process identification values), which they get with their creation.

A signal can be sent from the environment to a process, from a process to the
environment or from a process to a process. A signal may carry values to be passed
from the sender to the receiver; on consumption of the signal, these values are assigned
to local variables of the receiver. A signal route is a unidirectional communication path
for sending signals from the environment to a process, from one process to another
process or from a process to the environment. If a signal is sent to a process via a
signal route it will be instantaneously delivered to that process.

Signals of ϕ−SDL are not at all related to propositional signals of PApsc
drt . In Sec-

tion 4, communication of ϕ−SDL signals will be modeled by actions of PApsc
drt . Propo-

sitional signals of PApsc
drt will be used to represent the visible part of the state of a

system specified in ϕ−SDL. Recall that, in the remainder of this chapter, we will call
propositional signals of PApsc

drt “propositions” in order to avoid ambiguity with signals
of ϕ−SDL.

Syntax:

<system definition> ::=
system<system nm> ; {<definition>}+ endsystem ;

<definition> ::=

dcl<variable nm><sort nm> ;
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| signal<signal nm> [ (<sort nm> {,<sort nm>}∗ ) ] ;

| signalroute<signalroute nm>

from {<process nm> | env} to {<process nm> | env}
with<signal nm> {,<signal nm>}∗ ;

|process<process nm> (<natural ground expr> ) ;

[ fpar<variable nm> {,<variable nm>}∗ ; ]

start ;<transition> {<state def>}∗
endprocess ;

A system definition consists of definitions of the types of processes present in the
system, the local variables used by the processes for storage of values, the types of
signals used by the processes for communication and the signal routes via which the
signals are conveyed.

A variable definition dcl v T ; defines a variable v that may be assigned values of
sort T .

A signal definition signal s(T1, . . . ,Tn); defines a type of signals s of which the
instances carry values of the sorts T1, . . . ,Tn. If (T1, . . . ,Tn) is absent, the signals of
type s do not carry any value.

A signal route definition signalroute r from X1 to X2 with s1, . . . ,sn; defines a signal
route r that delivers without delay signals sent by processes of type X1 to processes
of type X2, for signals of the types s1, . . . , sn. The process types X1 and X2 are called
the sender type of r and the receiver type of r , respectively. A signal route from the
environment can be defined by replacing from X1 by from env. A signal route to the
environment can be defined analogously.

A process definition process X (k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess; de-
fines a type of processes X of which k instances will be created during the start-up of
the system. On creation of a process of type X after the start-up, the creating process
passes values to it which are assigned to the local variables v1, . . . , vm. If fpar v1, . . . ,vm;

is absent, no values are passed on creation. The process body start; tr d1 . . . dn de-
scribes the behaviour of the processes of type X in terms of states and transitions
(see further Section 3.3). Each process will start by making the transition tr , called
its start transition, to enter one of its states. The state definitions d1, . . . , dn define
all the states in which the process may come while it proceeds.

3.3 Process behaviour

First of all, the ϕ−SDL view of a process is briefly explained.
To begin with, a process is either in a state or making a transition to another

state. Besides, when a signal arrives at a process, it is put into the unique input
queue associated with the process until it is consumed by the process. The states of
a process are the points in its behaviour where a signal may be consumed. However,
a state may have signals that have to be saved, i.e. withhold from being consumed in
that state. The signal consumed in a state of a process is the first one in its input
queue that has not to be saved for that state. If there is no signal to consume, the
process waits until there is a signal to consume. So if a process is in a state, it is
either waiting to consume a signal or consuming a signal.

A transition from a state of a process is initiated by the consumption of a signal,
unless it is a spontaneous transition. The start transition is not initiated by the
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consumption of a signal either. A transition is made by performing certain actions:
signals may be sent, variables may be assigned new values, new processes may be
created and timers may be set and reset. A transition may at some stage also take
one of a number of branches, but it will eventually come to an end and bring the
process to a next state or to its termination.

A timer can be set which sends at its expiration time a signal to the process
setting it. A timer is identified with the type and carried values of the signal it sends
on expiration. Thus an active timer can be set to a new time or reset; if this is done
between the sending of the signal noticing expiration and its consumption, the signal
is removed from the input queue concerned. A timer is de-activated when it is reset
or the signal it sends on expiration is consumed.

Syntax:

<state def> ::=
state<state nm> ;

[ save<signal nm> {,<signal nm>}∗ ; ] {<transition alt>}∗

<transition alt> ::=
{<input guard> | input none ;}<transition>

<input guard> ::=

input<signal nm> [ (<variable nm> {,<variable nm>}∗ ) ] ;

<transition> ::=
{<action>}∗ {nextstate<state nm> | stop |<decision>} ;

<action> ::=
output<signal nm> [ (<expr> {,<expr>}∗ ) ]

[ to<pid expr> ] via<signalroute nm> {,<signalroute nm>}∗ ;
| set (<time expr> ,<signal nm> [ (<expr> {,<expr>}∗ ) ] ) ;
| reset (<signal nm> [ (<expr> {,<expr>}∗ ) ] ) ;
| task<variable nm> :=<expr> ;
| create<process nm> [ (<expr> {,<expr>}∗ ) ] ;

<decision> ::=

decision {<expr> | any} ;

( [<ground expr> ] ) :<transition>

{( [<ground expr> ] ) :<transition>}+
enddecision

A state definition state st ; save s1, . . . ,sm;alt1 . . . altn defines a state st . The signals
of the types s1, . . . , sm are saved for the state. The input guard of each of the transition
alternatives alt1, . . . , altn gives a type of signals that may be consumed in the state;
the corresponding transition is the one that is initiated on consumption of a signal
of that type. The alternatives with input none; instead of an input guard are the
spontaneous transitions that may be made from the state. No signals are saved for
the state if save s1, . . . ,sm; is absent.

An input guard input s(v1, . . . ,vn); may consume a signal of type s and, on con-
sumption, it assigns the carried values to the variables v1, . . . , vn. If the signals of
type s carry no value, (v1, . . . ,vn) is left out.
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A transition a1 . . . an nextstate st ; performs the actions a1, . . . , an in sequential
order and ends with entering the state st . Replacing nextstate st by the keyword stop

yields a transition ending with process termination. Replacing it by the decision dec
leads instead to transfer of control to one of two or more transition branches.

An output action output s(e1, . . . ,en) to e via r1, . . . ,rm; sends a signal of type s
carrying the current values of the expressions e1, . . . , en to the process with the current
(pid) value of the expression e as its address, via one of the signal routes r1, . . . , rm. If
the signals of type s carry no value, (e1, . . . ,en) is left out. If to e is absent, the signal
is sent via one of the signal routes r1, . . . , rm to an arbitrary process of its receiver
type. The output action is called an output action with explicit addressing if to e is
present. Otherwise, it is called an output action with implicit addressing.

A set action set (e,s(e1, . . . ,en)); sets a timer that expires, unless it is set again or
reset, at the current (time) value of the expression e with sending a signal of type s
that carries the current values of the expressions e1, . . . , en.

A reset action reset (s(e1, . . . ,en)); de-activates the timer identified with the signal
type s and the current values of the expressions e1, . . . , en.

An assignment task action task v :=e; assigns the current value of the expression
e to the local variable v .

A create action create X (e1, . . . ,en); creates a process of type X and passes the
current values of the expressions e1, . . . , en to the newly created process. If no values
are passed on creation of processes of type X , (e1, . . . ,en) is left out.

A decision decision e;(e1):tr 1 . . . (en):trn enddecision transfers control to the tran-
sition branch tr i (1≤i≤n) for which the value of the expression ei equals the current
value of the expression e. Non-existence of such a branch results in an error. A non-
deterministic choice can be obtained by replacing the expression e by the keyword
any and removing all the expressions ei.

3.4 Values

The value of expressions in ϕ−SDL may vary according to the last values assigned to
variables, including local variables of other processes. It may also depend on timers
being active, the system time, etc.

Syntax:

<expr> ::=

<operator nm> [ (<expr> {,<expr>}∗ ) ]

| if <boolean expr> then<expr> else<expr>fi

|<variable nm>

| view (<variable nm> ,<pid expr> )

| active (<signal nm> [ (<expr> {,<expr>}∗ ) ] )

|now | self |parent | offspring | sender

An operator application op(e1, . . . ,en) evaluates to the value yielded by applying
the operation op to the current values of the expressions e1, . . . , en.

A conditional expression if e1 then e2 else e3 fi evaluates to the current value of the
expression e2 if the current (Boolean) value of the expression e1 is true, and the current
value of the expression e3 otherwise.
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A variable access v evaluates to the current value of the local variable v of the
process evaluating the expression.

A view expression view (v ,e) evaluates to the current value of the local variable v
of the process with the current (pid) value of the expression e as its address.

An active expression active (s(e1, . . . ,en)) evaluates to the Boolean value true if
the timer identified with the signal type s and the current values of the expressions
e1, . . . , en is currently active, and false otherwise.

The expression now evaluates to the current system time.
The expressions self, parent, offspring and sender evaluate to the pid values of the

process evaluating the expression, the process by which it was created, the last process
created by it, and the sender of the last signal consumed by it. Natural numbers are
used as pid values. The pid value 0 is a special pid value that never refers to any
existing process – in full SDL this pid value is denoted by null – and the pid value 1
is reserved for the environment. The expressions parent, offspring and sender evaluate
to 0 in case there exists no parent, offspring and sender, respectively.

3.5 Miscellaneous issues

3.5.1 Context-sensitive syntactic rules

We remain loose about the context-sensitive conditions for syntactic correctness of
ϕ−SDL specifications. For the most part, they are as usual: only defined names may
be used, use of names must agree with their definitions, types of expressions must be
in accordance with the type information in the definitions, etc. There is one condition
that needs particular attention: signals of the same type may not be used for both
signal sending and timer setting/resetting. All ϕ−SDL specifications that are obtained
by semantics preserving transformations of syntactically correct specifications in full
SDL will be syntactically correct ϕ−SDL specifications as well.

3.5.2 Syntactic differences with SDL

Syntactically, ϕ−SDL is not exactly a subset of SDL. The syntactic differences are as
follows:

• variable definitions occur at the system level instead of inside process definitions;

• signal route definitions and process definitions occur at the system level instead
of inside block definitions;

• formal parameters in process definitions are variable names instead of pairs of
variable names and sort names;

• signal names are used as timer names.

These differences are all due to the simplifications mentioned in Section 1.

3.6 Examples

We give three small examples to illustrate how systems are specified in ϕ−SDL. The
examples concern simple repeaters and routers.
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3.6.1 Repeater

The first example concerns a simple repeater, i.e. a system that simply passes on
what it receives. The system, called Repeater, consists of only one process, viz. rep,
which communicates signals s with the environment via the signal routes fromenv

and toenv. The process has only one state.

system Repeater

signal s;

signalroute fromenv from env to rep with s;

signalroute toenv from rep to env with s;

process rep(1);

start;

nextstate pass;

state pass;

input s;

output s via toenv;

nextstate pass;

endprocess;

endsystem;

3.6.2 Address driven router

The second example concerns address driven routing of data. The system, called
AddrRouter, consists of three processes, one instance of rtr and two instances of
rep. The latter two processes are created by the former process. The process rtr

consumes signals s(a), delivered via signal route fromenv, and passes them to one of
the instances of rep (via signal route rs) depending on the value a. The instances of
rep then pass the signals received from rtr to the environment via the signal route
toenv.

system AddrRouter

signal s(Bool);

signalroute fromenv from env to rtr with s;

signalroute rs from rtr to rep with s;

signalroute toenv from rep to env with s;

dcl a Bool; dcl rep1 Nat; dcl rep2 Nat;

process rtr(1);

start;

create rep; task rep1 := offspring;

create rep; task rep2 := offspring;

nextstate route;

state route;

input s(a);

decision a;

(False):

output s(a) to rep1 via rs;

nextstate route;

(True):

output s(a) to rep2 via rs;
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nextstate route;

enddecision;

endprocess;

process rep(0);

start;

nextstate pass;

state pass;

input s(a);

output s(a) via toenv;

nextstate pass;

endprocess;

endsystem;

3.6.3 Load driven router

The last example concerns load driven routing of data. The system, called
LoadRouter, consists of three processes, one instance of rtr and two instances of
trep. The latter two processes are created by the former process. The process rtr

consumes signals s, delivered via signal route fromenv, and passes them to one of
the instances of trep (via signal route rs) depending on their load. The instances of
trep then pass the signals received from rtr to the environment via the signal routes
toenv. Either delivers the data consumed after a fixed time delay. One repeater
delivers twice as fast as the other one. Only two load factors are considered for each
of the two repeaters: one indicating its idleness and one indicating the opposite.

system LoadRouter

signal s; signal t;

signalroute fromenv from env to rtr with s;

signalroute rs from rtr to trep with s;

signalroute toenv from trep to env with s;

dcl idle Bool; dcl delay Nat;

dcl rep1 Nat; dcl rep2 Nat;

process rtr(1);

start;

create trep(10); task rep1 := offspring;

create trep(20); task rep2 := offspring;

nextstate route;

state route;

input s;

decision view(idle,rep1) <-> view(idle,rep2);

(True):

output s via rs; nextstate route;

(False):

decision view(idle,rep1)

(True):

output s to rep1 via rs;

nextstate route;

(False):

output s to rep2 via rs;

nextstate route;

enddecision
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enddecision

endprocess;

process trep(0) fpar delay;

start;

task idle := True;

nextstate get;

state get;

input s;

task idle := False;

set(now + delay, t);

nextstate put;

state put;

save s;

input t;

output s via toenv;

task idle := True;

nextstate get;

endprocess;

endsystem;

Most features of ϕ−SDL are used in this example. Of the main features, only spon-
taneous transitions, i.e. transition alternatives with input none; instead of an input
guard, are missing. In Section 4.6.3, use is made of this feature to define a process
modeling a delaying channel.

4 Semantics of ϕ−SDL

4.1 Introduction

In this section, we propose a process algebra semantics for ϕ−SDL. This semantics is
presented in two steps.

In Section 4.3, a semantics for ϕ−SDL process definitions is given. This semantics
abstracts from dynamic aspects of process behaviour such as process creation and
process execution in a state. It describes the meaning of ϕ−SDL process definitions
by means of finite guarded recursive specifications in BPApsc

drt . The counting process
creation operator and the state operator are not needed for this semantics. Preceeding,
in Section 4.2, the actions and atomic conditions used are introduced. These actions
and conditions are parametrized by expressions with values that depend on the state
in which the action or condition concerned is executed.

In Section 4.6, a semantics of ϕ−SDL system definitions is given in terms of the
semantics for ϕ−SDL process definitions using the counting process creation operator
and the state operator. Preceeding, in Section 4.5, all the details of the instance of the
state operator needed for this semantics are given. Included are the definitions of the
state space and the functions that describe how the actions and conditions used for
the semantics of ϕ−SDL process definitions interact with the state when this instance
of the state operator is applied. The interaction with the environment is another
aspect covered by the semantics of ϕ−SDL system definitions. For this purpose an
environment process is introduced as well.

The semantics of ϕ−SDL is described by means of a set of equations recursively
defining interpretation functions for all syntactic categories. The special notation
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used is explained in Appendix A. We will be lazy about specifying the range of each
interpretation function, since this is usually clear from the context. Many of the in-
terpretations are functions from natural numbers to process expressions or equations.
These process expressions and equations will simply be written in their display form.
If an optional clause represents a sequence, its absence is always taken to stand for an
empty sequence. Otherwise, it is treated as a separate case. The semantics is defined
using contextual information κ extracted from the ϕ−SDL specification concerned.
This is further described in Appendix B.

The special notation used for parametrized actions, conditions and propositions is
explained in Appendix A, and so is the uncustomary notation as regards sets, functions
and sequences. The words action and process are used in connection with both ACP-
style process algebras and versions of SDL, but with slightly different meanings. In
case it is not clear from the context, these words will be preceded by ACP if they
should be taken in the ACP sense, and by SDL otherwise.

Data types

We mentioned before that ϕ−SDL does not deal with the specification of abstract
data types. We assume a fixed algebraic specification covering all data types used
and an initial algebra semantics, denoted by A, for it. The data types Boolean and
Natural, with the obvious interpretation, must be included. We will write SortA and
OpA for the set of all sort names and the set of all operation names, respectively, in
the signature of A. We additionally assume a constant name, i.e. a nullary operation
name, in OpA, referred to as n, for each n ∈ N. We will write U for

⋃
T∈SortA

TA,

where TA is the interpretation of the sort name T in A. We have that B,N ⊂ U
because of our earlier requirement that Boolean,Natural ∈ SortA. We assume that
nil 6∈ U . In the sequel, we will use for each op ∈ OpA an extension to U ∪ {nil}, also
denoted by op, such that op(t1, . . . , tn) = nil if not all of the tis are of the appropriate
sort. Thus, we can change over from the many-sorted case to the one-sorted case for
the description of the meaning of the language constructs of ϕ−SDL. We can do so
without loss of generality, because it can (and should) be statically checked that only
terms of appropriate sorts occur.

4.2 Actions and conditions

In the semantics of ϕ−SDL process definitions, which will be presented in Section 4.3,
ACP actions and conditions are used. Here, we introduce the actions and atomic
conditions concerned.

The actions and atomic conditions, used to describe the meaning of ϕ−SDL process
definitions, are parametrized by various domains. These domains depend upon the
specific variable names, signal names and process names introduced in the system
definition concerned. These sets of names largely make up the context ascribed to
the system definition by means of the function {[ ]} defined in Appendix B. For
convenience, we define these sets for arbitrary contexts κ (the notation concerning
contexts introduced in Appendix B is used):

Vκ = vars(κ) ∪ {parent, offspring, sender}
Sκ = sigs(κ)
Pκ = procs(κ)
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Most arguments of the parametrized actions and conditions introduced here are ex-
pressions that originate in ϕ−SDL expressions or objects that are somehow composed
of such expressions and variable, signal and process names. The reason of this is that
the value of the original ϕ−SDL expressions may vary according to the last values
assigned to the variables referred to, the status of the timers referred to, etc. In
other words, these expressions stand for values that are not known until the action or
condition concerned is executed in the appropriate state.

The syntax of the expressions concerned, called value expressions, is as follows:

<value expr> ::=

<operator nm> [ (<value expr> {, <value expr>}∗ ) ]

| cond (<boolean value expr> ,<value expr> ,<value expr> )

| value (<variable nm> ,<pid value expr> )

| active (<signal nm> [ (<value expr> {, <value expr>}∗ ) ] , <pid value expr> )

|now

where the terminal productions of <operator nm>, <variable nm> and <signal nm>
are assumed to yield the sets OpA, Vκ and Sκ, respectively. ValEκ denotes the set of all
syntactically correct value expressions. The forms of value expressions distinguished
above correspond to operator applications, conditional expressions, view expressions,
active expressions, and the expression now, respectively, in ϕ−SDL.

We define now the set SigPκ of signal patterns, the set SigEκ of signal expressions,
the set SaveSetκ of save sets and the set PrCrDκ of process creation data. Further
on, we will look at a signal as an object that consists of the name of the signal and
the sequence of values that it carries. Signal patterns and signal expressions are like
signals, but variables and value expressions, respectively, are used instead of values.
A save set is just a finite set of signal names. A process creation datum consists of
the name of the process to be created, its formal parameters, expressions denoting its
actual parameters and the pid value of its creator.

SigPκ = {(s, 〈v1, . . . , vn〉) | (s, 〈T1, . . . , Tn〉) ∈ sigds(κ), v1, . . . , vn ∈ Vκ}
SigEκ = {(s, 〈e1, . . . , en〉) | (s, 〈T1, . . . , Tn〉) ∈ sigds(κ), e1, . . . , en ∈ ValEκ}
SaveSetκ = Pfin(Sκ)
PrCrDκ = {(X, 〈v1, . . . , vn〉, 〈e1, . . . , en〉, e) |

X ∈ Pκ, v1, . . . , vn ∈ Vκ, e1, . . . , en, e ∈ ValEκ}

We write pnm(d), where d = (X, vs, es, e) ∈ PrCrDκ, for X. Each process creation
datum contains the formal parameters for the process type concerned. The alternative
would be to make the association between process types and their formal parameters
itself a parameter of the state operator, which is very unattractive.

The following actions are used:

input : SigPκ × SaveSetκ ×ValEκ

outpute : SigEκ ×ValEκ ×ValEκ

outputi : SigEκ ×ValEκ × (Pκ ∪ {env})
set : ValEκ × SigEκ ×ValEκ

reset : SigEκ ×ValEκ

ass : Vκ ×ValEκ ×ValEκ

cr : PrCrDκ

stop : ValEκ

inispont : ValEκ

tt :
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Crκ denotes the set of all cr actions, and Act−κ denotes the set of all input , outpute,
outputi , set , reset , ass , stop and inispont actions. The tt action is a special action with
no observable effect whatsoever. The other actions correspond to the input guards, the
SDL actions, the terminator stop and the void guard input none. The last argument
of each action is the pid value of the process from which the action originates, except
for the outpute and outputi actions where the pid value concerned is available as the
second argument. The outpute and outputi actions correspond to output actions with
explicit addressing and implicit addressing, respectively, in ϕ−SDL. The last argument
of these actions refers to the receiver. With an outpute action, the receiver is fully
determined by the pid value given as the last argument. With an outputi action, the
receiver is not fully determined; it is an arbitrary process of the given type.

The conditions used are built from the following atomic conditions:

waiting : SaveSetκ ×ValEκ

type : ValEκ × (Pκ ∪ {env})
hasinst : Pκ ∪ {env}
eq : ValEκ ×ValEκ

AtCondκ denotes the set of all waiting , type, hasinst and eq conditions. A condition
waiting(ss, e) is used to test whether the process with the pid value denoted by e has
to wait for a signal if the signals with names in ss are withhold from being consumed.
A condition type(e,X) is used to test whether X is the type of the process with the
pid value denoted by e. A condition hasinst(X) is used to test whether there exists
a process of type X. A condition eq(e1, e2) is used to test whether the expressions e1

and e2 denote the same value. These conditions are used to give meaning to the state
definitions, output actions and decisions of ϕ−SDL.

4.3 Semantics of process definitions

We describe now the meaning of ϕ−SDL process definitions and their constituents.
The meaning of the process definitions occurring in the examples from Section 3.6 is
presented in Section 4.4.

4.3.1 Process definitions

The meaning of each process definition occurring in a system definition consists of the
process name introduced and a family of processes, one for each possible pid value,
which are described by means of finite guarded recursive specifications in BPApsc

drt .
The meaning of a process definition is expressed in terms of the meaning of its start
transition and its state definitions.

[[process X (k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess;]]κ :=

(X, {i 7→ 〈X|{X = [[tr ]]κ
′
i , [[d1]]κ

′
i , . . . , [[dn]]κ

′
i }〉 | i ∈ N})

where κ′ = updscopeunit(κ,X )

The recursive specification of the process of type X with pid value i describes how it
behaves at its start (the equation X = [[tr ]]κ

′
i ) and how it behaves from each of the n

states in which it may come while it proceeds (the equations [[d1]]κ
′
i , . . . , [[dn]]κ

′
i ).

In the remainder of this section, we will be loose in the explanation of the meaning
of the constituents of process definitions about the fact that there is always a family
of meanings, one for each possible pid value.
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4.3.2 States and transitions

The meaning of a state definition, occurring in the scope of a process definition,
is a process described by an equation of the form Z = sZ where Z is a variable
corresponding to the state and sZ is a BPApsc

drt term that only contains variables
corresponding to states introduced in the process definition concerned. The equation
describes how a process of the type being defined behaves from the state. The meaning
of the state definition is expressed in terms of the meaning of its transition alternatives,
which are process expressions describing the behaviour from the state being defined
for the individual signal types of which instances may be consumed and, in addition,
possibly for some spontaneous transitions. The meaning of each transition alternative
is in turn expressed in terms of the meaning of its input guard, if the alternative is
not a spontaneous transition, and its transition.

[[state st ; save s1, . . . ,sm;alt1 . . . altn]]κi :=

Xst = tt · ([[alt1]]κ
′
i + . . . + [[altn]]κ

′
i + waiting({s1, . . . , sm}, i)

...→ σrel(Xst))

where X = scopeunit(κ),
κ′ = updsaveset(κ, {s1, . . . , sm})

[[input s(v1, . . . ,vn);tr ]]κi := input((s, 〈v1, . . . , vn〉), ss, i) · [[tr ]]κi

where ss = saveset(κ)

[[input none; tr ]]κi := inispont(i) · [[tr ]]κi

The equation that corresponds to a state definition describes that a process of type
X behaves from the state st as one of the given transition alternatives, and that this
behaviour is possibly delayed till the first future time slice in which there is a signal to
consume if there are no more signals to consume in the current time slice. Entering a
state is supposed to take place by way of some internal action – thus it is precluded that
a process is in more than one state. We use process names with state name subscripts,
such as Xst above, as variables. Notice that, in the absence of spontaneous transitions,
a delay becomes inescapable if there are no more signals to consume in the current
time slice. The process expression that corresponds to a guarded transition alternative
expresses that the transition tr is initiated on consumption of a signal of type s . In
case of an unguarded transition alternative, the process expression expresses that the
transition tr is initiated spontaneously, i.e. without a preceding signal consumption –
with sender set to the value of self (see Section 4.5).

The meaning of a transition is described by a process expression – a BPApsc
drt term

to be precise. It is expressed in terms of the meaning of its actions and its transition
terminator.

[[a1 . . . an nextstate st ;]]κi := [[a1]]κi · . . . · [[an]]κi ·Xst

where X = scopeunit(κ)

[[a1 . . . an stop;]]κi := [[a1]]κi · . . . · [[an]]κi · stop(i)

[[a1 . . . an dec;]]κi := [[a1]]κi · . . . · [[an]]κi · [[dec]]κi
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The process expression that corresponds to a transition terminated by nextstate st
expresses that the transition performs the actions a1, . . . , an in sequential order and
ends with entering state st – i.e. goes on behaving as defined for state st . In case
of termination by stop, the process expression expresses that it ends with ceasing
to exist; and in case of termination by a decision dec, that it goes on behaving as
described by decision dec.

The meaning of a decision is described by a process expression as well. It is
expressed in terms of the meaning of its expressions and transitions.

[[decision e;(e1):tr1 . . . (en):trn enddecision]]κi :=
eq([[e]]i, [[e1]]i)

...→ [[tr1]]κi + . . . + eq([[e]]i, [[en]]i)
...→ [[trn]]κi

[[decision any; ():tr1 . . . ():trn enddecision]]κi := [[tr1]]κi + . . . + [[trn]]κi

The process expression that corresponds to a decision with a question expression
e expresses that the decision transfers control to the transition tr i for which the
value of e equals the value of ei. In case of a decision with any instead, the process
expression expresses that the decision transfers non-deterministically control to one
of the transitions tr 1, . . . , trn.

4.3.3 Actions

The meaning of an SDL action is described by a process expression, of course. It is
expressed in terms of the meaning of the expressions occurring in it. It also depends
on the occurring names (variable names, signal names, signal route names and process
names – dependent on the kind of action).

[[output s(e1, . . . ,en) to e via r1, . . . ,rm;]]κi :=
type([[e]]i, X1) ∨ . . . ∨ type([[e]]i, Xm)

...→ outpute((s, 〈[[e1]]i, . . . , [[en]]i〉), i, [[e]]i) +

¬(type([[e]]i, X1) ∨ . . . ∨ type([[e]]i, Xm))
...→ tt

where for 1 ≤ j ≤ m: Xj = rcv(κ, rj)

[[output s(e1, . . . ,en) via r1, . . . ,rm;]]κi :=
outputi((s, 〈[[e1]]i, . . . , [[en]]i〉), i,X1)) + . . .+ outputi((s, 〈[[e1]]i, . . . , [[en]]i〉), i,Xm)) +

¬(hasinst(X1) ∧ . . . ∧ hasinst(Xm))
...→ tt

where for 1 ≤ j ≤ m: Xj = rcv(κ, rj)

[[set (e,s(e1, . . . ,en));]]κi := set([[e]]i, (s, 〈[[e1]]i, . . . , [[en]]i〉), i)

[[reset (s(e1, . . . ,en));]]κi := reset((s, 〈[[e1]]i, . . . , [[en]]i〉), i)

[[task v := e;]]κi := ass(v , [[e]]i, i)

[[create X (e1, . . . ,en);]]κi := cr((X , fpars(κ,X ), 〈[[e1]]i, . . . , [[en]]i〉, i))

All cases except the ones for output actions are straightforward. The cases of output
actions need further explanation. In the case of an output action with explicit address-
ing, the process with pid value e must be of the receiver type associated with one of the
signal routes r1, . . . , rm. Therefore, the condition type([[e]]i, X1) ∨ . . . ∨ type([[e]]i, Xm)
is used. If the process with pid value e is not of the receiver type associated with
any of the signal routes r1, . . . , rm, or a process with that pid value does not exist,
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the signal is simply discarded and no error occurs. This is expressed by the summand
¬(type([[e]]i, X1) ∨ . . . ∨ type([[e]]i, Xm)) ...→ tt . In the case of an output action with
implicit addressing, first an arbitrary choice from the signal routes r1, . . . , rm is made
and thereafter an arbitrary choice from the existing processes of the receiver type for
the chosen signal route is made. Therefore, there is a summand for the receiver type
of each signal route. If a process of the receiver type for the chosen signal route does
not exist, the signal is simply discarded and no error occurs. This is expressed by
the summand ¬(hasinst(X1) ∧ . . . ∧ hasinst(Xm)) ...→ tt . Note that the signal may
already be discarded if there is one signal route for which there exists no process of
its receiver type.

4.3.4 Values

The meaning of a ϕ−SDL expression is given by a translation to a value expression
of the same kind. There is a close correspondence between the ϕ−SDL expressions
and their translations. Essential of the translation is that i is added where the local
states of different processes need to be distinguished. Consequently, a variable access
v is just treated as a view expression view (v , self ). For convenience, the expressions
parent, offspring and sender are also regarded as variable accesses.

[[op(e1, . . . ,en)]]i := op([[e1]]i, . . . , [[en]]i)

[[if e1 then e2 else e3 fi]]i := cond([[e1]]i, [[e2]]i, [[e3]]i)

[[v ]]i := value(v , i)

[[view (v ,e)]]i := value(v , [[e]]i)

[[active (s(e1, . . . ,en))]]i := active((s, 〈[[e1]]i, . . . , [[en]]i〉), i)

[[now]]i := now

[[self]]i := i

[[parent]]i := value(parent, i)

[[offspring]]i := value(offspring, i)

[[sender]]i := value(sender, i)

4.4 Examples

We present the meaning of the process definitions occurring in the examples from
Section 3.6. To be more precise, we give for each process definition a constant of the
form 〈X|E〉 that stands for the process of the type concerned with pid value i.

It is clear that there are many similarities with the original process definitions
in ϕ−SDL. There is an equation for each state, the right hand side of each equation
has a summand for each transition alternative of the corresponding state, etc. In
addition, there is always a summand in which the time unit delay operator appears;
this summand allows a delay to a future time slice to occur if there is no input to be
read from the input queue of the process concerned. The main difference between the
ϕ−SDL process definitions and the description of their meaning in BPApsc

drtrec is that
the latter can be subjected to equational reasoning using the axioms of BPApsc

drtrec.
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4.4.1 Repeater

The rep process with pid value i is

〈rep|
{rep = reppass,

reppass = tt · (input((s, 〈 〉), ∅, i) ·
(outputi((s, 〈 〉), i, env) + ¬hasinst(env)

...→ tt) · reppass +

waiting(∅, i) ...→ σrel(reppass))

}
〉

4.4.2 Address driven router

The rtr process with pid value i is

〈rtr|
{rtr = cr((rep, 〈 〉, 〈 〉, i)) · ass(rep1, value(offspring, i), i) ·

cr((rep, 〈 〉, 〈 〉, i)) · ass(rep2, value(offspring, i), i) · rtrroute,
rtrroute = tt · (input((s, 〈a〉), ∅, i) ·

(eq(value(a, i), False)
...→ (type(value(rep1, i), rep)

...→
outpute((s, 〈value(a, i)〉), i, value(rep1, i)) +

¬type(value(rep1, i), rep)
...→ tt) · rtrroute +

eq(value(a, i), True)
...→ (type(value(rep2, i), rep)

...→
outpute((s, 〈value(a, i)〉), i, value(rep2, i)) +

¬type(value(rep2, i), rep)
...→ tt) · rtrroute) +

waiting(∅, i) ...→ σrel(rtrroute))

}
〉

The rep process with pid value i is

〈rep|
{rep = reppass,

reppass = tt · (input((s, 〈a〉), ∅, i) ·
(outputi((s, 〈a〉), i, env) + ¬hasinst(env)

...→ tt) · reppass +

waiting(∅, i) ...→ σrel(reppass))

}
〉

4.4.3 Load driven router

The rtr process with pid value i is

〈rtr|
{rtr = cr((trep, 〈delay〉, 〈10〉, i)) · ass(rep1, value(offspring, i), i) ·

cr((trep, 〈delay〉, 〈20〉, i)) · ass(rep2, value(offspring, i), i) · rtrroute,
rtrroute = tt · (input((s, 〈 〉), ∅, i) ·

(eq(value(idle, value(rep1, i))↔ value(idle, value(rep2, i)), True)
...→

(outputi((s, 〈 〉), i, trep) + ¬hasinst(trep)
...→ tt) · rtrroute +

eq(value(idle, value(rep1, i))↔ value(idle, value(rep2, i)), False)
...→
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(eq(value(idle, value(rep1, i)), True)
...→

(type(value(rep1, i), rep)
...→ outpute((s, 〈 〉), i, value(rep1, i)) +

¬type(value(rep1, i), rep)
...→ tt) · rtrroute +

eq(value(idle, value(rep1, i)), False)
...→

(type(value(rep2, i), rep)
...→ outpute((s, 〈 〉), i, value(rep2, i)) +

¬type(value(rep2, i), rep)
...→ tt) · rtrroute)) +

waiting(∅, i) ...→ σrel(rtrroute))

}
〉

The trep process with pid value i is

〈trep|
{trep = ass(idle, True) · trepget,
trepget = tt · (input((s, 〈 〉), ∅, i) ·

ass(idle, False) · set(now + delay, t) · trepput +

waiting(∅, i) ...→ σrel(trepget)),

trepput = tt · (input((t, 〈 〉), {s}, i) ·
(outputi((s, 〈 〉), i, env) + ¬hasinst(env)

...→ tt) ·
ass(idle, True) · trepget +

waiting({s}, i) ...→ σrel(trepput))

}
〉

4.5 Interaction with states

In the semantic of ϕ−SDL process definitions, ACP actions are used to give meaning
to input guards, SDL actions, the terminator stop and the void guard input none.
Thus, the facilities for storage, communication, timing and process creation offered
by these language constructs are not fully covered; the ACP actions are meant to
interact with a system state. In the semantics of ϕ−SDL system definitions, which
will be presented in Section 4.6, the state operator mentioned in Section 2 is used
to describe this. First, we will describe the state space, the actions that may appear
as the result of executing the above-mentioned actions in a state, and the result of
executing processes, built up from these actions, in a state from the state space.

4.5.1 State space, actions and propositional signals

The state space, used to describe the meaning of system definitions, depends upon
the specific variable names, signal names and process names introduced in the system
definition concerned. That is, the sets Vκ, Sκ and Pκ are used here as well.

First, we define the set Sigκ of signals and the set ExtSigκ of extended signals.
A signal consist of the name of the signal and the sequence of values that it carries.
An extended signal contains, in addition to a signal, the pid values of its sender and
receiver.

Sigκ = {(s, 〈u1, . . . , un〉) | (s, 〈T1, . . . , Tn〉) ∈ sigds(κ), u1, . . . , un ∈ U }
ExtSigκ = Sigκ × N1 × N1
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We write snm(sig) and vals(sig), where sig = (s, vs) ∈ Sigκ, for s and vs, respectively.
We write sig(xsig), snd(xsig) and rcv(xsig), where xsig = (sig , i, i′) ∈ ExtSigκ, for sig ,
i and i′, respectively. Note that 0 is excluded as pid value of the sender or receiver of
a signal because it is a special pid value that never refers to any existing process.

The local state of a process includes a storage which associates local variables
with the values assigned to them, an input queue where delivered signals are kept
until they are consumed, and a component keeping track of the expiration times of
active timers. We define the set Stgκ of storages, the set InpQκ of input queues and
the set Timersκ of timers as follows:

Stgκ =
⋃
V⊆Vκ(V → U )

InpQκ = ExtSigκ
∗

Timersκ =
⋃
T∈Pfin(Sigκ)(T → (N ∪ {nil}))

We will follow the convention that the domain of a function from Stgκ does not contain
variables with which no value is associated because a value has never been assigned to
them. We will also follow the convention that the domain of a function from Timersκ
contains precisely the active timers. While an expired timer is still active, its former
expiration time will be replaced by nil. The basic operations on Stgκ and Timersκ
are general operations on functions: function application, overriding (⊕) and domain
subtraction (−�). Overriding and domain subtraction are defined in Appendix A. In so
far as the facilities for communication are concerned, the basic operations on InpQκ

are the functions

getnxt : InpQκ × SaveSetκ → ExtSigκ ∪ {nil},
rmvfirst : InpQκ × Sigκ → InpQκ,
merge : Pfin(ExtSigκ)→ Pfin(InpQκ)

defined below. The value of getnxt(σ, ss) is the first (extended) signal in σ with a
name different from the ones in ss. The value of rmvfirst(σ, sig) is the input queue σ
from which the first occurrence of the signal sig has been removed. Both functions are
used to describe the consumption of signals by SDL processes. The function getnxt is
recursively defined by

getnxt(〈 〉, ss) = nil
getnxt((sig , i, i′) & σ, ss) = (sig , i, i′) if snm(sig) 6∈ ss
getnxt((sig , i, i′) & σ, ss) = getnxt(σ, ss) if snm(sig) ∈ ss

and the function rmvfirst is recursively defined by

rmvfirst(〈 〉, sig) = 〈 〉
rmvfirst((sig , i, i′) & σ, sig) = σ
rmvfirst((sig , i, i′) & σ, sig ′) = (sig , i, i′) & rmvfirst(σ, sig ′) if sig 6= sig ′

For each process, signals noticing timer expiration have to be merged when time
progresses to the next time slice. The function merge is used to describe this precisely.
For a given set of extended signals it gives the set of all possible sequences of them.
It is inductively defined by

〈 〉 ∈ merge(∅)
(sig , i, i′) 6∈ Σ ∧ σ ∈ merge(Σ) ⇒ (sig , i, i′) & σ ∈ merge({(sig , i, i′)} ∪ Σ)
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We define now the set Lκ of local states. The local state of a process contains,
in addition to the above-mentioned components, the name of the process. Thus, the
type of the process concerned will not get lost. This is important, because a signal
may be sent to an arbitrary process of a process type.

Lκ = Stgκ × InpQκ × Timersκ × Pκ

We write stg(L), inpq(L), timers(L) and ptype(L), where L = (ρ, σ, θ,X) ∈ Lκ, for
ρ, σ, θ and X, respectively.

The global state of a system contains, besides a local state for each existing process,
a component keeping track of the system time. To keep track of the system time,
natural numbers suffice. We define the state space Gκ of global states as follows:

Gκ = N×
⋃
I∈Pfin(N2)(I → Lκ)

We write now(G) and lsts(G), where G = (n,Σ) ∈ Gκ, for n and Σ, respectively. We
write exists(i, G), where i ∈ N and G ∈ Gκ, for i ∈ dom(lsts(G)). Note that 1 is
excluded from being used as pid value of an existing process of the system because it
is a special pid value that is reserved for the environment.

Every state from Gκ produces a proposition which is considered to hold in the
state concerned. In this way, the state of a process is made partly visible. These
propositions are built from the following atomic propositions:

value : Vκ ×U × N2

active : Sigκ × N2

AtPropκ denotes the set of all value and active propositions. We write Propκ for the
set of all propositions that can be built from AtPropκ. An atomic proposition of the
form value(v, u, i) is intended to indicate that u is the value of the local variable v
of the process with pid value i. An atomic proposition of the form active(sig , i) is
intended to indicate that the timer of the process with pid value i identified with
signal sig is active. By using only atomic propositions of these forms, the state of a
process can not be made fully visible via the proposition produced. The proposition
produced by each state, given by the function sig defined in Section 4.5.4, makes
only visible the value of all local variables and the set of active timers for all existing
processes.

Below, we introduce the additional actions that are used for the semantics of
ϕ−SDL system definitions. Like most of the actions used for the semantics of ϕ−SDL
process definitions, these actions are parametrized. The following additional actions
are used:

cr : N× PrCrDκ

input ′ : ExtSigκ
output ′ : ExtSigκ
set ′ : N× Sigκ × N2

reset ′ : Sigκ × N2

Crκ denotes the set of all cr actions; and Act ′κ denotes the set of all input ′, output ′,
set ′ and reset ′ actions. The cr actions appears as the result of applying the process
creation operator En

Φ to cr actions. The input ′, output ′, set ′ and reset ′ actions appear
as the result of applying the state operator λG to input , outpute/outputi , set and reset
actions, respectively (see Section 4.5.4).
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4.5.2 State transformers and observers

In the process algebra semantics of ϕ−SDL process definitions, presented in Section 4.3,
ACP actions are used to describe the meaning of input guards, SDL actions, the
terminator stop and the void guard input none. These ACP actions are meant to
interact with a state from Gκ. Later on, we will define the result of executing a
process, built up from these actions, in a state from Gκ. That is, we will define the
relevant state operator. This will partly boil down to describing how the actions, and
the progress of time (modeled by the time unit delay operator σrel), transform states.
For the sake of comprehensibility, we will first define matching state transforming
operations.

In addition, we will define some state observing operations. Two of the state
observing operations are used directly to define the action and effect function of
the state operator and three others are used to define the valuation function of the
state operator. The remaining two are used to define the signal function of the state
operator as well as an auxiliary evaluation function needed for the value expressions
that occur as arguments, and as components of arguments, of the above-mentioned
actions and conditions (see Section 4.2).

State transformers:

In general, the state transformers change one or two components of the local state of
one process. The notable exception is csmsig , which is defined first. It may change
all components except, of course, the process type. This is a consequence of the fact
that the facilities for storage, communication and timing are rather intertwined on the
consumption of signals in ϕ−SDL. For each state transformer it holds that everything
remains unchanged if an attempt is made to transform the local state of a non-existing
process. This will not be explicitly mentioned in the explanations given below.

The function csmsig : ExtSigκ ×Vκ
∗ × Gκ → Gκ is used to describe how the ACP

actions corresponding to the input guards of ϕ−SDL transform states.

csmsig((sig , i, i′), 〈v1, . . . , vn〉, G) =

(now(G), lsts(G)⊕ {i′ 7→ (ρ, σ, θ,X)}) if exists(i′, G)
G otherwise

where ρ = stg(lsts(G)i′)⊕ {v1 7→ vals(sig)1, . . . , vn 7→ vals(sig)n, sender 7→ i},
σ = rmvfirst(inpq(lsts(G)i′), sig),
θ = {sig} −� timers(lsts(G)i′),
X = ptype(lsts(G)i′)

csmsig((sig , i, i′), 〈v1, . . . , vn〉, G) deals with the consumption of signal sig by the pro-
cess with pid value i′. It transforms the local state of the process with pid value i′,
the process by which the signal is consumed, as follows:

• the values carried by sig are assigned to the local variables v1, . . . , vn of the
consuming process and the sender’s pid value (i) is assigned to sender;

• the first occurrence of sig in the input queue of the consuming process is re-
moved;

• if sig is a timer signal, it is removed from the active timers.
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Everything else is left unchanged.
The function sndsig : ExtSigκ×Gκ → Gκ is used to describe how the ACP actions

corresponding to the output actions of ϕ−SDL transform states.

sndsig((sig , i, i′), G) =

(now(G), lsts(G)⊕ {i′ 7→ (ρ, σ, θ,X)}) if exists(i′, G)
G otherwise

where ρ = stg(lsts(G)i′),
σ = inpq(lsts(G)i′)

_ 〈(sig , i, i′)〉,
θ = timers(lsts(G)i′),
X = ptype(lsts(G)i′)

sndsig((sig , i, i′), G) deals with passing signal sig from the process with pid value i
to the process with pid value i′. It transforms the local state of the process with pid
value i′, the process to which the signal is passed, as follows:

• sig is put into the input queue of the process to which the signal is passed (unless
i′ = 1, indicating that the signal is passed to the environment).

Everything else is left unchanged.
The function settimer : N×Sigκ×N2×Gκ → Gκ is used to describe how the ACP

actions corresponding to the set actions of ϕ−SDL transform states.

settimer(t, sig , i, G) =

(now(G), lsts(G)⊕ {i 7→ (ρ, σ, θ,X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i),
σ = rmvfirst(inpq(lsts(G)i), sig) if t ≥ now(G)

rmvfirst(inpq(lsts(G)i), sig) _ 〈(sig , i, i)〉 otherwise ,
θ = timers(lsts(G)i)⊕ {sig 7→ t} if t ≥ now(G)

timers(lsts(G)i)⊕ {sig 7→ nil} otherwise ,
X = ptype(lsts(G)i)

settimer(t, sig , i, G) deals with setting a timer, identified with signal sig , to time t. If
t has not yet passed, it transforms the local state of the process with pid value i, the
process to be notified of the timer’s expiration, as follows:

• the occurrence of sig in the input queue originating from an earlier setting, if
any, is removed;

• sig is included among the active timers with expiration time t; thus overriding
an earlier setting, if any.

Otherwise, it transforms the local state of the process with pid value i as follows:

• sig is put into the input queue after removal of its occurrence originating from
an earlier setting, if any;

• sig is included among the active timers without expiration time.

Everything else is left unchanged.
The function resettimer : Sigκ × N2 × Gκ → Gκ is used to describe how the ACP

actions corresponding to the reset actions of ϕ−SDL transform states.
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resettimer(sig , i, G) =

(now(G), lsts(G)⊕ {i 7→ (ρ, σ, θ,X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i),
σ = rmvfirst(inpq(lsts(G)i), sig),
θ = {sig} −� timers(lsts(G)i),
X = ptype(lsts(G)i)

resettimer(sig , i, G) deals with resetting a timer, identified with signal sig . It trans-
forms the local state of the process with pid value i, the process that would otherwise
have been notified of the timer’s expiration, as follows:

• the occurrence of sig in the input queue originating from an earlier setting, if
any, is removed;

• if sig is an active timer, it is removed from the active timers.

Everything else is left unchanged.
Notice that settimer(t, sig , i, G) and settimer(t, sig , i, resettimer(sig , i, G)) have the
same effect. In other words, settimer resets implicitly. In this way, at most one signal
from the same timer will ever occur in an input queue. Furthermore, the context-
sensitive conditions for syntactic correctness of ϕ−SDL specifications imply that timer
signals and other signals are kept apart: not a single signal can originate from both
timer setting and customary signal sending. Thus, resetting, either explicitly or im-
plicitly, will solely remove signals from input queues that originate from timer setting.

The function assignvar : Vκ×U ×N2×Gκ → Gκ is used to describe how the ACP
actions corresponding to the assignment task actions of ϕ−SDL transform states.

assignvar(v, u, i, G) =

(now(G), lsts(G)⊕ {i 7→ (ρ, σ, θ,X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i)⊕ {v 7→ u},
σ = inpq(lsts(G)i),
θ = timers(lsts(G)i),
X = ptype(lsts(G)i)

assignvar(v, u, i, G) deals with assigning value u to variable v. It transforms the local
state of the process with pid value i, the process to which the variable is local, as
follows:

• u is assigned to the local variable v, i.e. v is included among the variables in the
storage with value u; thus overriding an earlier assignment, if any.

Everything else is left unchanged.
The function createproc : N2 × PrCrD ′κ × Gκ → Gκ is used to describe how the

ACP actions corresponding to the create actions of ϕ−SDL transform states. The
elements of PrCrD ′κ are like process creation data, i.e. elements of PrCrDκ, but values
are used instead of value expressions: PrCrD ′κ = {(X, 〈v1, . . . , vn〉, 〈u1, . . . , un〉, i) |
X ∈ Pκ, v1, . . . , vn ∈ Vκ, u1, . . . , un ∈ U, i ∈ N2}.
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createproc(i′, (X ′, 〈v1, . . . , vn〉, 〈u1, . . . , un〉, i), G) =

(now(G), lsts(G)⊕ {i 7→ (ρ, σ, θ,X), i′ 7→ (ρ′, σ′, θ′, X ′)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i)⊕ {offspring 7→ i′},
σ = inpq(lsts(G)i),
θ = timers(lsts(G)i),
X = ptype(lsts(G)i),
ρ′ = {v1 7→ u1, . . . , vn 7→ un,parent 7→ i, offspring 7→ 0, sender 7→ 0},
σ′ = 〈 〉,
θ′ = { }

createproc(i′, (X ′, 〈v1, . . . , vn〉, 〈u1, . . . , un〉, i), G) deals with creating a process of type
X ′. It transforms the local state of the process with pid value i, the parent of the
created process, as follows:

• the pid value of the created process (i′) is assigned to offspring.

Besides, it creates a new local state for the created process which is initiated as follows:

• the values u1, . . . , un are assigned to the local variables v1, . . . , vn of the created
process and the parent’s pid value (i) is assigned to parent;

• X ′ is made the process type.

Everything else is left unchanged.
The function stopproc : N2 × Gκ → Gκ is used to describe how the ACP actions

corresponding to stop in ϕ−SDL transform states.

stopproc(i, G) = (now(G), {i} −� lsts(G))

stopproc(i, G) deals with terminating the process with pid value i. It disposes of the
local state of the process with pid value i. Everything else is left unchanged.

The function inispont : N2 × Gκ → Gκ is used to describe how the ACP actions
used to initiate spontaneous transitions transform states.

inispont(i, G) =

(now(G), lsts(G)⊕ {i 7→ (ρ, σ, θ,X)}) if exists(i, G)
G otherwise

where ρ = stg(lsts(G)i)⊕ {sender 7→ i},
σ = inpq(lsts(G)i),
θ = timers(lsts(G)i),
X = ptype(lsts(G)i)

inispont(i, G) deals with initiating spontaneous transitions. It transforms the local
state of the process with pid value i, the process for which a spontaneous transition
is initiated, by assigning i to sender. Everything else is left unchanged.

The function unitdelay : Gκ → Pfin(Gκ) is used to describe how progress of time
transforms states. In general, these transformations are non-deterministic – how sig-
nals from expiring timers enter input queues is not uniquely determined. Therefore,
this function yields for each state a set of possible states.
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G′ ∈ unitdelay(G)↔
now(G′) = now(G) + 1 ∧
∀i ∈ dom(lsts(G)) •

stg(lsts(G′)i) = stg(lsts(G)i) ∧
(∃σ ∈ InpQ •

inpq(lsts(G′)i) = inpq(lsts(G)i)
_ σ∧

σ ∈ merge({(sig , i, i) | timers(lsts(G)i)(sig) ≤ now(G)}))∧
timers(lsts(G′)i) =

timers(lsts(G)i)⊕ {sig 7→ nil | timers(lsts(G)i)(sig) ≤ now(G)} ∧
ptype(lsts(G′)i) = ptype(lsts(G)i)

unitdelay(G) transforms the global state as follows:

• the system time is incremented by one unit;

• for the local state of each process:

– its storage is left unchanged;

– the signals that correspond to expiring timers are put into the input queue
in a non-deterministic way;

– for each of the expiring timers, the expiration time is removed;

– its process type is left unchanged.

State observers:

In general, the state observers examine one component of the local state of some
process. The only exceptions are has instance and instances , which may even examine
the process type component of all processes. If an attempt is made to observe the
local state of a non-existing process, each non-boolean-valued state observer yields nil
and each boolean-valued state observer yields f. This will not be explicitly mentioned
in the explanations given below.

The function contents : Vκ × N2 × Gκ → U ∪ {nil} is used to describe the value
of expressions of the form value(v, e), which correspond to the variable accesses and
view expressions of ϕ−SDL.

contents(v, i, G) = ρ(v) if exists(i, G) ∧ v ∈ dom(ρ)
nil otherwise

where ρ = stg(lsts(G)i)

contents(v, i, G) yields the current value of the variable v that is local to the process
with pid value i.

The function is active : Sigκ × N2 × Gκ → B is used to describe the value of
expressions of the form active(sig , e), which correspond to the active expressions of
ϕ−SDL.

is active(sig , i, G) = t if exists(i, G) ∧ sig ∈ dom(θ)

f otherwise

where θ = timers(lsts(G)i)

is active(sig , i, G) yields true iff sig is an active timer signal of the process with pid
value i.
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The function is waiting : SaveSetκ×N2×Gκ → B is used to describe the value of
conditions of the form waiting({s1, . . . , sn}, e), which are used to give meaning to the
state definitions of ϕ−SDL.

is waiting(ss, i, G) = t if exists(i, G) ∧ getnxt(σ, ss) = nil

f otherwise

where σ = inpq(lsts(G)i)

is waiting(ss, i, G) yields true iff there is no signal in the input queue of the process
with pid value i that has a name different from the ones in ss.

The function type : N1 × Gκ → Pκ ∪ {env} ∪ {nil} is used to describe the value
of conditions of the form type(e,X), which are used to give meaning to the output
actions with explicit addressing of ϕ−SDL.

type(i, G) = X if exists(i, G)
env if i = 1
nil otherwise

where X = ptype(lsts(G)i)

type(i, G) yields the type of the process with pid value i. Different from the other
state observers, it yields a result if i = 1 as well, viz. env.

The function has instance : (Pκ ∪ {env}) × Gκ → B is used to describe the value
of conditions of the form hasinst(X), which are used to give meaning to the output
actions with implicit addressing of ϕ−SDL.

has instance(X,G) = t if ∃i ∈ N1 • (i = 1 ∨ exists(i, G)) ∧ type(i, G) = X

f otherwise

has instance(X,G) yields true iff there exists a process of type X.
The function nxtsig : SaveSetκ×N2×Gκ → ExtSigκ∪{nil} is used to describe the

result of executing input actions, which are used to give meaning to the input guards
of ϕ−SDL.

nxtsig(ss, i, G) = getnxt(σ, ss) if exists(i, G)
nil otherwise

where σ = inpq(lsts(G)i)

nxtsig(ss, i, G) yields the first signal in the input queue of the process with pid value
i that has a name different from the ones in ss.

The function instances : (Pκ ∪ {env})×Gκ → Pfin(N2)∪ {{1}} is used to describe
the result of executing outputi actions, which correspond to the output actions with
implicit addressing of ϕ−SDL.

instances(X,G) = {i ∈ dom(lsts(G)) | type(i, G) = X} if X 6= env
{1} otherwise

instances(X,G) yields the set of pid values of all existing processes of type X if
X 6= env and the singleton set {1} otherwise.
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4.5.3 Evaluation of value expressions

The function evalG is used to evaluate value expressions in a state G. The state ob-
servers contents and is active defined in Section 4.5.2 are used to define the evaluation
function.

evalG(op(e1, . . . , en)) =

op(evalG(e1), . . . , evalG(en)) if evalG(e1) 6= nil∧ . . . ∧ evalG(en) 6= nil
nil otherwise

evalG(cond(e1, e2, e3)) = evalG(e2) if evalG(e1) = t
evalG(e3) if evalG(e1) = f
nil otherwise

evalG(value(v, e)) = contents(v, evalG(e), G) if evalG(e) ∈ N2

nil otherwise

evalG(active(s(e1, . . . , en), e)) =

is active(sig , evalG(e), G) if evalG(e1) 6= nil∧ . . . ∧ evalG(en) 6= nil∧
evalG(e) ∈ N2

nil otherwise

where sig = (s, 〈evalG(e1), . . . , evalG(en)〉)

evalG(now) = now(G)

In all of these cases, if the value of at least one of the subexpressions occurring in an
expression is undefined in the state concerned, the expression will be undefined, i.e.
yield nil.

We extend evalG to sequences of value expressions and signal expressions as follows:

evalG(〈e1, . . . , en〉) =

〈evalG(e1), . . . , evalG(en)〉 if evalG(e1) 6= nil∧ . . . ∧ evalG(en) 6= nil
nil otherwise

evalG((s, es)) = (s, evalG(es)) if evalG(es) 6= nil
nil otherwise

4.5.4 Definition of the state operator

In this subsection, we define the functions act , eff , eff σ, sig and val in completion
of the definition of the state operator used to describe the meaning of ϕ−SDL system
definitions. Recall that for this state operator S = Gκ.

Action and effect functions:

In the current application of PApsc
drt , A = Crκ ∪ Actκ ∪ Act ′κ ∪ {tt}, where Actκ =

Act−κ ∪Crκ. The actions in Actκ are actions that may change the state in which they
are executed. The actions in Act ′κ are actions that are performed as the result of the
execution of actions in Actκ in a state. The actions in Crκ and Crκ are the process
creation actions and the actions that are left as a trace of the process creations that

43



occur, respectively – note that we use the data set D = PrCrDκ for process creation.
The action and effect functions are trivial for actions that are not in Actκ.

In order to keep the definitions comprehensible, we will use the following abbrevi-
ations. Let e be a value expression, let es be a sequence of value expressions, and let
se be a signal expression. Then we write e ′ for evalG(e), es ′ for evalG(es) and se ′ for
evalG(se).

act(input((s, 〈v1, . . . , vn〉), ss, e), G) =
{input ′((sig , i, j)) | snm(sig) = s,nxtsig(ss, e ′, G) = (sig , i, j), e ′ ∈ N2}

eff (input((s, 〈v1, . . . , vn〉), ss, e), G, a) =
csmsig(nxtsig(ss, e ′, G), 〈v1, . . . , vn〉, G) if a ∈ act(input((s, 〈v1, . . . , vn〉), ss, e), G)
G otherwise

act(outpute(se, e1, e2), G) =
{output ′((se ′, e ′1, e

′
2)) | se ′ 6= nil, e ′1 ∈ N2, e

′
2 ∈ N1}

eff (outpute(se, e1, e2), G, a) =
sndsig((se ′, e ′1, e

′
2), G) if a ∈ act(outpute(se, e1, e2), G)

G otherwise

act(outputi(se, e,X ), G) =
{output ′((se ′, e ′, i)) | se ′ 6= nil, e ′ ∈ N2, i ∈ instances(X , G)}

eff (outputi(se, e,X ), G, a) =
sndsig((se ′, e ′, i), G) if a ∈ act(outputi(se, e,X ), G) ∧ a = output ′((se ′, e ′, i))
G otherwise

act(set(e1, se, e2), G) = {set ′(e ′1, se ′, e ′2) | e ′1 ∈ N, se ′ 6= nil, e ′2 ∈ N2}
eff (set(e1, se, e2), G, a) = settimer(e ′1, se ′, e ′2, G) if a ∈ act(set(e1, se, e2), G)

G otherwise

act(reset(se, e), G) = {reset ′(se ′, e ′) | se ′ 6= nil, e ′ ∈ N2}
eff (reset(se, e), G, a) = resettimer(se ′, e ′, G) if a ∈ act(reset(se, e), G)

G otherwise

act(ass(v , e1, e2), G) = {tt | e ′1 6= nil, e ′2 ∈ N2}
eff (ass(v , e1, e2), G, a) = assignvar(v , e ′1, e

′
2, G) if a ∈ act(ass(v , e1, e2), G)

G otherwise

act(cr(i, (X , vs, es, e)), G) = {tt | i ∈ N2, es ′ 6= nil, e ′ ∈ N2}
eff (cr(i, (X , vs, es, e)), G, a) =

createproc(i, (X , vs, es ′, e ′), G) if a ∈ act(cr(i, (X , vs, es, e)), G)
G otherwise

act(stop(e), G) = {tt | e ′ ∈ N2}
eff (stop(e), G, a) = stopproc(e ′, G) if a ∈ act(stop(e), G)

G otherwise

act(inispont(e), G) = {tt | e ′ ∈ N2}
eff (inispont(e), G, a) = inispont(e ′, G) if a ∈ act(inispont(e), G)

G otherwise
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For all actions a ∈ Crκ ∪ Act ′κ ∪ {tt}:

act(a, G) = a
eff (a, G, a ′) = G

The effect of applying the state operator to a process of the form σrel(x) is described
by mean of the function eff σ.

eff σ(G) = unitdelay(G)

Signal function:

First, we define the function atoms : Gκ → Pfin(AtPropκ) giving for each state the set
of atomic propositions that hold in that state. It is inductively defined by

contents(v, i, G) = u ⇒ value(v, u, i) ∈ atoms(G)

is active(sig , i, G) = t ⇒ active(sig , i) ∈ atoms(G)

We now define the function sig : Gκ → Propκ, giving the propositions produced by
the states. as follows:

sig(G) =
∧
φ∈atoms(G) φ

So sig(G) is the conjunction of all atomic propositions that hold in state G.

Valuation function:

In the current application of PApsc
drt , Bat = AtCondκ ∪ AtPropκ.

The function val is defined in the following way:

val(eq(e1, e2), G) = t if e ′1 = e ′2 ∧ e ′1 6= nil∧e ′2 6= nil

f otherwise

val(waiting(ss, e), G) = t if is waiting(ss, e ′, G) = t∧e ′ ∈ N2

f otherwise

val(type(e,X ), G) = t if type(e ′, G) = X ∧ e ′ ∈ N1

f otherwise

val(hasinst(X ), G) = has instance(X , G)

val(value(v, u, i), G) = t if value(v, u, i) ∈ atoms(G)

f otherwise

val(active(sig , i), G) = t if active(sig , i) ∈ atoms(G)

f otherwise

Note that the sets AtCondκ and AtPropκ are disjoint. The elements of AtCondκ are
used as conditions with a truth value that depends upon the state. The elements of
AtPropκ are not used as conditions and their valuation in a state is not needed for
the semantics of ϕ−SDL.
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4.6 Semantics of system definitions

In this subsection, we present a semantics for ϕ−SDL system definitions. It relies
heavily upon the specifics of the state operator defined in Section 4.5.

According to the semantics presented here, the meaning of a ϕ−SDL system defi-
nition is a process described by a process expression – a term of PApsc

drt extended with
the counting process creation operator and the state operator to be precise. It is
given in terms of the semantics of ϕ−SDL process definitions presented in Section 4.3
and the contextual information extracted by means of the function {[ ]} defined in
Appendix B.

4.6.1 System definition

The semantics of a ϕ−SDL system definition depends on a parameter Env representing
the environment of the system. This environment Env has to be described by a PApsc

drt

term.

[[system S ;D1 . . .Dn endsystem;]](Env) := λG0(En0+2
Φ (P ) ‖ Env)

where P = ‖i∈{1,...,n0} Φ(i+ 1, (pt(i+ 1), 〈 〉, 〈 〉, 0)),

Φ = {(i, d) 7→ Ψ(i) | ∃D ∈ {D1, . . . ,Dn} • [[D ]]κ = (pnm(d),Ψ)},
G0 = (0, {i+ 1 7→ L0(i+ 1) | i ∈ {1, . . . , n0}}),
L0(i) = ({parent 7→ 0, offspring 7→ 0, sender 7→ 0}, 〈 〉, { }, pt(i)),
n0 =

∑
X∈procs(κ) init(κ,X),

κ = {[system S ;D1 . . .Dn endsystem;]}

and pt : {1 + 1, . . . , n0 + 1} → procs(κ) is such that
∀X ∈ procs(κ) • card(pt−1(X)) = init(κ,X).

The function pt is used to assign pid values for the processes created during system
start-up. It maps a set of pid values to the types of the processes with these pid
values.

The process expression that corresponds to a system definition expresses that, for
each of the process types defined, the given initial number of processes are created and
these processes are executed in parallel, starting in the state G0, while they receive
signals via signal routes from the environment Env . G0 is the state in which the
system time is zero and there is a local state for each of the processes that is created
during system start-up. Recall that the pid value 1 is reserved for the environment.
The mapping Φ from pid values and process creation data to process expressions is
derived from the meaning of the process definitions occurring in the system definition.
This mapping is used by the counting process creation operator, which is needed for
process creation after system start-up.

4.6.2 Environments

The semantics of ϕ−SDL system definitions describes the meaning of a system defini-
tion for an arbitrary process Env that represents the behaviour of the environment.
Here we explain how the environment’s behaviour is described by a PApsc

drt process.
Some general assumptions have to be made about the behaviour of the environment

of any system described using ϕ−SDL. Further assumptions may be made about the
behaviour of the environment of a specific system described using ϕ−SDL, including
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ones that facilitate analysis of the system concerned. The general assumptions made
about environments are:

• the environment can only send signals that are defined in the system definition
concerned;

• the environment can only send signals to processes to which it is connected by
signal routes;

• the environment can send only a finite number of signals during a time slice.

Besides, the viewpoint is taken that the processes that constitute a system are not
observable to its environment. This leads to the use of output actions with implicit
addressing in representing the environment’s behaviour.

The set EnvSigκ of possible environment signals is determined by the specific types
of signals and signal routes introduced in the system definition concerned. It can be
obtained from the environment signal description yielded by applying the function
envsigd (defined in Appendix B) to the context ascribed to the system definition. For
an arbitrary context κ, the set of environment signals is obtained as follows:

EnvSigκ =
⋃

((s,〈T1,...,Tn〉),X)∈envsigd(κ){((s, 〈t1, . . . , tn〉), 1, X) | t1 ∈ TA1 , . . . , tn ∈ TAn }

It is clear that in general the set EnvSigκ is infinite because signals can carry values
from infinite domains. Besides, the environment can send an arbitrary signal from
EnvSigκ. To represent this we need the alternative composition of an infinite number
of alternatives. This can be done using the operator

∑
d:D of µCRL [22]. However, the

combination of this operator with the extension of discrete time process algebra we are
using has not been investigated thoroughly. Besides, the potential unbounded non-
determinism introduced by this operator does not allow to use conventional validation
techniques.

A process that satisfies the three above-mentioned assumptions can be defined in
the following way:

Envκ =
∑
n:N

Envn

Env0 = σrel(Envκ)

Envn+1 = Envn +
∑

osig:EnvSigκ

outputi(osig) · Envn

In order to use an environment process as a parameter of the presented semantics of
ϕ−SDL, it has to be given as a process in PApsc

drt . Below we define such an environment
process. We call it a standard environment process for the semantics of ϕ−SDL. It is
determined by two restrictions:

• the set of signals which the environment can send to the system is restricted to
a finite subset ES ⊆ EnvSigκ;

• the maximal number of signals which can be sent in one time slice is bounded
by a natural number Ns.

A standard environment is defined as follows:
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Env st
κ =

∑
n∈{0,...,Ns}

Env ′n

Env ′0 = σrel(Env st
κ )

Env ′n+1 = Env ′n +
∑

osig∈ES

outputi(osig) · Env ′n

One may also define another environment process for a specific system. In any case
the process representing the system’s environment must satisfy the above-mentioned
assumptions.

4.6.3 Delaying channels

The process algebra semantics of ϕ−SDL makes clear how to model a delaying channel
by means of a ϕ−SDL process. Below a ϕ−SDL process definition of such a process,
called ch, is given. It is assumed that the process can only receive signals of type es.

The process consumes signals es(rcv,v1,...,vn) and passes them on after an
arbitrary delay, possibly zero, with rcv replaced by snd. Each signal consumed carries
the pid value of the ultimate receiver, and this pid value is replaced by the one of
the original sender when the signal is passed on. This is needed because the original
sender and ultimate receiver have now an intermediate receiver and intermediate
sender, respectively. The decision construct is used to find out whether the original
sender used implicit or explicit addressing. Note that we write Null for 0, i.e. the
special pid value that never refers to any existing process.

process ch(1);

start;

nextstate receive;

state receive;

input es(rcv,v1,...,vn);

task snd := sender;

nextstate deliver;

state deliver;

save es;

input none;

decision rcv = Null;

(True):

output es(snd,v1,...,vn) via sr_out;

nextstate receive;

(False):

output es(snd,v1,...,vn) to rcv via sr_out;

nextstate receive;

enddecision;

endprocess;

In state deliver, there will never be signals to consume because all signals are with-
hold from being consumed by means of save es. This means that the behaviour from
this state may be delayed till any future time slice. The total lack of signals to con-
sume does not preclude the process to proceed, because the only transition alternative
is a spontaneous transition, i.e. it is not initiated by the consumption of a signal.
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5 Closing remarks

In this section, we sum up what has been achieved. We also describe in broad outline
what is anticipated to be achieved more, thus hinting at topics for future research.
But, to begin with, we present an overview of related work.

5.1 Related work

In [17], a foundation for the semantics of SDL, based on streams and stream processing
functions, has been proposed. This proposal indicates that the SDL view of a system
gives an interesting type of asynchronous dataflow networks, but the treatment of time
in the proposal is however too sketchy to be used as a starting point for a semantics
of the time related features of SDL. Besides, process creation is not covered. In [15],
we present a process algebra model of asynchronous dataflow networks as a semantic
foundation for SDL. The model is close to the concepts around which SDL has been
set up. However, we are not able to cover process creation too.

An operational semantics for a subset of SDL, which covers timing, has been given
in [21]. Many relevant details are worked out, but it is not quite clear whether time is
treated satisfactory. This is largely due to the intricacy of the operational semantics.
At the outset, we have also tried shortly to give an operational semantics for ϕ−SDL,
but we found that it is very difficult. Our experience is that the main motivations
for the rules describing an operational semantics are unavoidably intuitive. This may
already lead to an undesirable semantics in relatively simple cases. For example,
working on PApsc

drt , we have seriously considered to have the premise w ∈ [sρ(x)] in the
rule for time unit delay (see Table 11). However, this plausible option would render
all delayed processes bisimilar to deadlock in the current time slice, i.e. σrel(x) = δ
would hold.

It is likely that, if we had taken parallel composition with communication, we
would have been able to use special processes, put in parallel with the other ones,
instead of the counting process creation operator and the state operator. The approach
to use special processes is followed in [35]. There, it is largely responsible for the
exceptional intricacy of the resulting semantics, which, by the way, has kept various
obvious errors unnoticed for a long time. Amongst other things for this reason, we
have chosen to use the counting process creation operator and the state operator
instead. Besides, the approach to use special processes brings along a lot of internal
communication that is irrelevant from a semantic point of view. Of course, in case an
ACP-style process algebra is used as the basis of the presented semantics, there is the
option to use an abstraction operator to abstract from the internal communication
(for abstraction in process algebra, see e.g. [9]). However, it seems far from easy to
elaborate the addition of abstraction to PApsc

drt or its adaptation to parallel composition
with communication.

For a subset of SDL, called µSDL, both an operational semantics and a process al-
gebra semantics has been given in [20]. The operational semantics of µSDL is related
to the one presented in [21], but time is not treated. The basis of the corresponding
process algebra semantics is a time free process algebra, essentially µCRL [22] ex-
tended with the state operator. Like in [35], special processes are used for channels
and input queues although there is no need for that with the state operator at one’s
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disposal. Interesting is that first the intended meaning of the language constructs
is laid down in an operational semantics so that it can be reasonably checked later
whether the process algebra semantics reflects the intentions. However, the SDL fa-
cilities for storage, timing and process creation are not available at all in µSDL; and
the facilities for communication are only partially available.

In [19], BSDL is proposed as a basis for the semantics of SDL. BSDL is developed
from scratch, using Object-Z, but it does not seem to fit in very well with SDL.
In [24], it is proposed to use Duration Calculus [30] to describe the meaning of the
language constructs of SDL. Thus an interesting semantic link is made between SDL
and Duration Calculus, but it seems a little bit odd to view the main semantic objects
used, viz. traces, as phases of system behaviour, called state variables in Duration
Calculus, of which the duration is the principal attribute.

5.2 Conclusions and future work

We have presented an extension of discrete time process algebra with relative timing
and we have proposed a semantics for the core of SDL, using this extension to describe
the meaning of the language constructs. The operational semantics and axiom system
of this ACP-style process algebra facilitates advances in the areas of validation of
SDL specifications and verification of design steps made using SDL, respectively. At
present, we focus on validation. We do so because practically useful advanced tools
and techniques are within reach now while there is a tremendous need for them.

For validation purposes, we have to transform ϕ−SDL specifications to transition
systems in accordance with the process algebra semantics. Generating transition sys-
tems from finite linear recursive specifications in BPApsc

drt (see Section 2.4) is straight-
forward. In Section 4, the meaning of a ϕ−SDL process definition is described by a
finite guarded recursive specification in BPApsc

drt that can definitely be brought into
linear form. The meaning of a ϕ−SDL system definition is given in terms of the mean-
ing of the occurring process definitions using the parallel composition operator, the
counting process creation operator and the state operator. An obvious direction is to
devise, for each of these operators on processes, a corresponding syntactic operator
on finite linear recursive specifications that, under certain conditions, yields a linear
recursive specification of the process that results from applying the operator on pro-
cesses to the process(es) defined by the recursive specification(s) to be operated on. Of
course, we look for non-restrictive conditions, but finiteness of the state space, a finite
upper bound on the total number of process creations and a finite upper bound on the
number of signals per time slice originating from the environment are inescapable. It
goes without saying that we have to show the correctness of these syntactic operators.
For that purpose, we have available the axioms presented in Section 2 and RSP (see
Section 2.4).

In [12], timed frames, which are closely related to the kind of transition systems
presented by the operational semantics of, for example, BPA−drt-ID and PA−drt-ID, are
studied in a general algebraic setting and results concerning the connection between
timed frames and discrete time processes with relative timing are given. In [16], a
model for BPA−drt-IDlin (BPA−drt-ID with finite linear recursive specifications) is pre-
sented that gives an interpretation of its constants and operators on timed frames; and
it is shown that the bisimulation model induced by the original structured operational
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semantics is isomorphic to the timed frame model. It is plausible that these results
can be extended to BPApsc

drt lin – timed frames support propositional signals. This
would mean that we can transform ϕ−SDL specifications to timed frames. In that
case, we can basically check whether a system described in ϕ−SDL satisfies a property
expressed in TFL [13], an expressive first-order logic proposed for timed frames. We
are considering to look for a fragment of TFL that is suitable to serve as a logic for
ϕ−SDL and to adapt an existing model checker to ϕ−SDL and this logic – and thus
to automate the checking. In particular, the model checker MEC [3] seems suited for
this purpose – at least for small-scale systems. A fragment of Duration Calculus may
be considered as well, since in [23] validity for Duration Calculus formulas in timed
frames is defined.

The extension of discrete time process algebra with relative timing, used to de-
scribe the meaning of the language constructs of ϕ−SDL, is fairly large and rather
intricate. Theoretically interesting general properties, such as elimination, conserva-
tivity, completeness, etc. have yet to be established. We think that we are near the
limit of what can be made provably free from defect. Still, owing to the nontrivial
state space taken for the state operator, the presented semantics for ϕ−SDL uses an
excursion outside the realm of process algebra that is not negligible. We wish to have
abstraction added to the process algebra used in order to provide a more abstract
semantics for ϕ−SDL, but right now we consider the consequences of this addition too
difficult to grasp. All this suggests the option to develop a special process algebra
that is closer to the concepts around which SDL has been set up. Of course, there is
also the alternative to simplify SDL by removing SDL features that introduce seman-
tic complexities but do not serve any practical purpose. The presented semantics of
ϕ−SDL may assist in identifying such cases.
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A Notational conventions

Meta-language for syntax:

The syntax of ϕ−SDL is described by means of production rules in the form of an
extended BNF grammar. The curly brackets “{” and “}” are used for grouping. The
asterisk “∗” and the plus sign “+” are used for zero or more repetitions and one or
more repetitions, respectively, of curly bracketed groups. The square brackets “[” and
“]” are also used for grouping, but indicate that the group is optional. An underlined
part included in a nonterminal symbol does not belong to the context-free syntax; it
describes a context-sensitive condition.

Meta-language for semantics:

The semantics of ϕ−SDL is described by means of a set of equations recursively defining
interpretation functions for all syntactic categories. For each syntactic category, the
corresponding interpretation function gives a meaning to each language construct c
belonging to the category. We use the notation [[c]] or [[c]]κ for applications of all
interpretation functions. The exact interpretation function is always clear from the
context. If contextual information κ is needed for the interpretation, it is provided by
an additional argument and the notation [[c]]κ is used.

Special action, condition and proposition notation:

We write a : D1×. . .×Dn to indicate that a is an action parametrized by D1×. . .×Dn.
This means that there is an action, referred to as a(d1, . . . , dn), for each (d1, . . . , dn) ∈
D1 × . . .×Dn. For atomic conditions and propositions, we use analogous notations.

Special set, function and sequence notation:

We write P(A) for the set of all subsets of A, and we write Pfin(A) for the set of all
finite subsets of A. We use abbreviations N1 and N2 for the sets N\{0} and N\{0, 1},
respectively.

We write f : A → B to indicate that f is a total function from A to B, that is
f ⊆ A× B ∧ ∀x ∈ A • ∃1y ∈ B • (x, y) ∈ f . We write dom(f), where f : A→ B, for
A. We also write A → B for the set of all functions from A to B. For an (ordered)
pair (x, y), where x and y are intended for argument and value of some function, we
use the notation x 7→ y to emphasize this intention. The binary operators −� (domain
subtraction) and ⊕ (overriding) on functions are defined by

A−� f = {x 7→ y | x ∈ dom(f) ∧ x 6∈ A ∧ f(x) = y}
f ⊕ g = (dom(g)−� f) ∪ g

For a function f : A → B presenting a family B indexed by A, we use the notation
fi (for i ∈ A) instead of f(i).
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Functions are also used to present sequences; as usual we write 〈x1, . . . , xn〉 for
the sequence presented by the function {1 7→ x1, . . . , n 7→ xn}. The unary operators
hd and tl stand for selection of head and tail, respectively, of sequences. The binary
operator _ stands for concatenation of sequences. We write x & t for 〈x〉 _ t.

B Contextual information

The meaning of a language construct of ϕ−SDL generally depends on the definitions in
the scope in which it occurs. Contexts are primarily intended for modeling the scope.
The context that is ascribed to a complete ϕ−SDL specification is also used to define
the state space used to describe its meaning. The context of a language construct
contains all names introduced by the definitions of variables, signal types, signal routes
and process types occurring in the specification on hand and additionally:

• if the language construct occurs in the scope of a process definition, the name
introduced by that process definition, called the scope unit ;

• if the language construct occurs in the scope of a state definition, the set of
names occurring in the save part of that state definition, called the save set.

The names introduced by the definitions are in addition connected with their static
attributes. For example, a name of a variable is connected with the name of the sort
of the values that may be assigned to it; and a name of a process type is connected
with the names of the variables that are its formal parameters and the number of
processes of this type that have to be created during the start-up of the system.

Context =

Pfin(VarD)×Pfin(SigD)×Pfin(RouteD)×Pfin(ProcD)×(ProcId∪{nil})×Pfin(SigId)

where

VarD = VarId × SortId
SigD = SigId × SortId∗
RouteD = RouteId × (ProcId ∪ {env})× (ProcId ∪ {env})× Pfin(SigId)
ProcD = ProcId ×VarId∗ × N

For language constructs that do not occur in a process definition, the absence of a
scope unit will be represented by nil and, for language constructs that do not occur
in a state definition, the absence of a save set will be represented by ∅. We write
vards(κ), sigds(κ), routeds(κ), procds(κ), scopeunit(κ) and saveset(κ), where κ =
(V, S,R, P,X, ss) ∈ Context , for V , S, R, P , X and ss, respectively. We write
vars(κ) for {v | ∃T • (v, T ) ∈ vards(κ)}. The abbreviations sigs(κ) and procs(κ) are
used analogously.

We make use of the following functions on Context :

rcv : Context × RouteId → ProcId ∪ {env},
fpars : Context × ProcId → VarId∗,
init : Context × ProcId → N,
updscopeunit : Context × ProcId → Context ,
updsaveset : Context × Pfin(SigId)→ Context ,
envsigd : Context → Pfin(SigD × ProcId)
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The first three functions are partial functions, but they will only be applied in cases
where the result is defined. The function rcv is used to extract the receiver type of a
given signal route from the context. This function is inductively defined by

(r,X1, X2, ss) ∈ routeds(κ) ⇒ rcv(κ, r) = X2

The functions fpars and init are used to extract the formal parameters and the initial
number of processes, respectively, of a given process type from the context. These
functions are inductively defined by

(X, vs, k) ∈ procds(κ) ⇒ fpars(κ,X) = vs,

(X, vs, k) ∈ procds(κ) ⇒ init(κ,X) = k

The functions updscopeunit and updsaveset are used to update the scope unit and the
save set, respectively, of the context. These functions are inductively defined by

κ = (V, S,R, P,X, ss) ⇒ updscopeunit(κ,X ′) = (V, S,R, P,X ′, ss),

κ = (V, S,R, P,X, ss) ⇒ updsaveset(κ, ss′) = (V, S,R, P,X, ss′)

The function envsigd is used to determine the possible environment signals, i.e. signals
that the system can receive via signal routes from the environment. It is inductively
defined by

s ∈ ss ∧ (s, 〈T1, . . . , Tn〉) ∈ sigds(κ) ∧ (r, env, X2, ss) ∈ routeds(κ) ⇒
((s, 〈T1, . . . , Tn〉), X2) ∈ envsigd(κ)

The context ascribed to a complete ϕ−SDL specification is a minimal context in
the sense that the contextual information available in it is common to all contexts
on which language constructs occurring in it depend. The additional information
that may be available applies to the scope unit for language constructs occurring
in a process definition and the save set for language constructs occurring in a state
definition. The context ascribed to a complete specification is obtained by taking
the union of the corresponding components of the partial contexts contributed by
all definitions occurring in it, except for the scope unit and the save set which are
permanently the same – nil and ∅, respectively.

{[system S ;D1 . . .Dn endsystem;]} :=

(vards({[D1]}) ∪ . . . ∪ vards({[Dn]}),
sigds({[D1]}) ∪ . . . ∪ sigds({[Dn]}),
routeds({[D1]}) ∪ . . . ∪ routeds({[Dn]}),
procds({[D1]}) ∪ . . . ∪ procds({[Dn]}),
nil, ∅)

{[dcl v T ;]} := ({(v ,T )}, ∅, ∅, ∅, nil, ∅)

{[signal s(T1, . . . ,Tn);]} := (∅, {(s, 〈T1, . . . ,Tm〉)}, ∅, ∅, nil, ∅)

{[signalroute r from X1 to X2 with s1, . . . ,sn;]} :=
(∅, ∅, {(r ,X1,X2, {s1, . . . , sn})}, ∅, nil, ∅)

{[process X (k); fpar v1, . . . ,vm; start; tr d1 . . . dn endprocess;]} :=

(∅, ∅, ∅, {(X , 〈v1, . . . , vm〉, k)}, nil, ∅)
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