
Algebra of Timed Frames

J.A. Bergstra
1,2

W.J. Fokkink
2

C.A. Middelburg
2,3

1Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

2Department of Philosophy, Utrecht University
P.O. Box 80126, 3508 TC Utrecht, The Netherlands

3Department of Network & Service Control, KPN Research
P.O. Box 421, 2260 AK Leidschendam, The Netherlands

E-mail: janb@fwi.uva.nl - fokkink@phil.ruu.nl - keesm@phil.ruu.nl

Abstract

Timed frames are introduced as objects that can form a basis of a model
theory for discrete time process algebra. An algebraic setting for timed
frames is proposed and results concerning its connection with discrete time
process algebra are given. The presented theory of timed frames captures
the basic algebraic properties of timed transition systems for the relative
time case. Further structure on timed frames is provided by adding signal
inserted states and conditional transitions, thus giving a semantic basis for
discrete time process algebra with propositional signals. Time conditions
are introduced to cover the absolute time case.

Keywords & Phrases: discrete time, frame algebra, process algebra, con-
ditional transitions, signal inserted states, timed frames, σ-bisimulation.

1994 CR Categories: F.1.1, F.3.1, F.3.2, D.1.3, D.3.1.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Simple frames . 2
2.2 Signal inserted frames . 5
2.3 Process algebra . 7

3 Timed frames 8
3.1 Example . 8
3.2 Simple timed frames . 10
3.3 Signal inserted timed frames . 16

4 Conditional transitions 18
4.1 State dependent conditional transitions 19
4.2 Time dependent conditional transitions 22

References 25

Appendix 26

ii

1 Introduction

Frame algebra, introduced in [1], is a simple, general algebraic setting for the
objects of the kind that generally underlies models for theories concerning pro-
cess behaviour. Frames are built from states and action labelled transitions.
Equipped with a root marker and optionally with termination markers, they
make up the objects known as process graphs or transition systems. There is
a well-developed tradition of modal formalisms for the description of transition
systems (for an overview of these formalisms, see e.g. [2]). Process algebra stud-
ies transition systems at a more abstract level: transition systems modulo an
appropriate “process equivalence”. In [3], the connection between frames and
processes is studied in the setting of ACP [4, 5] and moreover signal insertion is
added.

In this paper, we extend frame algebra to an algebra of timed frames. We
study the connection between timed frames and discrete time processes in the
setting of the discrete time extensions of ACP described in [6]. The primary
motivation of this study is logic based: a better understanding of the connection
facilitates a systematic approach to devise a suitable logic for reasoning about
discrete time processes, applying techniques from modal logic (relevant examples
of the application of these techniques can be found in [7, 8]). We also investigate
the possibility to impose further structure on timed frames that provides a se-
mantic basis for a discrete time extension of process algebra with propositional
signals [9]. The choice of process algebra with propositional signals is motivated
by the fact that it is the only extension of time free process algebra exhibiting
the interplay between the performance of actions and the consequent visible state
changes – which is important if we aim at programming.

Timed frames contain two kinds of transitions: action steps – representing
the execution of actions – and time steps – representing the passage of (discrete)
time. Time determinism, the property that passage of time by itself can not
determine a choice, is built into the operational semantics of the versions of
discrete time process algebra presented in [6] by preventing that states with
more than one outgoing time step occur. An alternative is used here for timed
frames: a special kind of bisimulation, called σ-bisimulation, sees to that passage
of time by itself can not determine a choice. One of the results concerning the
extraction of discrete time processes from timed frames is that σ-bisimilar frames
yield bisimilar processes. By this result, a logic for reasoning about timed frames
can be considered to be a logic for reasoning about discrete time processes in
relative time if its formulae allow to distinguish frames up to σ-bisimulation
(cf. [10]). The result further implies that the operational semantics given in [6]
could be simplified considerably at the expense of a more complicated notion of
bisimulation, viz. σ-bisimulation.

We extend timed frames with signal insertion. That is, we add a signal inser-
tion operation which assigns a propositional formula to the states contained in a
timed frame. The propositional formula assigned to a state is considered to hold
in that state. Thus a semantic basis for discrete time extensions of modal logics

1

for reasoning about actions and state changes is given. The above-mentioned
result concerning process extraction goes through for various extensions of timed
frames, including this one. This is very relevant to ongoing work on devising
a suitable logic for reasoning about processes described in ϕSDL, which is an
interesting subset of SDL [11] for which a process algebra semantics is given
in [12].

We complement signal inserted states with conditional transitions. The con-
ditional transitions are labelled with an action (or σ in the case of time steps)
and a propositional formula. The intuition behind these conditional transitions
is that in a state only its outgoing conditional transitions can be performed for
which the propositional formula used as condition holds in that state. By the
addition of signal inserted states and conditional transitions, a semantic basis for
discrete time extensions of process algebra with propositional signals [9] is given
as well.

The timed frames made mention of before are only adequate to represent
discrete time process behaviour in the relative time case. In order to cover the
absolute time case as well, we extend timed frames with another kind of con-
ditional transitions where the truth of the condition is time dependent instead
of state dependent. This extension can be regarded as a generalization of time
stamping of transitions. Both kinds of conditional transitions can easily be inte-
grated.

The structure of this paper is as follows. First of all, we give an overview
of time free frame algebra and a brief summary of the ingredients of process
algebra used in this paper (Section 2). Next, we illustrate the use of timed
frames by means of an example (Section 3.1). Then, we elaborate timed frames
in detail and study their connection with discrete time processes (Section 3.2).
After that, we consider the extension of timed frames with signal inserted states
(Section 3.3) and we introduce conditional transitions as a complement of signal
inserted states (Section 4.1). Finally, we describe the extension of timed frames
needed to cover, in addition to the relative time case, the absolute time case
(Section 4.2).

2 Preliminaries

This section contains a survey of time free frame algebra, including its extension
with signal insertion. We refer to [1] and [3] for further details. A brief summary
of the ingredients of process algebra used in later sections is given as well. We
will suppose that the reader is familiar with them. Appropriate references to the
literature are included.

2.1 Simple frames

Frames are built from states and transitions between states. The states are
obtained by an embedding of naturals in states, and a pairing function on states.
We consider transitions with a label from a finite set A of actions.

2

The signature of (simple) frames is as follows:

Sorts:
N naturals;
S states ;
F frames ;

Constants & Functions:
0 : N zero;
S : N→ N successor;

ıN : N→ S embedding of naturals in states;
〉−〈 : S2 → S pairing of states;

∅ : F empty frame;
ıS : S→ F embedding of states in frames;
a−→: S2 → F transition construction (one for each a ∈ A);
⊕ : F2 → F frame union.

The signature introduced above is graphically presented in Figure 1. Given the

-

?

��
? ���

���"!

"!

"!

?

��
- N0 ıN

ıS
a−→ (for all a ∈ A)

S

S 〉−〈

∅

⊕F

6

Figure 1: Signature of frames.

signature, (closed) terms are constructed in the usual way. We shall use the meta-
variables n and m to stand for arbitrary terms of sort N, the meta-variables s,
s′ and s′′ to stand for arbitrary terms of sort S, and the meta-variables X, Y
and Z to stand for arbitrary terms of sort F. We write n instead of ıN(n) or
ıS(ıN(n)) as well as s instead of ıS(s) when this causes no ambiguity. Terms
of the forms ıS(s) and s a−→ s′ denote atomic frames, i.e. frames that contain a
single state or transition. The constant ∅ denotes the frame that contains neither
states nor transitions. The operator ⊕ on frames gives the union of the states
and transitions of its arguments. The pairing function 〉−〈 is a simple means to
define “fresh” states.1 The axioms for frames are given in Table 1. These axioms

1In [1], the pairing function is used to define a frame product function.

3

(FA1) X ⊕ Y = Y ⊕X

(FA2) X ⊕ (Y ⊕ Z) = (X ⊕ Y)⊕ Z

(FA3) X ⊕X = X

(FA4) X ⊕ ∅ = X

(FA5) s⊕ (s a−→ s′) = s a−→ s′

(FA6) s′ ⊕ (s a−→ s′) = s a−→ s′

Table 1: Axioms for frames.

characterize frames as objects consisting of a finite set of states and a finite
set of transitions. In addition, frames are identified if they are the same after
addition of the states occurring in the transitions to the set of states (axioms
(FA5) and (FA6)). The axioms do not identify frames according to some notion
of equivalence that is used to obtain an adequate level of abstraction for processes
– such as bisimulation – because frames are intended to provide a lower level of
abstraction.

We define iterated frame union by⊕k
i=nXi =

{
∅ if k < n,

Xn ⊕
⊕k

i=n+1Xi otherwise.

Every frame has a finite number of states and transitions, and can be denoted
by a term of the form

⊕m
i=1Xi, where the Xi are atomic.

In [1], frame polynomials are introduced to deal with the countably infinite
case as well. For completeness sake, this section also informs briefly on frame
polynomials. However, because this paper focusses on timed frames correspond-
ing to regular discrete time processes, only frames with a finite number of states
and transitions are considered in later sections.

We assume a countably infinite set V of variables x, y, . . . ranging over N.
Terms over V are constructed in the usual way. Frame polynomials over V are
constructed according to the same formation rules and the following additional
one: if F is a frame polynomial over V and x ∈ V , then

⊕
xF is a frame

polynomial. The generalized frame union
⊕

xF is defined by2⊕
xF = F [0/ x]⊕ F [1/ x]⊕ F [2/ x]⊕ · · ·

A frame polynomial F is closed if all occurrences of variables in F are bound by an
application of generalized frame union. The axioms of closed frame polynomials,
are the axioms given in Table 1, understanding that the range of the meta-
variables is properly extended, and the additional axioms given in Table 2. The

2F [n/x] stands for the result of replacing the term n for the occurrences of the variable x
in F .

4

(FP1)
⊕

xF = F provided x does not occur in F

(FP2)
⊕

yF =
⊕

xF [x/y] provided x does not occur in F

(FP3)
⊕

x

⊕
yF =

⊕
y

⊕
xF

(FPA1)
⊕

x(F ⊕ F ′) =
⊕

xF ⊕
⊕

xF
′

(FPA2)
⊕

xF (x) = F [0/x]⊕
⊕

xF [S(x)/x]

Table 2: Additional axioms for frame polynomials.

meta-variables x and y stand for arbitrary variables from V , and the meta-
variables F and F ′ stand for arbitrary frame polynomials. The proviso “x does
not occur in F” means that variable x does not occur (free or bound) in F .

2.2 Signal inserted frames

In simple frames, states are not labelled. In signal inserted frames, we consider
states with a label from the set of propositional formulae that can be built
from a set Pat of atomic propositions, t, f, and the connectives ¬ and →. The
propositional formula assigned to a state is considered to hold in that state.
The further structure on frames provided by adding signal inserted states, gives
a semantic basis for modal logics for reasoning about actions as well as state
changes. This is further explored in [3].

The signature extension for signal inserted frames is as follows:3

Sorts:
P propositions;
〈F,P〉 signal inserted frames ;

Constants & Functions:
p : P for each p ∈ Pat;
t : P true;

f : P false;
¬ : P→ P negation;
→ : P2 → P implication;

q̂ : P× 〈F,P〉 → 〈F,P〉 signal insertion.

The signature of signal inserted frames is graphically presented in Figure 2. We
shall use the meta-variables φ and ψ to stand for arbitrary terms of sort P.
As usual, we write φ ∨ ψ for ¬φ → ψ, φ ∧ ψ for ¬(¬φ ∨ ¬ψ), and φ ↔ ψ for
(φ→ ψ)∧(ψ → φ). In Table 3 we give a complete proof system for propositional
logic. The signal insertion operation q̂ assigns propositional formulae to the

3We will not give a full signature if it can be obtained from an old signature by first renaming
one sort and then adding new sort, constant and function names.

5

-

?

��
?

�� 6
��
"���

��-

���

���"!

"!

"!

"!

?

��
?

- N0 ıN

ıS

q̂

a−→ (for all a ∈ A)

S

S

P

〉−〈

∅

p, q, ... ∈ Pat t, f

⊕

→

¬ 〈F,P〉

6

Figure 2: Signature of signal inserted frames.

states contained in frames. The axioms for signal inserted frames are those given
in Table 1 (see Section 2.1) and the additional axioms for signal insertion given in
Table 4. Additionally, we can use identities φ = ψ iff φ↔ ψ is provable from the
axiom schemas and the inference rule given in Table 3. The axioms (Ins4)–(Ins8)
are concerned with combinations of signal insertion (q̂) with frame union (⊕).
Note that frame union still gives the union of the states of its arguments, but
not always the union of the transitions: a signal inserted state f q̂s absorbs all
incoming and outgoing transitions of s (axioms (Ins7) and (Ins8)). Note that
the equation

s⊕ (φ q̂ s) = φ q̂ s

(reminiscent of the axioms (FA5) and (FA6)) is derivable from the axioms (Ins2)

(P1) φ→ (ψ → φ)

(P2) (φ→ (ψ → ξ))→ ((φ→ ψ)→ (φ→ ξ))

(P3) (¬φ→ ¬ψ)→ (ψ → φ)

(P4) t↔ (p→ p)

(P5) f ↔ ¬ t

(MP)
φ φ→ ψ

ψ

Table 3: A proof system for propositional logic.

6

(Ins1) φ q̂ ∅ = ∅

(Ins2) t q̂X = X

(Ins3) φ q̂ (ψ q̂X) = (φ ∧ ψ) q̂X

(Ins4) (φ q̂X)⊕ (ψ q̂X) = (φ ∧ ψ) q̂X

(Ins5) φ q̂ (X ⊕ Y) = (φ q̂X)⊕ (φ q̂ Y)

(Ins6) φ q̂ (s a−→ s′) = (φ q̂ s)⊕ (s a−→ s′)⊕ (φ q̂ s′)

(Ins7) (f q̂s)⊕ (s a−→ s′) = (f q̂s)⊕ s′

(Ins8) (s a−→ s′)⊕ (f q̂s′) = s⊕ (f q̂s′)

Table 4: Additional axioms for signal insertion.

and (Ins4).

2.3 Process algebra

This subsection gives a brief summary of the ingredients of process algebra which
will be used in later sections. We will make use of a discrete time extension of
BPA (Basic Process Algebra) for relative time presented in [6], viz. BPA–

drt. In
BPA [4, 5], processes can be composed by sequential composition, written P ·Q,
and alternative composition, written P + Q. The discrete time extensions are
based on the division of time into slices indexed by natural numbers. These
time slices represent time intervals of a length which corresponds to the time
unit used. In BPA–

drt, we have the constants cts(a) (one for each action a),
cts(δ) and

•
δ. The cts(a) stand for a in the current time slice, cts(δ) stands for

a deadlock at the end of the current time slice, and
•
δ stands for an immediate

deadlock (a process that comes to a full stop instantly, even in the middle of a
time slice). In BPA–

drt, we have, in addition to the sequential and alternative
composition operators, the delay operator σrel. The process σrel(P) will start P
in the next time slice. We will also make use of the initialization operator� and
the initial abstraction operator

√
d for discrete time as in [6]. The process n� P

is the absolute time process obtained by initializing relative (or parametric) time
process P at absolute time n, and

√
d x .P is the parametric time process defined

by n � (
√
d x . P) = n � P [n/ x]. We refer to [6] for further details on BPA–

drt

and the additional operators � and
√
d. A model, extending the model for

BPA–
drt given in [6] to deal with recursion, in which every set of guarded process

equations has a unique solution can be obtained (see e.g. [13]). We will assume
such a model.

We will further use the signal emission operators q̂ and)̂ as in [9]. The
expression φ q̂ P is the process P where the proposition φ is made to hold at

7

its start and the expression P)̂ φ is the process P where the proposition φ is
made to hold at its termination. We refer to [9] for further details.

Besides, we will use the one-armed conditional operator ::→. The expression
b ::→ P is to be read as “if b then P”. The operator ::→ can best be defined
in terms of the two-armed conditional operator �·�, with the defining equa-
tions P�t�Q = P and P�f�Q = Q, added to BPA in [14]. The one-armed
conditional is then defined by b ::→ P = P�b�

•
δ.

We will also use the following abbreviation. Let (Pi)i∈I be an indexed set of
process expressions where I = {i1, . . . , in}. Then, we write:∑

i∈I

Pi for Pi1 + . . . + Pin

We further use the convention that empty sums stand for
•
δ.

3 Timed frames

In this section, we introduce timed frames. Simple timed frames differ from
simple frames by containing two kinds of transitions: action steps and time
steps. We study the connection between simple timed frames and discrete time
processes in the setting of BPA–

drt. We also extend simple timed frames with
signal insertion, like in the untimed case.

The timed frames introduced in this section are only adequate to represent
discrete time process behaviour in the relative time case. In Section 4, an exten-
sion is introduced to cover the absolute time case as well.

3.1 Example

First of all, we give a small example to illustrate the use of timed frames. The
example concerns a simple telephone answering machine. We use the extension
of frame algebra to timed frames for the description of the control component
of the telephone answering machine. The example is based on a specification in
ϕSDL due to Mauw [15].

In order to control the telephone answering, the control component of the
answering machine has to communicate with the recorder component of the an-
swering machine, the telephone connected with the answering machine, and the
telephone network. When an incoming call is detected, the answering is not
started immediately. If the incoming call is broken off or the receiver of the
telephone is lifted within a period of 10 time units, answering is discontinued.
Otherwise, an off-hook signal is issued to the network when this period has
elapsed and a pre-recorded message is played. Upon termination of the message,
a beep signal is issued to the network and the recorder is started. The recorder
is stopped when the call is broken off, or when 30 time units have passed in case
the call has not been broken off earlier. Thereafter, an on-hook signal is issued
to the network.

8

It is obvious that the behaviour of the controller is time dependent. We will
use time steps to describe this behaviour. Time steps represent the passage of
time. They are denoted by terms of the form s σ−→ s′. Time steps are elaborated
formally in Section 3.2. The behaviour of the controller is represented by the
timed frame TAMC defined by:

TAMC =

(0 σ−→ 0)⊕ (0
r(incoming call)−−−−−−−−−→ 1)⊕⊕10

i=1((i σ−→ S(i))⊕ (i
r(rcv lifted)−−−−−−−→ 0)⊕ (i

r(end call)−−−−−−→ 0))⊕

(11
s(off-hook)−−−−−−→ 12)⊕ (12

s(play msg)−−−−−−−→ 13)⊕

(13 σ−→ 13)⊕ (13
r(end msg)−−−−−−−→ 14)⊕ (13

r(end call)−−−−−−→ 47)⊕

(14
s(beep)−−−−→ 15)⊕ (15

s(start rec)−−−−−−−→ 16)⊕⊕45
j=16((j σ−→ S(j))⊕ (j

r(end call)−−−−−−→ 46))⊕

(46
s(stop rec)−−−−−−→ 47)⊕ (47

s(on-hook)−−−−−−→ 0)

The following are some of the time related properties of the telephone answering
machine that should be respected by this behaviour:

1. if an incoming call leads to playing the pre-recorded message, the receiver
of the telephone has not been lifted during the first 10 time units from the
detection of the incoming call;

2. if the recorder of the answering machine is started, it will always be stopped
after at most 30 time units.

A suitable logic for reasoning about timed frames should allow to check such
properties. By means of the process extraction operation defined in Section 3.2,
timed frames can also be subject to process algebraic reasoning. Checking prop-
erties like the above-mentioned ones by process algebraic reasoning requires the
use of an abstraction mechanism for discrete time processes such as the one
presented in [16].

In case the telephone answering machine has to work together with another
piece of telecommunications equipment, it is conceivable that, in order to co-
operate properly, this piece of equipment has to inspect whether the state of the
answering machine is one of playing, recording or otherwise. The representation
of such inspection behaviour is possible if signal inserted states (see Section 3.3)
and conditional transitions (see Section 4.1) are added to timed frames. Using
signal insertion to assign to each state of TAMC a propositional formula that
indicates whether it is a state of playing, recording or otherwise, we get the signal

9

inserted timed frame TAMC ′ defined by:

TAMC ′ =

TAMC ⊕
⊕12

i=0((¬playing ∧ ¬recording) q̂ i)⊕

((playing ∧ ¬recording) q̂ 13)⊕
⊕15

j=14((¬playing ∧ ¬recording) q̂ j)⊕⊕46
k=16((¬playing ∧ recording) q̂ k)⊕ ((¬playing ∧ ¬recording) q̂ 47)

TAMC ′ reveals some details of the states of the controller while TAMC does not
reveal any detail of them. This means that TAMC ′ represents the behaviour of
the controller at a lower level of abstraction than TAMC .

3.2 Simple timed frames

In the untimed case, there is only one kind of transitions, which we will call
action steps. They represent the execution of actions. In the timed case, we
consider an additional kind of transitions, which we will call time steps. They
represent the passage of time. This fits in very well with the two phase notation
for discrete time process algebra used in [6]. Without further extensions, simple
timed frames are only adequate for relative timing. An extension for absolute
timing and parametric timing is introduced in Section 4.2.

The signature extension for (simple) timed frames is as follows:

Sorts:
Ft timed frames ;

Functions:
σ−→: S2 → Ft time step construction.

The axioms for simple timed frames are the axioms given in Table 1 (see Sec-
tion 2.1) and the axioms given in Table 5. The axioms (TFA1) and (TFA2) are

(TFA1) s⊕ (s σ−→ s′) = s σ−→ s′

(TFA2) s′ ⊕ (s σ−→ s′) = s σ−→ s′

Table 5: Additional axioms for timed frames.

simply the counterparts of the axioms (FA5) and (FA6) for time steps. The ax-
ioms do not identify timed frames representing the same process behaviour if time
determinism is assumed (in the face of states with more than one outgoing time
step). Time determinism is assumed in the versions of discrete time process alge-
bra presented in [6], where it corresponds to the axiom (DRT1) in the case of dis-
crete time process algebra with relative timing: σrel(P) + σrel(Q) = σrel(P + Q)
(also called the time factorization axiom). It is also assumed in that paper that

10

a process will not become (dead)locked in the current time slice if there is the
choice to proceed executing actions in the current time slice or any subsequent
time slice. This property, called time persistency, is closely related to time de-
terminism. The crucial axiom is (DRT4): cts(a) + cts(δ) = cts(a), but it follows
that P + cts(δ) = P for all closed terms P except

•
δ. Seeing that timed frames

are intended to underlie models for theories concerning discrete time process be-
haviour, the axioms of timed frames should not be concerned with properties
that are primarily relevant to the higher level of abstraction provided by discrete
time processes. Therefore, time determinism and time persistency are not antic-
ipated in the axioms for timed frames. Consequently, time steps are not treated
different from action steps in the axioms for simple timed frames. However, the
distinction between action steps and time steps is of vital importance to relate
timed frames to discrete time processes.

In order to investigate the connection with discrete time process algebra, we
introduce in Definition 3.3 a special kind of bisimulation, called σ-bisimulation,
which takes into account the identifications due to time determinism and time
persistency. That definition and subsequent ones need some conditions that are
related to the transitions contained in a given frame. These frame conditions are
as follows.

Definition 3.1.

[s a−→ s′]F =

{
t if (s a−→ s′)⊕ F = F

f otherwise

[s σ−→ s′]F =

{
t if (s σ−→ s′)⊕ F = F

f otherwise

[s→ s′]F =

{
t if [s a−→ s′]F = t for some a or [s σ−→ s′]F = t

f otherwise

[s→∗S s′]F =

 t if [s→ s′]F = t or
[s→ s′′]F = t and [s′′ →∗S s′]F = t for some s′′ ∈ S

f otherwise

In the sequel, we will write [s a−→ s′]F instead of [s a−→ s′]F = t, [s σ−→ s′]F
instead of [s σ−→ s′]F = t, etc. when this causes no ambiguity. We write |F | for
{s ∈ S | ıS(s) ⊕ F = F}. For s′ ∈ |F |, we write [6σ−→ s′]F to indicate that there
exists no s ∈ |F | such that [s σ−→ s′]F .

Below bisimulation and σ-bisimulation are defined as equivalences on pointed
frames, i.e. frames equipped with a root marker and a termination marker.
Pointed frames, which are closely related to transition systems, are defined first.

Definition 3.2. A pointed timed frame is a triple (F, p, q) where F is a timed
frame and p, q ∈ |F |.

In the definition of σ-bisimulation given below, a relation on sets of states
is used instead of a relation on states (as is usual). Rules 1–3 are the normal
rules for (strong) bisimulation in the untimed case lifted to sets of states. The

11

non-singleton sets are due to rule 4. This rule is the main rule for time steps.
In a well-defined sense, it takes care of consistently identifying states reachable
from the same state via one time step. In this way, time determinism is taken
into account. However empty sets of states, standing for no state at all, may
occur. Without rule 5, this would allow to relate two (sets of) states where the
one has an outgoing time step and the other has no outgoing time step, provided
that the time step concerned ends in a state without outgoing transitions. This
should not be generally allowed. Rule 5 allows it only if the state without an
outgoing time step has an outgoing action step. Thus time persistency is taken
into account as well.

Definition 3.3. Let F and F ′ be timed frames, and let p, q ∈ |F | and p′, q′ ∈
|F ′|. The pointed timed frames (F, p, q) and (F ′, p′, q′) are σ-bisimilar, written

(F, p, q)
σ↔(F ′, p′, q′), if there exists a relation R on P(|F |)× P(|F ′|) such that:

1. R({p}, {p′});
2. if R(S, T) and [s a−→ s′]F for some s ∈ S and s′ ∈ |F | \ {q}, then [t a−→ t′]F ′

and R({s′}, {t′}) for some t ∈ T and t′ ∈ |F ′| \ {q′};
2c. rule 2 vice versa;

3. if R(S, T) and [s a−→ q]F for some s ∈ S, then [t a−→ q′]F ′ for some t ∈ T ;

3c. rule 3 vice versa;

4. if R(S, T), then R(S ′, T ′) where S ′ = {s′ ∈ |F | \ {q} | ∃s ∈ S · [s σ−→ s′]F}
and T ′ = {t′ ∈ |F ′| \ {q′} | ∃t ∈ T · [t σ−→ t′]F ′};

5. if R(S, T) and [s σ−→ s′]F for some s ∈ S and s′ ∈ |F |, then [t→ t′]F ′ for
some t ∈ T and t′ ∈ |F ′|;

5c. rule 5 vice versa.

(F, p, q) and (F ′, p′, q′) are bisimilar, written (F, p, q)↔(F ′, p′, q′), if there exists
a relation R that satisfies, in addition to the above-mentioned conditions, the
following one:

6. if R(S, T), then card(S) = card(T) ≤ 1.

We also define time determinism and time persistency for frames, because
together they characterize the kind of frames that corresponds to the timed
transition systems that underlie the model of discrete time process algebra with
relative timing presented in [6]. Frames of this kind are called proper timed
frames.

Definition 3.4. A timed frame F is σ-deterministic if it satisfies:

if [s σ−→ t]F and [s σ−→ t′]F for some s, t, t′ ∈ |F |, then t = t′.

A timed frame F is σ-persistent if it satisfies:

if [s a−→ t]F and [s σ−→ t′]F for some s, t, t′ ∈ |F |, then [t′ → t′′]F for some
t′′ ∈ |F |.

12

A timed frame F is proper if it is σ-deterministic and σ-persistent.

In [6], discrete time process algebra with relative timing is based on transition
systems corresponding to pointed frames (F, p, q) where F is proper and q has
no incoming time steps (i.e. [6σ−→ q]F). For pointed frames satisfying these con-
ditions, the definition of bisimulation given here is equivalent to the one given in
that paper. Three kinds of termination states can be distinguished in the transi-
tion systems considered in [6]: states representing successful termination, states
representing immediate deadlock, and states representing deadlock in the current
time slice. States of the last kind are no termination states in pointed frames;
they are modelled as states with one outgoing transition, being a time step, to
an immediate deadlock state. Thus, deadlock in the current time slice is identi-
fied with immediate deadlock at the beginning of the next time slice. This is in
accordance with [6] where it corresponds to the axiom (DRT3): σrel(

•
δ) = cts(δ).

Besides, pointed frames have at most one successful termination state. This does
not give any loss of generality in case of relative timing.

According to the following two lemmas, every pointed frame is σ-bisimilar to
one of the pointed frames that correspond to the transition systems that underlie
the model of discrete time process algebra with relative timing presented in [6].
This fact will be used in the proof of Lemmas 3.9 and 3.10.

Lemma 3.5. Every pointed timed frame (F, p, q) is σ-bisimilar to a pointed timed
frame (F ′, p, q) where [6σ−→ q]F ′.

Proof. We show the existence of such a pointed frame by means of a transfor-
mation of (F, p, q). Add a fresh state. Replace q in each of its incoming time
steps by the fresh state. Let F ′ be the frame obtained in this way. It follows
immediately from the transformation that [6σ−→ q]F ′ and that (F, p, q)

σ↔(F ′, p, q).
2

Lemma 3.6. Every pointed timed frame (F, p, q) where [6σ−→ q]F is σ-bisimilar
to a pointed timed frame (F ′, p, q) where F ′ is proper and [6σ−→ q]F ′.

Proof. We show the existence of such a pointed timed frame by means of
a transformation of (F, p, q). First identify the states reachable from the root
state p via one time step. Then remove the remaining time step if it ends in a
state without outgoing transitions, provided that p has outgoing action steps as
well. Repeat this for all states reachable from p via one transition in the frame
obtained in this manner, and so on. Let F ′ be the resulting timed frame. It
follows immediately that this frame is proper and [6σ−→ q]F ′ . Besides, it follows

directly from the transformation that (F, p, q)
σ↔(F ′, p, q). 2

According to the following lemma,
σ↔ and↔ coincide for the pointed frames

that correspond to the transition systems that underlie the model of discrete
time process algebra with relative timing presented in [6]. This fact will also be
used in the proof of Lemmas 3.9 and 3.10.

13

Lemma 3.7. For proper timed frames F and F ′, p, q ∈ |F | and p′, q′ ∈ |F ′| such

that [6σ−→ q]F and [6σ−→ q′]F ′, (F, p, q)
σ↔(F ′, p′, q′) iff (F, p, q)↔(F ′, p′, q′).

Proof. ↔ implies
σ↔ by definition. For the other direction, we use the fact

that there exists a relation satisfying conditions 1–5 of Definition 3.3. Let R
be such a relation. Then R has a subset R′ defined by R′(S, T) iff R(S, T),
card(S), card(T) ≤ 1 and card(S) = card(T). It follows that R′ satisfies con-
ditions 1–5 of Definition 3.3 as well: if R(S, T) but not R′(S, T) then R(S, T)
is not necessary to satisfy conditions 1–5, seeing that the necessity would imply
that either F or F ′ does not fulfil both conditions for properness and would
thus imply contradiction. Here we use that the need for R(S, T) where not
card(S), card(T) ≤ 1 implies that F or F ′ is not σ-deterministic, and that the
need for R(S, T) where not card(S) = card(T) likewise implies that F or F ′

is not σ-persistent. In addition, it is immediate that R′ satisfies condition 6 of
Definition 3.3. Consequently, (F, p, q)↔(F ′, p′, q′). 2

Below a process extraction operation is defined on pointed timed frames. It
is defined such that σ-bisimilarity of the pointed frames coincides with bisim-
ilarity of the extracted processes (see further Lemma 3.9). Process extraction
is such that all states without an outgoing transition are interpreted as states
representing immediate deadlock if it is not the state marked as termination
state. For incoming action steps, the termination state is interpreted as a state
representing successful termination. For incoming time steps, it is interpreted as
a state representing immediate deadlock (in this case, it does not make sense to
interpret it as a state representing successful termination).

Definition 3.8. Let F be a timed frame and s, t ∈ S. Then s_q tF is the process
Xs given by the following finite set of process equations:

{Xs′ = Ps′ | s′ = s or ([s→∗|F |\{t} s′]F and s′ 6= t)}

where

Ps′ =
∑
a∈A

[s′ a−→ t]F ::→ cts(a) +
[s′ σ−→ t]F ::→ cts(δ) +∑
s′′∈|F |\{t}

([s′ a−→ s′′]F ::→ cts(a) ·Xs′′) +∑
s′′∈|F |\{t}

([s′ σ−→ s′′]F ::→ σrel(Xs′′))

Recall that we assume a model in which every set of guarded process equations
has a unique solution. Note further that a set of linear process equations can be
obtained here by rewriting each term of the form b ::→ P in accordance with the
value of the condition b in the frame F .

The following two lemmas are about two very desirable properties of the
process extraction operation defined above. The first one is that σ-bisimilarity

14

of the pointed timed frames coincides with bisimilarity of the extracted processes.
The second property is that for each regular relative time process there is a timed
frame of which it is the extracted process (up to bisimilarity). These properties
give a clear picture of the connection between timed frames and discrete time
processes.

Lemma 3.9. For timed frames F and F ′, p, q ∈ |F | and p′, q′ ∈ |F ′|, (F, p, q)
σ↔

(F ′, p′, q′) iff p_q qF↔p′_q q′F ′.

Proof. Let C(F, p, q) and C(F ′, p′, q′) be the pointed frames obtained by apply-
ing the transformations described in the proofs of Lemmas 3.5 and 3.6, in that
order, to (F, p, q) and (F ′, p′, q′), respectively. By these lemmas and Lemma 3.7,

(F, p, q)
σ↔(F ′, p′, q′) iff C(F, p, q)↔C(F ′, p′, q′). So it remains to be proved that

p_qqF↔p′_qq′F ′ iff C(F, p, q)↔C(F ′, p′, q′). This follows directly from the ob-
servation that_q and C are defined such that, for each extracted process p_qqF ,
the pointed frame C(F, p, q) is the canonical process graph determined by the
finite set of linear process equations obtained from the equations for p _q qF
according to Definition 3.8 as described above. 2

Lemma 3.10. A relative time process P is regular iff P ↔ p _q qF for some
(finite) timed frame F and some states p, q ∈ |F |.

Proof. Each regular process P is the solution of a finite set of linear process
equations E. The set E determines a canonical process graph (F, p, q), which
conversely determines a finite set of linear process equations E ′. The set E ′ in
its turn determines a canonical process graph (F ′, p′, q′) which is bisimilar to
(F, p, q). Hence, the solutions of E and E ′ are bisimilar. In addition, we have
that p_qqF is the solution of E ′. Consequently, P↔p_qqF . The other direction
is trivial because the timed frames considered here have a finite number of states
and transitions. 2

We envisage a systematic approach to devise suitable logics for reasoning about
discrete time processes, which starts with full predicate logic over timed frames.
Obviously, this simple logic permits to express properties that are not at all rele-
vant to discrete time processes. The way to remedy this is to determine (modal)
fragments that distinguish up to an equivalence that provides an adequate level
of abstraction for discrete time processes (for examples in the time free case, see
e.g. [7]). Lemma 3.9 supports our claim that σ-bisimulation is a suitable equiva-
lence for this purpose. Lemma 3.10 makes clear that timed frames are adequate
to represent all regular discrete relative time processes.

Note that by means of process extraction, pointed timed frames can be subject
to process algebraic reasoning. Process extraction yields a process which is given
by a set of process equations. It is frequently the case that the extracted process
can also be given by a process term of a certain form that provides a better
starting point for the process algebraic reasoning. The rule given below takes

15

this up. It allows to extract processes given by a process term of the form bP cω if
certain conditions are satisfied by the pointed frame concerned. The unbounded
start delay operator b·cω originates from ATP [17]. The process bP cω will start
P in the current time slice or any future time slice. Equations in the setting of
BPA–

drt are given in [16]. The rule for extracting processes with an unbounded
start delay is as follows:

∀s ∈ |F | · [p σ−→ s]F = f [p→∗|F |\{q} p]F = f p 6= q

p_q q ((p σ−→ p)⊕ F) = bp_q qF cω

Note further that this rule provides a clear-cut characterization of unbounded
start delay from the viewpoint of timed frames. Rules concerned with other
operators on discrete time processes can be devised as well.

3.3 Signal inserted timed frames

Timed frames are extended with signal insertion like in the untimed case by
adding propositions and the signal insertion operation q̂:

Sorts:
P propositions;
〈Ft,P〉 signal inserted timed frames ;

Constants & Functions:
p : P for each p ∈ Pat;
t : P true;

f : P false;
¬ : P→ P negation;
→ : P2 → P implication;

q̂ : P× 〈Ft,P〉 → 〈Ft,P〉 signal insertion.

The axioms for signal inserted timed frames are the axioms given in Table 1
(see Section 2.1), Table 4 (see Section 2.2), Table 5 (see Section 3.2) and the
axioms given in Table 6. The axiom (TIns1) is simply the counterpart of the

(TIns1) φ q̂ (s σ−→ s′) = (φ q̂ s)⊕ (s σ−→ s′)⊕ (φ q̂ s′)

(TIns2) (φ q̂ s)⊕ (s σ−→ s′) = (s σ−→ s′)⊕ (φ q̂ s′)

Table 6: Additional axioms for signal inserted timed frames.

axiom (Ins6) for time steps. The axiom (TIns2) reflects the intuition that the
passage of time cannot change the propositions that hold in the current state of
a process. This is in accordance with discrete relative time process algebra with
propositional signals where it corresponds to the axiom φ q̂σrel(x) = σrel(φ

q̂x).
Axiom (TIns2) entails that inconsistent states, i.e. states where f holds, remain

16

inconsistent with progress of time. Thus, one inconsistent state would render all
states inconsistent if there were also counterparts of the axioms (Ins7) and (Ins8)
for time steps.

Below, we will use an operation that extracts from a frame F the propositional
formula assigned to a state s ∈ |F |. The proposition extraction operation χ is
defined in Table 7. We will write χ(F, S), where S ⊆ |F |, for

∧
s∈S χ(F, s).

(Ext1) χ(∅, s) = t

(Ext2) χ(s′ ⊕X, s) = χ(X, s)

(Ext3) χ((s′ a−→ s′′)⊕X, s) = χ(X, s)

(Ext4) χ((s′ σ−→ s′′)⊕X, s) = χ((χ(X, s′′) q̂ s′)⊕ (χ(X, s′) q̂ s′′)⊕X, s)

(Ext5) χ((φ q̂ s)⊕X, s) = φ ∧ χ(X, s)

(Ext6) χ((φ q̂ s′)⊕X, s) = χ(X, s) if s′ 6= s and s′ ⊕X 6= X

Table 7: Axioms for proposition extraction.

The right-hand side of axiom (Ext4) is not simply χ(X, s) because, according
to axiom (TIns2), a time step s′ σ−→ s′′ implies that the propositions holding in
state s′ hold in state s′′ as well, and vice versa. Note that, because of possible
incoming or outgoing time steps of s′ in X, χ((φ q̂ s′)⊕X, s) and χ(X, s) could
be wrongly identified if the condition s′ ⊕ X 6= X had been omitted in axiom
(Ext6). In case s′ ⊕ X = X because X contains subterms of the form ψ q̂ s′,
axiom (Ins4) becomes essential to reduce the term χ((φ q̂ s′)⊕X, s) to a term
that does not contain applications of proposition extraction.

The definition of σ-bisimulation for simple timed frames (Definition 3.3) must
be adapted. Rule 1 is unchanged. Rule 2 is added to prevent abstraction from
the propositional formulae assigned to states. Rules 3–6 are the rules 2–5 from
the original definition adapted to take into account that an inconsistent state can
neither be entered nor left in spite of possible incoming and outgoing transitions.
In this definition (and also in Definition 4.1), we write φ = ψ to indicate that
for all valuations v : Pat → {t, f}, v(φ) = t iff v(ψ) = t. Furthermore, we write
φ 6= f to indicate that there exists a valuation v such that v(φ) = t.

Definition 3.11. Let F and F ′ be signal inserted timed frames, and let p, q ∈ |F |
and p′, q′ ∈ |F ′|. The pointed frames (F, p, q) and (F ′, p′, q′) are σ-bisimilar,

written (F, p, q)
σ↔(F ′, p′, q′) if there exists a relation R on P(|F |)×P(|F ′|) such

that:

1. R({p}, {p′});
2. if R(S, T), then χ(F, S) = χ(F ′, T);

3. if R(S, T), χ(F, S) 6= f and [s a−→ s′]F for some s ∈ S and s′ ∈ |F | \ {q},
then [t a−→ t′]F ′ and R({s′}, {t′}) for some t ∈ T and t′ ∈ |F ′| \ {q′};

17

3c. rule 3 vice versa;

4. if R(S, T), χ(F, S) 6= f and [s a−→ q]F for some s ∈ S, then [t a−→ q′]F ′ for
some t ∈ T and χ(F, q) = χ(F ′, q′) 6= f;

4c. rule 4 vice versa;

5. if R(S, T) and χ(F, S) 6= f, then R(S ′, T ′) where S ′ = {s′ ∈ |F | \ {q} | ∃s ∈
S · [s σ−→ s′]F} and T ′ = {t′ ∈ |F ′| \ {q′} | ∃t ∈ T · [t σ−→ t′]F ′};

6. if R(S, T), χ(F, S) 6= f and [s σ−→ s′]F for some s ∈ S and s′ ∈ |F |, then
[t→ t′]F ′ for some t ∈ T and t′ ∈ |F ′|;

6c. rule 6 vice versa.

The definition of process extraction for simple timed frames (Definition 3.8)
must also be adapted to take into account the propositional formulae assigned
to states.

Definition 3.12. Let F be a signal inserted timed frame and s, t ∈ S. Then
s_q tF is the process Xs given by the following finite set of process equations:

{Xs′ = Ps′ | s′ = s or ([s→∗|F |\{t} s′]F and s′ 6= t)}

where

Ps′ = χ(F, s′) q̂
∑
a∈A

[s′ a−→ t]F ::→ (cts(a))̂ χ(F, t)) +
[s′ σ−→ t]F ::→ cts(δ) +∑
s′′∈|F |\{t}

([s′ a−→ s′′]F ::→ cts(a) ·Xs′′) +∑
s′′∈|F |\{t}

([s′ σ−→ s′′]F ::→ σrel(Xs′′))

The definitions of bisimulation and proper timed frames for signal inserted

timed frames are as for simple timed frames. Lemmas 3.5–3.7, 3.9 and 3.10,
which concern simple timed frames, go through for signal inserted timed frames.

The following remarks are worth mentioning. In Section 3.2, the notation |F |
was introduced for the set of all states contained in frame F . It is not difficult
to define a corresponding operation | · | on frames by means of equational axioms
instead. In case of signal inserted timed frames, the operation concerned removes
transitions and undoes signal insertions. An operation | · |s that only removes
transitions can be defined analogously. Using this operation, axiom (Ext6) can
be replaced by

(Ext6′) χ((φ q̂ s′)⊕ |X|s, s) = χ(|X|s, s) if s′ 6= s

4 Conditional transitions

In this section, we introduce two kinds of conditional transitions in the setting
of timed frames. In Section 3, we already added signal inserted states to timed

18

frames. Here we complement signal inserted states with conditional transitions
where the truth of the condition is state dependent. The condition is a propo-
sitional formula that may hold in a signal inserted state; its truth is determined
by the propositional formula assigned to the starting state of the transition con-
cerned. We also add conditional transitions to timed frames where the truth
of the condition is time dependent. With the further structure provided by the
latter kind of conditional transitions, timed frames are also adequate to represent
discrete time process behaviour in the absolute time case. In order to distinguish
the latter kind of conditional transitions from the former one, we will use the
prefix time for conditional transitions of the latter kind. The integration of both
kinds of conditional transitions is not carried out because it is so trivial.

Conditional transitions should not be confused with conditional frames. Con-
ditional frames do not introduce new kinds of states or transitions; they are just
a means to describe frames conditionally. Conditional frames are briefly treated
in an appendix.

4.1 State dependent conditional transitions

In this subsection, we complement signal inserted states with conditional tran-
sitions. These transitions are labelled with an action (or σ in the case of time
steps) and a propositional formula. Whether an outgoing conditional transition
of a state can be performed or not in that state depends on the propositional
formula assigned to the state. The further structure provided by adding con-
ditional transitions to signal inserted timed frames gives a semantic basis for
discrete time extensions of process algebra with propositional signals [9].

The signature extension for signal inserted timed frames with conditional
transitions is as follows:

Sorts:
〈Ft,P〉c signal inserted timed frames with

conditional transitions ;
Functions:

·,a−−→ : P× S2 → 〈Ft,P〉c conditional action step construction
(one for each a ∈ A);

·,σ−−→ : P× S2 → 〈Ft,P〉c conditional time step construction.

The signature of signal inserted timed frames with conditional transitions is
graphically presented in Figure 3. The additional axioms for conditional transi-
tions are given in Table 8. The following equations are derivable from the axioms
(Ins4) (see Table 4) and (Con1)–(Con4):

((φ ∧ ψ) q̂ s)⊕ (s
φ,a−−→ s′) = ((φ ∧ ψ) q̂ s)⊕ s a−→ s′

(φ q̂ s)⊕ (s
φ∨ψ,a−−−−→ s′) = (φ q̂ s)⊕ s a−→ s′

(φ q̂ s)⊕ (s
¬φ,a−−−→ s′) = (φ q̂ s)⊕ s⊕ s′

19

-

?

''

&-

��
?

�� 6
��
"�����

��-

���

���"!

"!

"!

"!

?

��
?

- N0
ıN

ıS

q̂

·,a−−→
·,σ−−→ a−→

σ−→

(for all a ∈ A)

S

S

P

〉−〈

∅

p, q, ... ∈ Pat t, f

⊕

→

¬ 〈Ft,P〉c

6

Figure 3: Signature of signal inserted timed frames with conditional transitions.

These equations make clear that a conditional action step s
φ,a−−→ s′ can only

be performed if φ holds in s. The corresponding equations for conditional time
steps are derivable from the axioms (Ins4) and (TCon1)–(TCon4).

Additional frame conditions are needed to extend the definition of σ-bisimul-
ation to conditional transitions:

(Con1) s
t,a−−→ s′ = s a−→ s′

(Con2) s f,a−−→ s′ = s⊕ s′

(Con3) (s
φ∨ψ,a−−−−→ s′) = (s

φ,a−−→ s′)⊕ (s
ψ,a−−→ s′)

(Con4) (φ q̂ s)⊕ (s
φ∧ψ,a−−−−→ s′) = (φ q̂ s)⊕ (s

ψ,a−−→ s′)

(TCon1) s
t,σ−−→ s′ = s σ−→ s′

(TCon2) s f,σ−−→ s′ = s⊕ s′

(TCon3) (s
φ∨ψ,σ−−−−→ s′) = (s

φ,σ−−→ s′)⊕ (s
ψ,σ−−→ s′)

(TCon4) (φ q̂ s)⊕ (s
φ∧ψ,σ−−−−→ s′) = (φ q̂ s)⊕ (s

ψ,σ−−→ s′)

Table 8: Additional axioms for conditional transitions.

20

[s
φ,a−−→ s′]F =

{
t if (s

φ,a−−→ s′)⊕ F = F

f otherwise

[s
φ,σ−−→ s′]F =

{
t if (s

φ,σ−−→ s′)⊕ F = F

f otherwise

Note that the definition of [s→∗S s′]F actually needs a trivial adaptation to cover
conditional transitions as well.

The definition of σ-bisimulation for signal inserted timed frames (Defini-
tion 3.11) must be adapted. Rules 1 and 2 are unchanged. Rules 3–6 are general-
ized for conditional transitions in accordance with the definition of bisimulation
in [9]. They take into account that, with conditional transitions, the outgoing
transitions of a state can not always be performed.

Definition 4.1. Let F and F ′ be signal inserted timed frames with conditional
transitions, and let p, q ∈ |F | and p′, q′ ∈ |F ′|. The pointed frames (F, p, q) and

(F ′, p′, q′) are σ-bisimilar, written (F, p, q)
σ↔ (F ′, p′, q′), if there exists a relation

R on P(|F |)× P(|F ′|) such that:

1. R({p}, {p′});
2. if R(S, T), then χ(F, S) = χ(F ′, T);

3. if R(S, T) and [s
φ,a−−→ s′]F for some s ∈ S and s′ ∈ |F | \ {q}, then, for

all valuations v such that v(χ(F, S)) = t and v(φ) = t, there exists a

proposition ψ such that v(ψ) = t, [t
ψ,a−−→ t′]F ′ and R({s′}, {t′}) for some

t ∈ T and t′ ∈ |F ′| \ {q′};
3c. rule 3 vice versa;

4. if R(S, T) and [s
φ,a−−→ q]F for some s ∈ S, then, for all valuations v such

that v(χ(F, S)) = t and v(φ) = t, there exists a proposition ψ such that

v(ψ) = t and [t
ψ,a−−→ q′]F ′ for some t ∈ T , and χ(F, q) = χ(F ′, q′) 6= f;

4c. rule 4 vice versa;

5. if R(S, T), then R(Sφ, Tψ), where Sφ = {s′ ∈ |F |\{q} | ∃s ∈ S ·[s φ,σ−−→ s′]F}
and Tψ = {t′ ∈ |F ′| \ {q′} | ∃t ∈ T · [t ψ,σ−−→ t′]F ′}, for all propositions φ
and ψ such that, for all valuations v such that v(χ(F, S)) = t, v(φ) = t iff
v(ψ) = t;

6. if R(S, T) and [s
φ,σ−−→ s′]F for some s ∈ S and s′ ∈ |F |, then, for all valua-

tions v such that v(χ(F, S)) = t and v(φ) = t, there exists a proposition ψ

such that v(ψ) = t and either [t
ψ,a−−→ t′]F ′ or [t

ψ,σ−−→ t′]F ′ for some a ∈ A,
t ∈ T and t′ ∈ |F ′|;

6c. rule 6 vice versa.

The definition of process extraction for signal inserted timed frames (Defini-
tion 3.12) must also be adapted for the extension with conditional transitions.
In this definition (and also in Definition 4.4), we write ΦF for the finite set

{φ | ∃s′, s′′ ∈ |F | · (∃a ∈ A · [s′ φ,a−−→ s′′]F) ∨ [s′
φ,σ−−→ s′′]F}.

21

Definition 4.2. Let F be a signal inserted timed frame with conditional transi-
tions and s, t ∈ S. Then s_q tF is the process Xs given by the following finite
set of process equations:

{Xs′ = Ps′ | s′ = s or ([s→∗|F |\{t} s′]F and s′ 6= t)}

where

Ps′ = χ(F, s′) q̂

∑
a∈A

∑
φ∈ΦF

[s′
φ,a−−→ t]F ::→ ((φ ::→ cts(a)))̂ χ(F, t)) +

[s′
φ,σ−−→ t]F ::→ (φ ::→ cts(δ)) +∑

s′′∈|F |\{t}

([s′
φ,a−−→ s′′]F ::→ (φ ::→ cts(a) ·Xs′′)) +∑

s′′∈|F |\{t}

([s′
φ,σ−−→ s′′]F ::→ (φ ::→ σrel(Xs′′)))

The finite set ΦF is used instead of the infinite set of all terms of sort P since
only finite sums are supported in the setting of BPA–

drt.
The definitions of σ-bisimulation and process extraction for the extension

with conditional transitions are such that Lemmas 3.9 and 3.10, connecting σ-
bisimulation for frames with bisimulation for processes and frames with regular
processes, respectively, go through for this extension as well.

4.2 Time dependent conditional transitions

Time stamping of states is the common usage to represent discrete time process
behaviour in the absolute time case, but time stamping of transitions could be
used as well. In simple timed frames, states nor transitions have time stamps.
In this subsection, we extend simple timed frames with conditional transitions
where the truth of the condition is time dependent. This can be regarded as a
generalization of time stamping of transitions. The atomic time conditions are
t, f, sl(m) and sl>(m) (m ∈ N1). The condition sl(m) is true during time slice m,
and the condition sl>(m) is true from time slice m+1 on. Further time conditions
can be built from the atomic time conditions by means of the connectives ¬ and
→. Simple timed frames extended with time conditional transitions are adequate
to represent discrete time process behaviour in the absolute time case.

The signature extension for simple timed frames with time conditional tran-
sitions is as follows:

22

Sorts:
Pt time conditions ;
〈Ft,Pt〉c simple timed frames with

time conditional transitions ;
Constants & Functions:

t : Pt true;

f : Pt false;
sl : N→ Pt slice equal ;
sl> : N→ Pt slice later than;
¬ : Pt → Pt negation;
→ : P2

t → Pt implication;
.,a−−→ : Pt × S2 → 〈Ft,Pt〉c time conditional action step construction

(one for each a ∈ A);
.,σ−−→ : Pt × S2 → 〈Ft,Pt〉c time conditional time step construction.

The additional axioms for time conditional transitions are simply the axioms
(Con1)–(Con3) and (TCon1)–(TCon3) given in Table 8 (see Section 4.1), under-
standing that the range of the meta-variables is properly changed.

In [6], discrete time process algebra with absolute timing is based on transition
systems where states are time stamped. These transition systems are in addition
such that, for each action step s a−→ s′, the time stamp of s′ must be equal to
the time stamp of s; and for each time step s σ−→ s′, the time stamp of s′ must
be the successor of the time stamp of s. A state with time stamp n represents a
state that can only be entered or left during time slice n+ 1. The conditions on
the time stamps of states are needed because an action step does not change the
time slice and a time step changes it to the next one. This also permits to time
stamp transitions instead or, equivalently, to use time conditional transitions
with conditions of the form sl(m) (m > 0). The intended time restrictions on the
performance of this simple kind of time conditional transitions can be explained

as follows: in case of an action step s
sl(m),a−−−−→ s′, state s must be left during time

slice m and state s′ must be entered during time slice m; and in case of a time

step s
sl(m),σ−−−−−→ s′, state s must be left during time slice m and state s′ must be

entered during time slice m+1. The definition of process extraction from simple
timed frames with time conditional transitions reflects this.

In order to adapt the definition of process extraction to time conditional
transitions, we need the intended time dependent valuation of time conditions.

Definition 4.3. For each n ∈ N the valuation ·n : Pt → {t, f} is recursively
defined by

23

tn = t

fn = f

(sl(m))n =

{
t if S(n) = m

f otherwise

(sl>(m))n =

{
t if S(n) > m

f otherwise

(¬φ)n = ¬(φn)

(φ→ ψ)n = φn → ψn

We will write [s
φ,a−−→ s′]nF for [s

φ,a−−→ s′]F ∧ φn. The abbreviation [s
φ,σ−−→ s′]nF is

used analogously.
The definition of process extraction for simple timed frames (Definition 3.8)

can be adapted in two ways: one way yielding absolute time processes and an-
other way yielding parametric time processes.

Definition 4.4. Let F be a simple timed frame with time conditional transitions
and s, t ∈ S. Then s

a_q tF is the absolute time process 0 � X0
s , where X0

s is
given by the following finite set of process equations:

{Xn
s′ = P n

s′ | s′ = s or ([s→∗|F |\{t} s′]F and s′ 6= t), n ∈ N, P n−1
s′ 6=

•
δ if n > 0}

where

P n
s′ =

∑
a∈A

∑
φ∈ΦF

[s′
φ,a−−→ t]nF ::→ cts(a) +

[s′
φ,σ−−→ t]nF ::→ cts(δ) +∑

s′′∈|F |\{t}

([s′
φ,a−−→ s′′]nF ::→ cts(a) ·Xn

s′′) +∑
s′′∈|F |\{t}

([s′
φ,σ−−→ s′′]nF ::→ σrel(X

n+1
s′′))

Besides, s

p
_q tF is the parametric time process

√
d k . (k � Xk

s), where Xk
s is

given by the set of process equations given above.

The restriction P n−1
s′ 6=

•
δ if n > 0 is used to keep the set of process equations

finite. The process P n
s′ can be viewed as the behaviour subsequent to entering

state s′ during time slice n + 1. Note that s
a_q tF = 0 � (s

p
_q tF). It

is very straightforward to integrate the conditional transitions introduced here
with the conditional transitions introduced in Section 4.1, where the truth of the
conditions is state dependent instead of time dependent.

It follows directly from the definitions of regular absolute time processes and
regular parametric time processes in [6] that Lemma 3.10 goes through for this
extension.

24

References

[1] J.A. Bergstra and A. Ponse, Frame algebra with synchronous communica-
tion. In R.J. Wieringa and R.B. Feenstra, editors, Information Systems –
Correctness and Reusability, World Scientific, 1995, pp. 3–15.

[2] C. Stirling. Modal and temporal logics, In S. Abramsky, D. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic and Computer Science, Vol-
ume 2. Clarendon Press, 1992.

[3] J.A. Bergstra and A. Ponse, Frame-based process logics. In A. Ponse,
M. de Rijke, and Y. Venema, editors, Modal Logic and Process Algebra,
CSLI Lecture Notes 53, CSLI Publications, 1995, pp. 39–64.

[4] J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

[5] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communica-
tion, Information and Control, 60(1984), 109–137.

[6] J.C.M. Baeten and J.A. Bergstra, Discrete time process algebra, Report
P9208c, University of Amsterdam, Programming Research Group, March
1995. To appear in Formal Aspects of Computing.

[7] J.F.A.K. van Benthem and J.A. Bergstra, Logic of transition systems, Jour-
nal of Logic, Language and Information, 3(1995), 247–283.

[8] J.F.A.K. van Benthem, D.J.N. van Eijck, and V. Stebletsova, Modal
logic, transition systems and processes, Journal of Logic and Computation,
4(1994), 811–855.

[9] J.C.M. Baeten and J.A. Bergstra, Process algebra with propositional sig-
nals, Logic Group Preprint Series 123, Utrecht University, Department of
Philosophy, November 1994.

[10] M. Hennessy and R. Milner, Algebraic laws for non-determinism and con-
currency, Journal of the ACM, 32(1985), 137–161.

[11] Specification and description language (SDL), ITU-T Recommendation
Z.100, Revision 1, 1994.

[12] J.A. Bergstra and C.A. Middelburg, Process algebra semantics of ϕSDL,
Logic Group Preprint Series 129, Utrecht University, Department of Philos-
ophy, March 1995.

[13] M.A. Reniers and J.J. Vereijken, Completeness in discrete time process
algebra, 1995, draft.

[14] J.C.M. Baeten and J.A. Bergstra, Process algebra with signals and condi-
tions. In M. Broy, editor, Programming and Mathematical Methods, NATO
ASI Series F88, Springer-Verlag, 1992, pp. 273–323.

[15] S. Mauw, Example specifications in ϕSDL, unpublished manuscript, 1995.

[16] J.C.M. Baeten and J.A. Bergstra, Discrete time process algebra with ab-
straction. In H. Reichel, editor, Fundamentals of Computation Theory,
LNCS 965, Springer-Verlag, 1995, pp. 1–15.

[17] X. Nicollin and J. Sifakis, The algebra of timed processes ATP: Theory and
application, Information and Computation, 114(1994), 131–178.

25

Appendix

In this appendix, we introduce conditional timed frames. They do not introduce
new kinds of states or transitions; they are just a means to describe frames
conditionally.

The signature extension for conditional timed frames is as follows:

Sorts:
C conditions ;
Fc

t conditional timed frames ;
Constants & Functions:

c : C for each c ∈ Cat;
t : C true;

f : C false;
¬ : C→ C negation;
→ : C2 → C implication;

�·�: P× Fc
t
2 → Fc

t two-armed conditional.

The additional axioms for conditional timed frames are given in Table 9. The

(FCA1) X�t�Y = X

(FCA2) X�(¬φ)�Y = Y�φ�X

(FCA3) X�(φ ∧ ψ)�Y = (X�φ�Y)�ψ�Y

(FCA4) X�φ�Y = (X�φ�∅)⊕ (∅�φ�Y)

(FCA5) (X ⊕ Y)�φ�Z = (X�φ�Z)⊕ (Y�φ�Z)

(FCA6) (φ q̂ s)�ψ�∅ = (φ ∧ ψ) q̂ s

(FCA7) (s
φ,a−−→ s′)�ψ�∅ = s

φ∧ψ,a−−−−→ s′

(FCA8) (s
φ,σ−−→ s′)�ψ�∅ = s

φ∧ψ,σ−−−−→ s′

Table 9: Additional axioms for conditional timed frames.

following are some equations derivable from the axioms (FCA1)–(FCA5):

X�φ�X = X

(X�φ�Y)⊕ Z = (X ⊕ Z)�φ�(Y ⊕ Z)

(X�φ�Y)�ψ�Z = (X�ψ�Z)�φ�(Y�ψ�Z)

(X�φ�Y)�φ�Z = X�φ�Z

26

