
Simulating Turing Machines on Maurer

Machines

J. A. Bergstra a,b, C. A. Middelburg a,∗
aProgramming Research Group, University of Amsterdam, P.O. Box 41882,

1009 DB Amsterdam, Netherlands
bDepartment of Philosophy, Utrecht University, P.O. Box 80126,

3508 TC Utrecht, Netherlands

Abstract

In a previous paper, we used Maurer machines to model and analyse micro-architec-
tures. In the current paper, we investigate the connections between Turing machines
and Maurer machines with the purpose to gain an insight into computability issues
relating to Maurer machines. We introduce ways to simulate Turing machines on a
Maurer machine which, dissenting from the classical theory of computability, take
into account that in reality computations always take place on finite machines. In
one of those ways, multi-threads and thread forking have an interesting theoretical
application.

Key words: Turing machine, Maurer machine, thread algebra, strategic
interleaving, thread forking, fair interleaving strategy

1 Introduction

In this paper, we present ways to simulate Turing machines on a Maurer
machines which provide insight into the connections between Turing machines,
Maurer machines and real computers.

In [21], Maurer proposes a model for computers that is quite different from
the well-known models such as register machines, multistack machines and

∗ Corresponding author.
Email addresses: J.A.Bergstra@uva.nl (J. A. Bergstra),

C.A.Middelburg@uva.nl (C. A. Middelburg).
URLs: http://www.science.uva.nl/~janb (J. A. Bergstra),

http://www.science.uva.nl/~kmiddelb (C. A. Middelburg).

Preprint submitted to JAL 23 May 2007

Turing machines (see e.g. [18]). The strength of Maurer’s model is that it is
close to real computers. Maurer’s model is based on the view that a computer
has a memory, the contents of all memory elements make up the state of
the computer, the computer processes instructions, and the processing of an
instruction amounts to performing an operation on the state of the computer
which results in changes of the contents of certain memory elements.

In [10], we investigated basic issues concerning stored threads and their exe-
cution on a Maurer machine. In that paper, we showed among other things
that a single thread can control the execution on a Maurer machine of any
finite-state thread stored in the memory of the Maurer machine, provided the
basic actions that make up the thread are taken by the Maurer machine as
instructions to be processed. To describe threads, we used an extension of
basic thread algebra, a form of process algebra introduced in [3] under the
name basic polarized process algebra. The purpose of the investigation was to
ascertain the feasibility of an approach based on Maurer machines and basic
thread algebra to model micro-architectures and to verify their correctness
and anticipated speed-up results.

The extension of basic thread algebra used in [10] concerns an operator for
interleaving of threads and, for each Maurer machine, an operator for applying
a thread to the Maurer machine from a state of the Maurer machine. Applying
a thread to a Maurer machine amounts to generating a sequence of state
changes according to the operations that the Maurer machine associates with
the basic actions performed by the thread.

Why did we choose to use Maurer machines and basic thread algebra to model
and analyse micro-architectures? Firstly, well-known models for computers,
such as register machines, multi-stack machines and Turing machines, are too
general for our purpose. Unlike Maurer’s model for computers, those models
have little in common with real computers. They abstract from many aspects
of real computers with which the design of a micro-architecture must deal.
Secondly, general process algebras, such as ACP [1], CCS [23], and CSP [17],
are too general for our purpose as well. Basic thread algebra has been de-
signed as an algebra of deterministic sequential processes that interact with a
machine. In [7], we show that the processes considered in basic thread algebra
can be viewed as processes that are definable over an extension of ACP with
conditions introduced in [5]. However, it is quite awkward to describe and
analyse processes of this kind using such a general process algebra.

As mentioned above, Maurer’s model for computers is quite different from
Turing’s model. The latter model belongs to the foundations of theoretical
computer science, whereas the model used in our approach to model and
analyse micro-architectures is relatively unknown indeed. In this paper, we
investigate the connections between the two models. The purpose of the in-

2

vestigation is to gain an insight into computability issues relating to Maurer
machines.

We present in the first place the most obvious way to simulate Turing machines
on a Maurer machine. That way illustrates that the test and write operations
implicitly performed on steps of a Turing machine must be capable of reading
or overwriting the contents of any cell from the infinite number of cells on the
tape of the Turing machine – the cell of which the contents is actually read
or overwritten depends on the head position. In Maurer’s terminology, a test
operation has an infinite input region and a write operation has an infinite
output region. Real computers do not have such operations. We show that the
operations concerned can be replaced by operations with a finite input region
and a finite output region if we abandon the restriction to machines with a
finite-state control.

In the most obvious way to simulate Turing machines on a Maurer machine,
the finite-state control of the Turing machine in question is rendered into
a thread, to be applied to the Maurer machine, that is definable by a finite
recursive specification. However, the adaptation of this way to simulate Turing
machines to the use of operations with a finite input region and a finite output
region usually leads to a thread that is only definable by an infinite recursive
specification. Thus, one kind of infinity has been replaced by another kind.
We show also a way to get round the latter kind of infinity in the case of
convergence. The basic ideas are: (a) the thread corresponding to the finite-
state control of the Turing machine in question is stored and then executed
under control of a thread that makes the head position part of the operations
and (b) the controlling thread grows, by means of thread forking, whenever a
head position occurs for the first time.

For the last-mentioned way to simulate Turing machines, the operator for in-
terleaving of threads from [10] is adapted to thread forking. The operator is
based on the simplest deterministic interleaving strategy, namely cyclic inter-
leaving. In [11], other plausible interleaving strategies are treated. We discuss
why the last-mentioned way to simulate Turing machines on a Maurer machine
works for other fair interleaving strategies as well.

The structure of this paper is as follows. First of all, we review Maurer’s model
for computers (Section 2) and basic thread algebra (Section 3). Following this,
we extend basic thread algebra with an operator to deal with interleaving of
threads (Section 4) and, for each Maurer machine, an operator which allows
for threads to transform states of the associated Maurer machine by means
of its operations (Section 5). After that, we set out a way to store a finite-
state thread in the memory of a Maurer machine for execution on the Maurer
machine (Section 6). Next, we review Turing machines (Section 7) and show
the most obvious way to simulate Turing machines on Maurer machines (Sec-

3

tion 8). Then, we show two ways to simulate Turing machines on Maurer
machines by means of operations with a finite input region and a finite output
region only (Sections 9 and 10). After that, we discuss why the last way, which
uses cyclic interleaving, works for any fair interleaving strategy (Section 11).
Finally, we make some concluding remarks (Section 12).

At first sight, Sections 2–5 look to be shortened versions of sections from [10]
and Section 6 looks to be copied in full from [10]. We remark that, in Sec-
tions 3–6, not all technical details are the same as in [10].

2 Maurer Computers

In this section, we shortly review Maurer computers, i.e. computers as defined
by Maurer in [21].

A Maurer computer C consists of the following components:

• a non-empty set M ;
• a set B with card(B) ≥ 2;
• a set S of functions S : M → B;
• a set O of functions O : S → S;

and satisfies the following conditions:

• if S1, S2 ∈ S, M ′ ⊆ M and S3 :M → B is such that S3(x) = S1(x) if x ∈ M ′

and S3(x) = S2(x) if x 6∈ M ′, then S3 ∈ S;
• if S1, S2 ∈ S, then the set {x ∈ M | S1(x) 6= S2(x)} is finite.

M is called the memory, B is called the base set, the members of S are called
the states, and the members of O are called the operations. It is obvious that
the first condition is satisfied if C is complete, i.e. if S is the set of all functions
S : M → B, and that the second condition is satisfied if C is finite, i.e. if M
and B are finite sets.

In [21], operations are called instructions. We use the term operation because
of the confusion that would otherwise arise with the more established use of
the term instruction in the area of computer systems architecture and organi-
zation.

The memory of a Maurer computer consists of memory elements which have as
contents an element from the base set of the Maurer computer. The contents
of all memory elements together make up a state of the Maurer computer. The
operations of the Maurer computer transform states in certain ways and thus
change the contents of certain memory elements. Thus, a Maurer computer

4

has much in common with a real computer. The first condition on the states
of a Maurer computer is a structural condition and the second one is a finite
variability condition. We return to these conditions, which are met by any real
computer, after the introduction of the input region and output region of an
operation.

Let (M, B,S,O) be a Maurer computer, and let O : S → S. Then the input
region of O, written IR(O), and the output region of O, written OR(O), are
the subsets of M defined as follows:

IR(O) = {x ∈ M | ∃S1, S2 ∈ S • (∀z ∈ M \ {x} • S1(z) = S2(z) ∧
∃y ∈ OR(O) • O(S1)(y) 6= O(S2)(y))} ,

OR(O) = {x ∈ M | ∃S ∈ S • S(x) 6= O(S)(x)} . 1

OR(O) is the set of all memory elements that are possibly affected by O;
and IR(O) is the set of all memory elements that possibly affect elements of
OR(O) under O.

Let (M, B,S,O) be a Maurer computer, let S1, S2 ∈ S, and let O ∈ O. Then
S1 ¹ IR(O) = S2 ¹ IR(O) implies O(S1) ¹ OR(O) = O(S2) ¹ OR(O). In words,
every operation transforms states that coincide on the input region of the
operation to states that coincide on the output region of the operation. The
second condition on the states of a Maurer computer is necessary for this
fundamental property to hold. The first condition on the states of a Maurer
computer could be relaxed somewhat (for more details, see [21]).

Let (M,B,S,O) be a Maurer computer, let O ∈ O, let M ′ ⊆ OR(O), and let
M ′′ ⊆ IR(O). Then the region affecting M ′ under O, written RA(M ′, O), and
the region affected by M ′′ under O, written AR(M ′′, O), are the subsets of M
defined as follows:

RA(M ′, O) = {x ∈ IR(O) | AR({x}, O) ∩M ′ 6= ∅} ,

AR(M ′′, O) =

{x ∈ OR(O) | ∃S1, S2 ∈ S • (∀z ∈ IR(O) \M ′′ • S1(z) = S2(z) ∧
O(S1)(x) 6= O(S2)(x))} .

AR(M ′′, O) is the set of all elements of OR(O) that are possibly affected by

1 The following precedence conventions are used in logical formulas. Operators bind
stronger than predicate symbols, and predicate symbols bind stronger than logical
connectives and quantifiers. Moreover, ¬ binds stronger than ∧ and ∨, and ∧ and
∨ bind stronger than ⇒ and ⇔ . Quantifiers are given the smallest possible scope.

5

the elements of M ′′ under O; and RA(M ′, O) is the set of all elements of IR(O)
that possibly affect elements of M ′ under O.

In [21], Maurer gives many results about the relation between the input region
and output region of operations, the composition of operations, the decom-
position of operations and the existence of operations with specified input,
output and affected regions. In [10], we summarize the main results. Recently,
a revised and expanded version of [21], which includes all the proofs, has ap-
peared in [22].

3 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process
algebra which is tailored to the description of the behaviour of deterministic
sequential programs under execution. The behaviours concerned are called
threads.

In BTA, it is assumed that there is a fixed but arbitrary set of basic actions A
with tau 6∈ A. We write Atau for A ∪ {tau}. BTA has the following constants
and operators:

• the deadlock constant D;
• the termination constant S;
• for each a ∈ Atau, a binary postconditional composition operator £ a¥ .

We use infix notation for postconditional composition. We introduce action
prefixing as an abbreviation: a ◦ p, where p is a term of BTA, abbreviates
p £ a¥ p.

The intuition is that each basic action performed by a thread is taken as a
command to be processed by the execution environment of the thread. The
processing of a command may involve a change of state of the execution en-
vironment. At completion of the processing of the command, the execution
environment produces a reply value. This reply is either T or F and is re-
turned to the thread concerned. Let p and q be closed terms of BTA. Then
p £ a¥ q will perform action a, and after that proceed as p if the processing
of a leads to the reply T (called a positive reply) and proceed as q if the pro-
cessing of a leads to the reply F (called a negative reply). The action tau plays
a special role. Its execution will never change any state and always produces
a positive reply.

BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows: x£ tau ¥y = tau◦x.

6

Table 1
Axiom of BTA
x £ tau¥ y = x £ tau¥ x T1

Table 2
Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

A recursive specification over BTA is a set of equations E = {X = tX | X ∈
V }, where V is a set of variables and each tX is a term of BTA that only
contains variables from V . We write V(E) for the set of all variables that
occur on the left-hand side of an equation in E. Let t be a term of BTA
containing a variable X. Then an occurrence of X in t is guarded if t has a
subterm of the form t′ £ a¥ t′′ containing this occurrence of X. A recursive
specification E is guarded if all occurrences of variables in the right-hand
sides of its equations are guarded or it can be rewritten to such a recursive
specification using the equations of E. We are only interested in models of
BTA in which guarded recursive specifications have unique solutions, such as
the projective limit model of BTA presented in [2,3]. A thread that is the
solution of a finite guarded recursive specification over BTA is called a finite-
state thread.

We extend BTA with guarded recursion by adding constants for solutions of
guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we
add a constant standing for the unique solution of E for X to the constants of
BTA. The constant standing for the unique solution of E for X is denoted by
〈X|E〉. Moreover, we use the following notation. Let t be a term of BTA and
E be a guarded recursive specification. Then we write 〈t|E〉 for t with, for all
X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉. We add the axioms
for guarded recursion given in Table 2 to the axioms of BTA. In this table,
X, tX and E stand for an arbitrary variable, an arbitrary term of BTA and
an arbitrary guarded recursive specification, respectively. Side conditions are
added to restrict the variables, terms and guarded recursive specifications for
which X, tX and E stand. The additional axioms for guarded recursion are
known as the recursive definition principle (RDP) and the recursive specifi-
cation principle (RSP). The equations 〈X|E〉 = 〈tX |E〉 for a fixed E express
that the constants 〈X|E〉 make up a solution of E. The conditional equations
E ⇒ X = 〈X|E〉 express that this solution is the only one.

We often write X for 〈X|E〉 if E is clear from the context. It should be borne
in mind that, in such cases, we use X as a constant.

The projective limit characterization of process equivalence on threads is based

7

Table 3
Approximation induction principle

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x £ a¥ y) = πn(x) £ a¥ πn(y) P3

(
∧

n≥0πn(x) = πn(y)) ⇒ x = y AIP

on the notion of a finite approximation of depth n. When for all n these ap-
proximations are identical for two given threads, both threads are considered
identical. This is expressed by the infinitary conditional equation AIP (Ap-
proximation Induction Principle) given in Table 3. Here, following [2,3], ap-
proximation of depth n is phrased in terms of a unary projection operator
πn(). The projection operators are defined inductively by means of equations
P0–P3 given in Table 3. In this table, a stands for an arbitrary member of
Atau. It happens that RSP follows from AIP.

The structural operational semantics of BTA and its extensions with guarded
recursion and projection can be found in [11,10].

Henceforth, we write Tfinrec for the set of all terms of BTA with recursion in
which no constants 〈X|E〉 for infinite E occur, and Tfinrec for the set of all
closed terms of BTA with recursion in which no constants 〈X|E〉 for infinite
E occur. We write Tfinrec(A), where A ⊆ A, for the set of all closed terms
from Tfinrec that only contain basic actions from A. We write p ∈ p′, where
p, p′ ∈ Tfinrec, to indicate that p is a subterm of a term p′′ ∈ Tfinrec for which
p′ = p′′ is derivable from RDP.

4 Interleaving of Threads and Thread Forking

In this section, we extend BTA with an operator for interleaving of threads
that supports thread forking.

It is assumed that the collection of threads to be interleaved takes the form of
a sequence of threads, called a thread vector. Strategic interleaving operators
turn a thread vector of arbitrary length into a single thread. This single thread
obtained via a strategic interleaving operator is also called a multi-thread.
Formally, however multi-threads are threads as well.

Several kinds of strategic interleaving have been elaborated in earlier work,
see e.g. [11]. In this paper, we only cover one of the simplest interleaving
strategies, namely cyclic interleaving with perfect forking. Cyclic interleaving

8

Table 4
Axioms for cyclic interleaving with perfect forking

‖f(〈 〉) = S CSIf1

‖f(〈S〉y α) = ‖f(α) CSIf2

‖f(〈D〉y α) = SD(‖f(α)) CSIf3

‖f(〈x £ a¥ y〉y α) = ‖f(αy 〈x〉) £ a¥ ‖f(αy 〈y〉) CSIf4

‖f(〈x £ nt(n) ¥ y〉y α) = tau ◦ ‖f(αy 〈φ(n)〉y 〈x〉) CSIf5

Table 5
Axioms for deadlock at termination
SD(S) = D S2D1

SD(D) = D S2D2

SD(x £ a¥ y) = SD(x) £ a¥ SD(y) S2D3

basically operates as follows: at each stage of the interleaving, the first thread
in the thread vector gets a turn to perform a basic action and then the thread
vector undergoes cyclic permutation. We mean by cyclic permutation of a
thread vector that the first thread in the thread vector becomes the last one
and all others move one position to the left. If one thread in the thread vec-
tor deadlocks, the whole does not deadlock till all others have terminated or
deadlocked. An important property of cyclic interleaving is that it is fair, i.e.
there will always come a next turn for all active threads.

It is assumed that a fixed but arbitrary thread forking function φ :N → Tfinrec,
where N ⊆ N, has been given. Moreover, it is assumed that nt(n) ∈ A for all
n ∈ dom(φ). The basic action nt(n) represents the act of forking off thread
φ(n). We consider the case where forking off a thread will never be blocked or
fail. Therefore, it always produces a positive reply. The action tau arises as the
residue of forking off a thread. We write NT for the set {nt(n) | n ∈ dom(φ)}.
The strategic interleaving operator for cyclic interleaving with perfect forking
is denoted by ‖f().

The axioms for cyclic interleaving with perfect forking are given in Table 4. 2

In CSIf3, the auxiliary deadlock at termination operator SD() is used. It turns
termination into deadlock. Its axioms are given in Table 5. In Table 4, a stands
for an arbitrary member of Atau \ NT . In Table 5, a stands for an arbitrary
member of Atau.

In [11], we treat several strategies for cyclic interleaving with forking. All of
them deal with cases where forking may be blocked and/or may fail. We believe

2 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element,
and α y β for the concatenation of finite sequences α and β. We assume the usual
laws for concatenation of finite sequences.

9

that perfect forking is a suitable abstraction when studying the simulation of
Turing machines.

The structural operational semantics for cyclic interleaving without forking is
given in [11,10]. The adaptation to the case with perfect forking is obvious.

5 Applying Threads to Maurer Machines

In this section, we introduce Maurer machines and add for each Maurer ma-
chine H a binary apply operator •H to BTA.

A Maurer machine is a tuple H = (M, B,S,O, A, [[]]), where (M, B,S,O) is
a Maurer computer and:

• A ⊆ A \ NT ;
• [[]] : A → (O ×M).

The members of A are called the basic actions of H, and [[]] is called the
basic action interpretation function of H. A and [[]] constitute the interface
between the Maurer computer and its environment.

The apply operators associated with Maurer machines are related to the ap-
ply operators introduced in [12]. They allow for threads to transform states of
the associated Maurer machine by means of its operations. Such state trans-
formations produce either a state of the associated Maurer machine or the
undefined state ↑. It is assumed that ↑ is not a state of any Maurer machine.
We extend function restriction to ↑ by stipulating that ↑ ¹ M = ↑ for any set
M . 3 The first operand of the apply operator •H associated with Mau-
rer machine H = (M, B,S,O, A, [[]]) must be a term from Tfinrec(A) and its
second argument must be a state from S ∪ {↑}.

Let H = (M,B,S,O, A, [[]]) be a Maurer machine, let p ∈ Tfinrec(A), and
let S ∈ S. Then p •H S is the state from S that results if all basic actions
performed by thread p are processed by the Maurer machine H beginning in
state S. Moreover, let (Oa,ma) = [[a]] for all a ∈ A. Then the processing of
a basic action a by H amounts to a state change according to the operation
Oa. In the resulting state, the reply produced by H is contained in memory
element ma. If p is S, then there will be no state change. If p is D, then the
result is ↑.

Let H = (M, B,S,O, A, [[]]) be a Maurer machine, and let (Oa, ma) = [[a]] for

3 In this paper, we use the notation f ¹ D, where f is a function and D ⊆ dom(f),
for the function g with dom(g) = D such that for all d ∈ dom(g), g(d) = f(d).

10

Table 6
Defining equations for apply operator

x •H ↑ = ↑
S •H S = S

D •H S = ↑
(tau ◦ x) •H S = x •H S

(x £ a¥ y) •H S = x •H Oa(S) if Oa(S)(ma) = T

(x £ a¥ y) •H S = y •H Oa(S) if Oa(S)(ma) = F

Table 7
Rule for divergence
∧

n≥0πn(x) •H S = ↑ ⇒ x •H S = ↑

all a ∈ A. Then the apply operator •H is defined by the equations given in
Table 6 and the rule given in Table 7. In these tables, a stands for an arbitrary
member of A and S stands for an arbitrary member of S.

Let H = (M,B,S,O, A, [[]]) be a Maurer machine, let p ∈ Tfinrec(A), and let
S ∈ S. Then p converges from S on H if there exists an n ∈ N such that
πn(p) •H S 6= ↑. We say that p diverges from S on H if p does not converge
from S on H. The rule from Table 7 can be read as follows: if x diverges from
S on H, then x •H S equals ↑.

We introduce some auxiliary notions, which are useful in proofs.

Let H = (M, B,S,O, A, [[]]) be a Maurer machine, and let (Oa, ma) = [[a]] for
all a ∈ A. Then the step relation `H ⊆ (Tfinrec(A) × S) × (Tfinrec(A) × S)
is inductively defined as follows:

• if p = tau ◦ p′, then (p, S) `H (p′, S);
• if Oa(S)(ma) = T and p = p′ £ a ¥ p′′, then (p, S) `H (p′, Oa(S));
• if Oa(S)(ma) = F and p = p′ £ a¥ p′′, then (p, S) `H (p′′, Oa(S)).

We have that (p, S) `H (p′, S ′) implies p •H S = p′ •H S ′.

Let H = (M, B,S,O, A, [[]]) be a Maurer machine. Then a full path in `H

is one of the following:

• a finite path 〈(p0, S0), . . . , (pn, Sn)〉 in `H such that there does not exist
a (pn+1, Sn+1) ∈ Tfinrec(A)× S with (pn, Sn) `H (pn+1, Sn+1);

• an infinite path 〈(p0, S0), (p1, S1), . . .〉 in `H .

Moreover, let p ∈ Tfinrec(A), and let S ∈ S. Then the full path of (p, S) on H
is the unique full path in `H from (p, S). If p converges from S on H, then

11

the full path of (p, S) on H is called the computation of (p, S) on H.

Let H = (M, B,S,O, A, [[]]) be a Maurer machine, and let p ∈ Tfinrec(A) and
S ∈ S be such that p converges from S on H. Then we write ||(p, S)||H for the
least n ∈ N such that πn(p) •H S 6= ↑. The computation of (p, S) on H is a
full path of length ||(p, S)||H from (p, S) to (S, p •H S). So, although ||(p, S)||H
is not defined in terms of the computation of (p, S) on H, it is the length of
the computation of (p, S) on H.

Henceforth, we write `∗H for the reflexive and transitive closure of `H .

6 Representation of Threads

In this section, we make precise how to represent threads in the memory of a
Maurer machine.

It is assumed that a fixed but arbitrary finite set Mthr and a fixed but arbitrary
bijection mthr : [0, card(Mthr) − 1] → Mthr have been given. Mthr is called the
thread memory. We write size(Mthr) for card(Mthr). Let n, n′ ∈ [0, size(Mthr)−1]
be such that n ≤ n′. Then, we write Mthr[n] for mthr(n), and Mthr[n, n′] for
{mthr(k) | n ≤ k ≤ n′}.

The thread memory is a memory of which the elements can be addressed by
means of members of [0, size(Mthr)− 1]. We write MAthr for [0, size(Mthr)− 1].

The thread memory elements are meant for containing the representations of
nodes that form part of a simple graph representation of a thread. Here, the
representation of a node is either S, D or a triple consisting of a basic action
and two members of MAthr addressing thread memory elements containing
representations of other nodes.

Let n, n′ ∈ MAthr be such that n ≤ n′. Then, we write Bthr[n, n′] for {S, D} ∪
([n, n′]×A× [n, n′]). We write Bthr for Bthr[0, size(Mthr)− 1]. Bthr is called the
thread memory base set. We write Sthr for the set of all functions Sthr : Mthr →
Bthr.

Let p ∈ Tfinrec be a term not containing tau. Then the nodes of the graph
representation of p, written Nodes(p), is the smallest subset of Tfinrec such
that:

• p ∈ Nodes(p);
• if p′ £ a ¥ p′′ ∈ Nodes(p), then p′, p′′ ∈ Nodes(p);
• if 〈X0|{X0 = t0, . . . , Xn = tn}〉 ∈ Nodes(p), 〈t0|{X0 = t0, . . . , Xn = tn}〉 ≡

p′ £ a ¥ p′′, then p′, p′′ ∈ Nodes(p).

12

We write size(p) for card(Nodes(p)).

It is assumed that for all p ∈ Tfinrec, a fixed but arbitrary bijection nodep :
[0, size(p)− 1] → Nodes(p) with nodep(0) = p has been given.

Let p ∈ Tfinrec be a term not containing tau, with size(p) ≤ size(Mthr). Then
the stored graph representation of p, written sthr(p), is the unique function
sthr :Mthr[0, size(p)−1] → Bthr[0, size(p)−1] such that for all n ∈ [0, size(p)−1],
sthr(Mthr[n]) = nrepr p(nodep(n)), where nrepr p :Nodes(p) → Bthr[0, size(p)−1]
is defined as follows:

nrepr p(S) = S ,

nrepr p(D) = D ,

nrepr p(p
′ £ a ¥ p′′) = (nodep

−1(p′), a, nodep
−1(p′′)) ,

nrepr p(〈X0|{X0 = t0, . . . , Xn = tn}〉)
= nrepr p(〈t0|{X0 = t0, . . . , Xn = tn}〉) .

We call sthr(p) a stored thread.

Notice that sthr(p) is not defined for p with size(p) > size(Mthr). The size of
the thread memory restricts the threads that can be stored.

In [3], program algebra and a hierarchy of program notations for finite-state
threads rooted in program algebra are introduced. Those program notations
permit a more efficient stored representation of threads than the one obtained
by sthr (see also [10]). Moreover, the lower-level program notations, which are
close to existing assembly languages, bring with them test and jump instruc-
tions. That makes such a program notation useful when investigating issues
related to instruction processing, such as pipelining (see also [4]). However,
such a program notation would lead to needless complications when investi-
gating ways to simulate Turing machines on Maurer machines. Therefore, we
refrain from introducing such a program notation in this paper.

7 Turing Machines

In this section, we define a kind of Turing machines which is at least as pow-
erful as the kinds of Turing machines that are nowadays often considered as
standard (cf. [20,18]). That is, each Turing machine of those kinds can be
simulated by a Turing machine of the kind defined here. The Turing machines
of the kind defined here, called simple Turing machines, are closer to the ones
proposed by Turing in [24].

13

First we give an intuitive description of a simple Turing machine. A simple
Turing machine consists of a finite-state control, a one-way infinite tape and a
tape head. The control can be in any of a finite number of states. The tape is
divided into a countably infinite number of cells. Each cell can hold any one of
a finite number of tape symbols. One of the tape symbols is the blank symbol
2. The tape head is always positioned at one of the tape cells. A simple Turing
machine makes steps based on its current state and the tape symbol held in
the cell at which the tape head is positioned. In one step it changes state and
either overwrites the cell at which the tape head is positioned with some tape
symbol or moves the tape head left or right one cell (but not both).

We will fix on {0, 1,2} for the set of tape symbols. We write Btape for the set
{0, 1,2}. We use the direction symbols L and R, and the halt symbol H. The
symbols L, R and H are no tape symbols. We write Dhd for the set {L, R}.

A simple Turing machine T consists of the following components:

• a finite set Q;
• a function δ : Q× Btape → Q× (Btape ∪ Dhd ∪ {H});
• an element q0 ∈ Q.

The members of Q are called the states, δ is called the transition function,
and q0 is called the initial state.

A contents of the tape of a simple Turing machine is a function τ :N→ Btape for
which there exists an n ∈ N such that for all m ∈ N with m ≥ n, τ(m) = 2.
We write Ctape for the set of all such functions.

Let T = (Q, δ, q0) be a simple Turing machine. Then a configuration of T is a
triple (q, τ, i), where q ∈ Q, τ ∈ Ctape and i ∈ N. If q = q0, then (q, τ, i) is an
initial configuration of T . If δ(q, τ(i)) = (q′, H) for some q′ ∈ Q, then (q, τ, i)
is a terminal configuration of T . Let (q, τ, i) and (q′, τ ′, i′) be configurations
of T . Then (q′, τ ′, i′) is next to (q, τ, i) in T if for some s′ ∈ Btape ∪ Dhd such
that s′ 6= L if i = 0:

δ(q, τ(i)) = (q′, s′) ,

for all j ∈ N:

τ ′(j) = s′ if i = j ∧ s′ ∈ Btape ,

τ ′(j) = τ(j) if i = j ∧ s′ ∈ Dhd ,

τ ′(j) = τ(j) if i 6= j ,

14

and

i′ = i if s′ ∈ Btape ,

i′ = i− 1 if s′ = L ,

i′ = i + 1 if s′ = R .

Let T = (Q, δ, q0) be a simple Turing machine. Then the step relation `T ⊆
(Q×Ctape×N)× (Q×Ctape×N) is defined by (q, τ, i) `T (q′, τ ′, i′) iff (q′, τ ′, i′)
is next to (q, τ, i) in T . A computation of T is a finite path
〈(q0, τ0, i0), . . . , (qn, τn, in)〉 in `T such that (q0, τ0, i0) is an initial con-
figuration of T and (qn, τn, in) is a terminal configuration of T . 4

Example 1 Consider the simple Turing machine (Q, δ, q0), where:

Q = {q0, q1} ,

δ(q0, 0) = (q1, 1) ,

δ(q0, 1) = (q1, 0) ,

δ(q0,2) = (q0, H) ,

δ(q1, 0) = (q0, R) ,

δ(q1, 1) = (q0, R) ,

δ(q1,2) = (q0, R) ,

q0 = q0 .

This is a simple Turing machine that, starting from the initial head position,
overwrites cells that hold 0 with 1 and cells that hold 1 with 0 and halts when
the first cell holding 2 is reached.

In the case of a simple Turing machine, the set of tape symbols is invariably
Btape, the tape is a one-way infinite tape, in each step either a tape cell is
overwritten or the tape head is moved (but not both), input symbols are
not distinguished and accepting states are not distinguished (for the roles
of input symbols and accepting states, see e.g. [18]). The definitions given
above can easily be adapted to the cases where the set of tape symbols is
an arbitrary finite set, the tape is a two-way infinite tape, in each step made
both a cell is overwritten and the tape head is moved, input symbols are
distinguished and/or accepting states are distinguished. However, it happens
that each Turing machine of the kinds resulting from such adaptations can

4 We interpret the usual remark “no left move is permitted when the read-write
head is at the [left] boundary” (see e.g. [20]) as “when the read-write head is at the
left boundary, a left move impedes making a step but does not give rise to halting”.

15

be simulated by a simple Turing machine (for details, see e.g. [16,14,20,18]).
Hence, if each simple Turing machine can be simulated on a Maurer machine,
then each Turing machine of those other kinds can be simulated on a Maurer
machine as well.

We say that a simple Turing machine T can be simulated on a Maurer machine
H = (M,B,S,O, A, [[]]) if there exists a thread p ∈ Tfinrec(A) such that for all
computations c of T , there exists a state S ∈ S such that the computation of
(p, S) on H simulates the computation c. Here, simulation of computations is
meant in the sense of automata theory [20,18].

8 Simulation of Turing Machines

In this section, we show the most obvious way to simulate simple Turing ma-
chines on a Maurer machine. Henceforth, simple Turing machines will shortly
be called Turing machines.

Assume that a fixed but arbitrary countably infinite set Mtape and a fixed but
arbitrary bijection mtape : N → Mtape have been given. Mtape is called a tape
memory. Let n ∈ N. Then we write Mtape[n] for mtape(n).

The tape memory is an infinite memory of which the elements can be addressed
by means of members of N. The elements of the tape memory contain 0, 1 or
2. We write Stape for the set of all functions Stape :Mtape → Btape for which there
exists an n ∈ N such that for all m ∈ N with m ≥ n, Stape(Mtape[m]) = 2.

The Maurer machines MT , M ′
T and M ′′

T defined in this paper would not be
Maurer machines if Stape was simply the set of all functions Stape:Mtape → Btape,
for Maurer machines may not have states that differ in the contents of infinitely
many memory elements.

The memory of the Maurer machine MT used to simulate Turing machines
consists of a tape memory (Mtape), a head position register (head) and a reply
register (rr). Its operation set consists of two test operations (Otest:0, Otest:1),
two write operations (Owrite:0, Owrite:1) and two move head operations (Omovel,
Omover). The basic actions of MT are test:0, test:1, write:0, write:1, movel and
mover. They are associated with the operations Otest:0, Otest:1, Owrite:0, Owrite:1,
Omovel and Omover, respectively.

The tape memory Mtape corresponds to the tape of a Turing machine. The
head position register head is meant for containing the address of the tape
memory element that corresponds to the tape cell at which the tape head is
positioned. The reply register rr is the memory element in which the reply

16

produced by the operations of MT is stored. The test operations Otest:0 and
Otest:1 are meant for determining which tape symbol is held in the tape memory
element of which the address is contained in head, the write operations Owrite:0

and Owrite:1 are meant for overwriting the tape memory element of which the
address is contained in head with some tape symbol, and the move operations
Omovel and Omover are meant for decrementing and incrementing, respectively,
the address contained in head by one.

It is assumed that test:s, write:s ∈ A, for all s ∈ Btape, and mover, movel ∈ A.

MT is the Maurer machine (M,B,S,O, A, [[]]) such that

M = Mtape ∪ {head, rr} ,

B = Btape ∪ N ∪ B ,

S = {S : M → B | S ¹ Mtape ∈ Stape ∧ S(head) ∈ N ∧ S(rr) ∈ B} ,

O = {Otest:s, Owrite:s | s ∈ Btape} ∪ {Omover, Omovel} ,

A = {test:s, write:s | s ∈ Btape} ∪ {mover, movel} ,

[[a]] = (Oa, rr) for all a ∈ A .

For each s ∈ Btape, Otest:s is the unique function from S to S such that for all
S ∈ S:

Otest:s(S) ¹ Mtape = S ¹ Mtape ,

Otest:s(S)(head) = S(head) ,

Otest:s(S)(rr) = T if S(Mtape[S(head)]) = s ,

Otest:s(S)(rr) = F if S(Mtape[S(head)]) 6= s ;

for each s ∈ Btape, Owrite:s is the unique function from S to S such that for all
S ∈ S and n ∈ N:

Owrite:s(S)(Mtape[S(head)]) = s ,

Owrite:s(S)(Mtape[n]) = S(Mtape[n]) if S(head) 6= n ,

Owrite:s(S)(head) = S(head) ,

Owrite:s(S)(rr) = T ;

Omover is the unique function from S to S such that for all S ∈ S:

Omover(S) ¹ Mtape = S ¹ Mtape ,

Omover(S)(head) = S(head) + 1 ,

Omover(S)(rr) = T ;

17

Omovel is the unique function from S to S such that for all S ∈ S:

Omovel(S) ¹ Mtape = S ¹ Mtape ,

Omovel(S)(head) = S(head)− 1 if S(head) > 0 ,

Omovel(S)(head) = 0 if S(head) = 0 ,

Omovel(S)(rr) = T if S(head) > 0 ,

Omovel(S)(rr) = F if S(head) = 0 .

We write SMT
and AMT

for the set of states of MT and the set of basic actions
of MT , respectively.

A Turing thread is a constant 〈X0|{X0 = t0, . . . , Xn = tn}〉 ∈ Tfinrec, where
t0, . . . , tn are terms of the form t £ test:0 ¥ (t′ £ test:1 ¥ t′′) with t, t′ and
t′′ of the form write:s ◦ X or mover ◦ X or X £ movel ¥ D or S (s ∈ Btape,
X ∈ {X0, . . . , Xn}).

A Turing thread corresponds to the finite-state control of a Turing machine. It
can be obtained from the transition function of the Turing machine in question
in the simple way described at the beginning of the proof of Theorem 2 below.
We have X £ movel ¥D instead of movel ◦X to deal with the exceptional case
where head = 0: X £ movel ¥ D corresponds to “when the tape head is at the
left boundary, a left move impedes making a step but does not give rise to
halting”. Each Turing machine can be simulated on the Maurer machine MT

by means of a Turing thread p ∈ Tfinrec(AMT
). This is stated rigorously in the

following theorem.

Theorem 2 Let T = (Q, δ, q0) be a Turing machine. Then there exists a
Turing thread p ∈ Tfinrec(AMT

) such that for all computations c of T , there
exists an S ∈ SMT

such that the computation of (p, S) on MT simulates c.

PROOF. Suppose that Q = {q0, . . . , qn}. Let E be the guarded recursive
specification {Xi = ti0 £ test:0 ¥ (ti1 £ test:1 ¥ ti2) | 0 ≤ i ≤ n}, where

tis = write:s′ ◦Xj if δ(qi, s) = (qj, s
′) ∧ s′ ∈ Btape ,

tis = mover ◦Xj if δ(qi, s) = (qj, R) ,

tis = Xj £ movel ¥ D if δ(qi, s) = (qj, L) ,

tis = S if ∃q ∈ Q • δ(qi, s) = (q, H) .

Define φ : Q → Tfinrec(AMT
) by φ(qi) = 〈Xi|E〉 (0 ≤ i ≤ n). Clearly, φ(qi)

is a Turing thread. Define φ′ : Ctape × N → SMT
by φ′(τ, i) is the unique

state S ∈ SMT
such that S(Mtape[j]) = τ(j) for all j ∈ N, S(head) = i and

18

S(rr) = T. Combine φ and φ′ to φ∗ : Q × Ctape × N → Tfinrec(AMT
) × SMT

defined by φ∗(q, τ, i) = (φ(q), φ′(τ, i)). Then we have (q, τ, i) `T (q′, τ ′, i′)
iff φ∗(q, τ, i) `MT

φ∗(q′, τ ′, i′). This is easily proved by distinction be-
tween the following cases: δ(q, τ(i)) ∈ Q × Btape, δ(q, τ(i)) ∈ Q × {R},
δ(q, τ(i)) ∈ Q × {L}, δ(q, τ(i)) ∈ Q × {H}. It follows immediately that, if
c = 〈(q0, τ0, i0), . . . , (qn, τn, in)〉 is a computation of T , the computation of
(φ(q0), φ

′(τ0, i0)) on MT simulates c. 2

Example 3 Consider the Turing machine from Example 1. The Turing thread
that corresponds to the finite-state control of this Turing machine is the con-
stant 〈X0|E〉, where

E =

{X0 = (write:1 ◦X1) £ test:0 ¥ ((write:0 ◦X1) £ test:1 ¥ S),

X1 = (mover ◦X0) £ test:0 ¥ ((mover ◦X0) £ test:1 ¥ (mover ◦X0))} .

The guarded recursive specification E is obtained from the transition function
of the Turing machine from Example 1 in the way described at the beginning
of the proof of Theorem 2.

Looking at the operations used in the simulation of Turing machines on the
Maurer machine MT , we observe that the test operations Otest:s have an in-
finite input region and a finite output region and that the write operations
Owrite:s have a finite input region and an infinite output region. It is easy to
see that these infinite regions are essential for many Turing machines. For
example, consider the Turing machine from Example 1. This Turing machine
overwrites cells that hold 0 with 1 and cells that hold 1 with 0 and halts when
the first cell holding 2 is reached. Infinite input and output regions are es-
sential here because the first cell holding 2 may occur anywhere on the tape
and Turing machines have only a finite-state control. However, if we expand
Turing threads to threads definable by infinite recursive specifications, we can
simulate all Turing machines using test and write operations with a finite
input region and a finite output region.

9 Using Operations with Finite Input & Output Regions

In order to simulate Turing machines using test and write operations with a
finite input region and a finite output region, we have to adapt the Maurer
machine MT . Moreover, for each Turing machine, we have to adapt the corre-
sponding Turing thread. It happens that the Turing threads can be adapted
in a uniform way.

19

We adapt the Maurer machine MT by removing the head position register
head from the memory and the move head operations Omovel and Omover from
the operation set. In addition, we replace each test operation Otest:s by a test
operation Otest:s:n for each n ∈ N, and each write operation Owrite:s by a write
operation Owrite:s:n for each n ∈ N. We replace also the basic actions of MT

by basic actions test:s:n and write:s:n for each s ∈ Btape and n ∈ N. They are
associated with the operations Otest:s:n and Owrite:s:n, respectively.

The adapted test operations Otest:0:n and Otest:1:n are meant for determining
which tape symbol is held in the tape memory element of which the address
is n. The adapted write operations Owrite:0:n and Owrite:1:n are meant for over-
writing the tape memory element of which the address is n with some tape
symbol.

It is assumed that test:s:n, write:s:n ∈ A for all s ∈ Btape and n ∈ N.

M ′
T is the Maurer machine (M,B,S,O, A, [[]]) such that

M = Mtape ∪ {rr} ,

B = Btape ∪ B ,

S = {S : M → B | S ¹ Mtape ∈ Stape ∧ S(rr) ∈ B} ,

O = {Otest:s:n, Owrite:s:n | s ∈ Btape ∧ n ∈ N} ,

A = {test:s:n, write:s:n | s ∈ Btape ∧ n ∈ N} ,

[[a]] = (Oa, rr) for all a ∈ A .

For each s ∈ Btape and n ∈ N, Otest:s:n is the unique function from S to S such
that for all S ∈ S:

Otest:s:n(S) ¹ Mtape = S ¹ Mtape ,

Otest:s:n(S)(rr) = T if S(Mtape[n]) = s ,

Otest:s:n(S)(rr) = F if S(Mtape[n]) 6= s ;

for each s ∈ Btape and n ∈ N, Owrite:s:n is the unique function from S to S such
that for all S ∈ S and m ∈ N:

Owrite:s:n(S)(Mtape[n]) = s ,

Owrite:s:n(S)(Mtape[m]) = S(Mtape[m]) if n 6= m ,

Owrite:s:n(S)(rr) = T .

We write SM ′
T

and AM ′
T

for the set of states of M ′
T and the set of basic actions

of M ′
T , respectively.

20

For each Turing machine, we have to adapt the corresponding Turing thread
to the Maurer machine M ′

T . Below, we describe the adaptation concerned in
detail.

Let 〈X0|E〉, where E = {X0 = t0, . . . , Xn = tn}, be a Turing thread, let
i ∈ {0, . . . , n}, and let k ∈ N. Moreover, let T0 be the set of all terms t ∈ Tfinrec

for which t0 = t is derivable from E, and let T ′
0 be the set of all subterms of

some term in T0. Then the unary relation HPXi
⊆ N is defined by

HPXi
(k) ⇔ ∃t ∈ T0 •HP ′Xi

(t, k) ,

where the auxiliary binary relation HP ′Xi
⊆ T ′

0 × (N ∪ {−1}) is inductively
defined as follows:

• if Xi ∈ T ′
0, then HP ′Xi

(Xi, 0);
• if HP ′Xi

(t, l), t £ test:s¥ t′ ∈ T ′
0 and l ≥ 0, then HP ′Xi

(t £ test:s¥ t′, l);
• if HP ′Xi

(t, l), t′ £ test:s¥ t ∈ T ′
0 and l ≥ 0, then HP ′Xi

(t′ £ test:s ¥ t, l);
• if HP ′Xi

(t, l), write:s ◦ t ∈ T ′
0 and l ≥ 0, then HP ′Xi

(write:s ◦ t, l);
• if HP ′Xi

(t, l), mover ◦ t ∈ T ′
0 and l ≥ 0, then HP ′Xi

(mover ◦ t, l + 1);
• if HP ′Xi

(t, l), t£ movel ¥D ∈ T ′
0 and l ≥ 0, then HP ′Xi

(t£ movel ¥D, l−1).

HPXi
(k) indicates that, when 〈X0|E〉 at some stage proceeds as 〈Xi|E〉, k is

one of the possible head positions. The recursive specification ψ(E) is induc-
tively defined as follows:

• if HPXi
(k), then Xik = tik ∈ ψ(E),

where tik is obtained from ti by applying the following replacement rules:
· test:s is replaced by test:s:k;
· write:s ◦Xj is replaced by write:s:k ◦Xjk;
· mover ◦Xj is replaced by Xjl, where l = k + 1;
· if k 6= 0, then Xj £ movel ¥ D is replaced by Xjl, where l = k − 1;
· if k = 0, then Xj £ movel ¥ D is replaced by D.

We write ψ(〈X0|E〉) for 〈X00|ψ(E)〉.

The variables of a Turing thread p correspond to the states of a Turing ma-
chine. If the head position is made part of the operations, a different copy of a
state is needed for each different head position that may occur when the Tur-
ing machine enters that state. The variables of ψ(p) correspond to those new
states. Consequently, applying Turing thread p to Maurer machine MT from
some state of MT has the same effect as applying ψ(p) to Maurer machine M ′

T

from the corresponding state of M ′
T . This is stated rigorously in the following

theorem.

Theorem 4 Let p be a Turing thread, and let S0 ∈ SMT
and S ′0 ∈ SM ′

T
be such

21

that S0¹(Mtape∪{rr}) = S ′0 and S0(head) = 0. Then (p•MT
S0)¹(Mtape∪{rr}) =

ψ(p) •M ′
T

S ′0.

PROOF. It is easy to see that for all S ∈ SMT
:

Otest:s(S) ¹ (Mtape ∪ {rr}) = Otest:s:n(S ¹ (Mtape ∪ {rr})) ,

Owrite:s(S) ¹ (Mtape ∪ {rr}) = Owrite:s:n(S ¹ (Mtape ∪ {rr})) ,

Omover(S) ¹ Mtape = S ¹ Mtape ,

Omovel(S) ¹ Mtape = S ¹ Mtape ,

where n = S(head).

Let (pn, Sn) be the n+1-th element in the full path of (p, S0) on MT of which
the first component equals S, D or q £ test:0 ¥ r for some q, r ∈ Tfinrec, and let
(p′n, S ′n) be the n+1-th element in the full path of (ψ(p), (S0 ¹ (Mtape ∪ {rr})))
on M ′

T of which the first component equals S, D or q′ £ test:0:k ¥ r′ for some
k ∈ N and q′, r′ ∈ Tfinrec. Then, using the above equations, it is straightforward
to prove by induction on n that:

• pn = q £ test:0 ¥ r and Sn(head) = k iff p′n = q′ £ test:0:k ¥ r′ with q′ and
r′ obtained from q and r by applying the replacement rules given in the
definition of ψ above;

• Sn ¹ (Mtape ∪ {rr}) = S ′n.

(if n < ||(p, S0)||MT
in case p converges from S0 on MT). From this, the theorem

follows immediately. 2

Theorem 4 deals only with the case where the initial head position is 0. This
is sufficient to conclude that each Turing machine can be simulated on the
Maurer machine M ′

T by means of an adapted Turing thread, for each Turing
machine can be simulated by a (simple) Turing machine of which the initial
head position is restricted to 0.

Example 5 Consider again the Turing machine from Example 1. The Turing
thread that corresponds to the finite-state control of this Turing machine is
given in Example 3. Adaptation of this Turing thread to the case where the
head position is made part of the basic actions as described above yields the
constant 〈X00|E ′〉, where:

E′ = {X0k = (write:1:k ◦X1k) £ test:0:k ¥ ((write:0:k ◦X1k) £ test:1:k ¥ S)

| k ∈ N}
∪ {X1k = X0l £ test:0:k ¥ (X0l £ test:1:k ¥ X0l) | k, l ∈ N ∧ l = k + 1} .

22

Clearly, the adapted thread 〈X00|E ′〉 is an infinite-state thread.

We will show in Section 10 that, when simulating Turing machines on a Mau-
rer machine using test and write operations with a finite input region and
a finite output region, we can get round infinite-state threads in the case of
convergence.

Hitherto, the results concerning the simulation of Turing machines are closely
related to well-known facts about Turing machines. In Maurer’s terminology,
the facts concerned can be phrased as follows:

• the test operations implicitly performed on steps of a Turing machine have
an infinite input region and a finite output region;

• the write operations implicitly performed on steps of a Turing machine have
a finite input region and an infinite output region;

• these operations can be replaced by operations with a finite input region
and a finite output region if we allow Turing machines with an infinite set
of states.

10 Using a Multi-thread and Thread Forking

In this section, we show a way to simulate Turing machines on a Maurer
machine using test and write operations with a finite input region and a finite
output region that gets round infinite-state threads in the case of convergence.
The basic ideas behind it are as follows:

• the thread corresponding to the finite-state control of the Turing machine
in question is stored and then executed under control of a multi-thread that
makes the head position part of the operations;

• this multi-thread forks off for every head position a control thread of itself
on the head reaching the preceding position for the first time.

By using thread forking in this way, the execution remains controlled by a
finite thread in the case of convergence. Although it is not necessary to get
round infinite-state threads, the head position register head will be replaced
by a countably infinite memory.

It is assumed that a fixed but arbitrary countably infinite set Mhd and a
fixed but arbitrary bijection mhd : N → Mhd have been given. Mhd is called
a head position memory. Let n ∈ N. Then we write Mhd[n] for mhd(n). Mhd

is an infinite memory of which the elements can be addressed by means of
members of N. The elements of Mhd contain T or F. We write Shd for the set
of all functions Shd : Mhd → B for which there exists an n ∈ N such that

23

Shd(Mhd[n]) = T and for all m ∈ N with m 6= n, Shd(Mhd[m]) = F. Mhd will
be used in such a way that the head position is always the unique n for which
Mhd[n] contains T. The memory of the simulating Maurer machine remains
countably infinite if head is replaced by Mhd. The replacement achieves that,
for each memory element, all possible contents belong to a finite set.

The Maurer machine M ′′
T defined below would not be a Maurer machine if Shd

was simply the set of all functions Shd : Mhd → B, for Maurer machines may
not have states that differ in the contents of infinitely many memory elements.

We adapt the Maurer machine MT by extending the memory with a thread
memory (Mthr), a thread location register (tlr) and a basic action register (bar),
and the operation set with a halt operation (Ohalt), a fetch operation (Ofetch),
an execute stored basic action operation (Oexsba:n) for each n ∈ N, a test exe-
cution mode operation (Otestem), and a test head position operation (Otesthp:n)
for each n ∈ N. We replace the basic actions of MT by basic actions halt,
fetch, exsba:n for each n ∈ N, testem and testhp:n for each n ∈ N. They are
associated with the operations Ohalt, Ofetch, Oexsba:n, Otestem and Otesthp:n, re-
spectively. In addition, we replace the head position register head by a head
position memory Mhd, each test operation Otest:s by a test operation Otest:s:n

for each n ∈ N, and each write operation Owrite:s by a write operation Owrite:s:n

for each n ∈ N.

The thread memory Mthr is meant for storing a Turing thread p. Processing of
a basic action performed by p now amounts to first fetching the basic action
from Mthr in the basic action register bar and then executing the basic action
in bar. The thread location register tlr is meant for containing the address
of the thread memory element from which most recently a basic action has
been fetched. The contents of that thread memory element, together with the
reply produced at completion of the execution of the basic action concerned,
determines the thread memory element from which next time a basic action
must be fetched. To indicate that no basic action has been fetched yet, tlr must
initially contain −1. The thread memory element from which the first time a
basic action must be fetched is the one at address 0. The operation Oexsba:n

allows for making the head position part of the operation that corresponds to
the basic action in bar. The operation Otesthp:n is meant for testing whether
the head position is n. The operation Otestem allows for testing whether the
execution of the stored Turing thread has not yet come to an end.

Once again, it is assumed that test:s, write:s ∈ A, for all s ∈ Btape, and
mover, movel ∈ A. Moreover, it is assumed that testem, halt, fetch ∈ A and
testhp:n, exsba:n ∈ A for all n ∈ N.

24

M ′′
T is the Maurer machine (M,B,S,O, A, [[]]) such that

M = Mtape ∪Mhd ∪Mthr ∪ {tlr, bar, rr} ,

B = Btape ∪ B ∪ Bthr ∪MAthr ∪ {−1} ∪ AMT
,

S = {S : M → B |
S ¹ Mtape ∈ Stape ∧ S ¹ Mhd ∈ Shd ∧ S ¹ Mthr ∈ Sthr ∧
S(tlr) ∈ MAthr ∪ {−1} ∧ S(bar) ∈ AMT

∧ S(rr) ∈ B} ,

O = {Otestem, Ohalt, Ofetch} ∪ {Otesthp:n, Oexsba:n | n ∈ N}
∪ {Otest:s:n, Owrite:s:n | s ∈ Btape ∧ n ∈ N} ∪ {Omover, Omovel} ,

A = {testem, halt, fetch} ∪ {testhp:n, exsba:n | n ∈ N} ,

[[a]] = (Oa, rr) for all a ∈ A .

Otestem is the unique function from S to S such that for all S ∈ S:

Otestem(S) ¹ Mtape = S ¹ Mtape ,

Otestem(S) ¹ Mhd = S ¹ Mhd ,

Otestem(S) ¹ Mthr = S ¹ Mthr ,

Otestem(S)(tlr) = S(tlr) ,

Otestem(S)(bar) = S(bar) ,

Otestem(S)(rr) = T if S(Mthr[S(tlr)]) ∈ {S, D} ,

Otestem(S)(rr) = F if S(Mthr[S(tlr)]) 6∈ {S, D} ;

Ohalt is the unique function from S to S such that for all S ∈ S:

Ohalt(S) ¹ Mtape = S ¹ Mtape ,

Ohalt(S) ¹ Mhd = S ¹ Mhd ,

Ohalt(S) ¹ Mthr = S ¹ Mthr ,

Ohalt(S)(tlr) = S(tlr) ,

Ohalt(S)(bar) = S(bar) ,

Ohalt(S)(rr) = T if S(Mthr[S(tlr)]) = S ,

Ohalt(S)(rr) = F if S(Mthr[S(tlr)]) 6= S ;

25

Ofetch is the unique function from S to S such that for all S ∈ S:

Ofetch(S) ¹ Mtape = S ¹ Mtape ,

Ofetch(S) ¹ Mhd = S ¹ Mhd ,

Ofetch(S) ¹ Mthr = S ¹ Mthr ,

Ofetch(S)(tlr) = ntl(S, r) ,

Ofetch(S)(bar) = π2(S(Mthr[ntl(S, r)])) if S(Mthr[ntl(S, r)]) 6∈ {S, D} ,

Ofetch(S)(bar) = S(bar) if S(Mthr[ntl(S, r)]) ∈ {S, D} ,

Ofetch(S)(rr) = T if S(Mthr[ntl(S, r)]) 6∈ {S, D} ,

Ofetch(S)(rr) = F if S(Mthr[ntl(S, r)]) ∈ {S, D} ,

where r = S(rr) and ntl : S × B→ MAthr is defined as follows:

ntl(S, T) = π1(S(Mthr[S(tlr)])) if S(tlr) ∈ MAthr ∧ S(Mthr[S(tlr)]) 6∈ {S, D} ,

ntl(S, F) = π3(S(Mthr[S(tlr)])) if S(tlr) ∈ MAthr ∧ S(Mthr[S(tlr)]) 6∈ {S, D} ,

ntl(S, r′) = S(tlr) if S(tlr) ∈ MAthr ∧ S(Mthr[S(tlr)]) ∈ {S, D} ,

ntl(S, r′) = 0 if S(tlr) 6∈ MAthr ;

for each n ∈ N, Otesthp:n is the unique function from S to S such that for all
S ∈ S:

Otesthp:n(S) ¹ Mtape = S ¹ Mtape ,

Otesthp:n(S) ¹ Mhd = S ¹ Mhd ,

Otesthp:n(S) ¹ Mthr = S ¹ Mthr ,

Otesthp:n(S)(tlr) = S(tlr) ,

Otesthp:n(S)(bar) = S(bar) ,

Otesthp:n(S)(rr) = S(Mhd[n]) ;

for each n ∈ N, Oexsba:n is the unique function from S to S such that for all
S ∈ S:

Oexsba:n(S) = tmi(S(bar), n)(S) ,

where tmi : AMT
× N→ O is defined as follows:

tmi(test:s, n) = Otest:s:n ,

tmi(write:s, n) = Owrite:s:n ,

tmi(mover, n) = Omover ,

tmi(movel, n) = Omovel ;

26

for each s ∈ Btape and n ∈ N, Otest:s:n is the unique function from S to S such
that for all S ∈ S:

Otest:s:n(S) ¹ Mtape = S ¹ Mtape ,

Otest:s:n(S) ¹ Mhd = S ¹ Mhd ,

Otest:s:n(S) ¹ Mthr = S ¹ Mthr ,

Otest:s:n(S)(tlr) = S(tlr) ,

Otest:s:n(S)(bar) = S(bar) ,

Otest:s:n(S)(rr) = T if S(Mtape[n]) = s ,

Otest:s:n(S)(rr) = F if S(Mtape[n]) 6= s ;

for each s ∈ Btape and n ∈ N, Owrite:s:n is the unique function from S to S such
that for all S ∈ S and m ∈ N:

Owrite:s:n(S)(Mtape[n]) = s ,

Owrite:s:n(S)(Mtape[m]) = S(Mtape[m]) if n 6= m ,

Owrite:s:n(S) ¹ Mhd = S ¹ Mhd ,

Owrite:s:n(S) ¹ Mthr = S ¹ Mthr ,

Owrite:s:n(S)(tlr) = S(tlr) ,

Owrite:s:n(S)(bar) = S(bar) ,

Owrite:s:n(S)(rr) = T ;

Omover is the unique function from S to S such that for all S ∈ S:

Omover(S) ¹ Mtape = S ¹ Mtape ,

Omover(S) ¹ Mhd = shiftr(S ¹ Mhd) ,

Omover(S) ¹ Mthr = S ¹ Mthr ,

Omover(S)(tlr) = S(tlr) ,

Omover(S)(bar) = S(bar) ,

Omover(S)(rr) = T ,

where shiftr : Shd → Shd is defined as follows (n ∈ N):

shiftr(S)(Mhd[0]) = F ,

shiftr(S)(Mhd[n + 1]) = S(Mhd[n]) ;

27

Omovel is the unique function from S to S such that for all S ∈ S:

Omovel(S) ¹ Mtape = S ¹ Mtape ,

Omovel(S) ¹ Mhd = shiftl(S ¹ Mhd) ,

Omovel(S) ¹ Mthr = S ¹ Mthr ,

Omovel(S)(tlr) = S(tlr) ,

Omovel(S)(bar) = S(bar) ,

Omovel(S)(rr) = ¬ S(Mhd[0]) ,

where shiftl : Shd → Shd is defined as follows (n ∈ N):

shiftl(S)(Mhd[0]) = T if S(Mhd[0]) = T ,

shiftl(S)(Mhd[0]) = S(Mhd[1]) if S(Mhd[0]) = F ,

shiftl(S)(Mhd[n + 1]) = S(Mhd[n + 2]) .

To control the execution of a stored Turing thread, we introduce below a
control thread CT n for each head position n ∈ N. Preceding that, we sketch
the behaviour of CT n, considering that it is subject to cyclic interleaving with
other such control threads. Consider a turn of CT n on which it tests whether
the head position is n. If the test succeeds, then CT n fetches a basic action
from the stored Turing thread on its next turn, executes that basic action
on its second next turn and tests again whether the head position is n on
its third next turn. If the test fails, CT n tests whether the execution of the
stored Turing thread has not yet come to an end on its next turn. If the latter
test succeeds, CT n tests again whether the head position is n on its second
next turn. If the latter test fails, CT n terminates. Their are two exceptions
to the behaviour of CT n sketched above. Firstly, on the first time that the
test whether the head position is n succeeds, CT n forks off the control thread
CT n+1 between the first successful test and the first fetch. Secondly, in the
case where fetching of a basic action fails because there are no more actions
to be fetched, CT n determines on the following turn how the execution of the
stored Turing thread should come to an end and acts in accordance with the
outcome.

Let n ∈ N, and let CEn be the guarded recursive specification over BTA that
consists of the following equations:

CT n = (nt(n + 1) ◦ CT ′
n) £ testhp:n ¥ (CT n £ testem ¥ S) ,

CT ′
n = (exsba:n ◦ CT ′′

n) £ fetch ¥ (S £ halt ¥ D) ,

CT ′′
n = CT ′

n £ testhp:n ¥ (CT ′′
n £ testem ¥ S) .

28

Moreover, take the function φ from N to Tfinrec defined by φ(n) = 〈CT n|CEn〉
as the thread forking function. Then applying Turing thread p to the Maurer
machine MT from some state of MT in which the head position is 0 has
the same effect as applying ‖f(〈CT 0〉) to the Maurer machine M ′′

T from the
corresponding state of M ′′

T in which the thread memory contains the stored
graph representation of p. This is stated rigorously in the following theorem.

Theorem 6 Let p be a Turing thread such that size(p) ≤ size(Mthr), and let
S0 ∈ SMT

and S ′′0 ∈ SM ′′
T

be such that S0 ¹ (Mtape ∪ {rr}) = S ′′0 ¹ (Mtape ∪ {rr}),
S0(head) = 0, S ′′0 (Mhd[0]) = T, S0 ¹ Mthr[0, size(p)− 1] = sthr(p), S0(tlr) = −1.
Then (p •MT

S0) ¹ (Mtape ∪ {rr}) = (‖f(〈CT 0〉) •M ′′
T

S ′′0) ¹ (Mtape ∪ {rr}) and, for
all n ∈ N, (p •MT

S0)(head) = n iff (‖f(〈CT 0〉) •M ′′
T

S ′′0)(Mhd[n]) = T.

PROOF. It is easy to see that for all S ∈ SMT
, S ′′ ∈ SM ′′

T
and n, n′ ∈ N such

that S ¹ (Mtape ∪ {rr}) = S ′′ ¹ (Mtape ∪ {rr}), S(head) = n and S ′′(Mhd[n]) = T:

Otest:s(S) ¹ (Mtape ∪ {rr}) = Otest:s:n(S ′′) ¹ (Mtape ∪ {rr}) ,

Owrite:s(S) ¹ (Mtape ∪ {rr}) = Owrite:s:n(S ′′) ¹ (Mtape ∪ {rr}) ,

Omover(S) ¹ (Mtape ∪ {rr}) = Omover(S
′′) ¹ (Mtape ∪ {rr}) ,

Omovel(S) ¹ (Mtape ∪ {rr}) = Omovel(S
′′) ¹ (Mtape ∪ {rr}) ,

Otest:s(S)(head) = n′ iff Otest:s:n(S ′′)(Mhd[n
′]) = T ,

Owrite:s(S)(head) = n′ iff Owrite:s:n(S ′′)(Mhd[n
′]) = T ,

Omover(S)(head) = n′ iff Omover(S
′′)(Mhd[n

′]) = T ,

Omovel(S)(head) = n′ iff Omovel(S
′′)(Mhd[n

′]) = T .

Let (‖f(〈CT 0〉), S ′′0) `∗M ′′
T

(‖f(〈p1〉y . . .y 〈pl〉), S ′′). Then we have for all i, j ∈
[1, l], n ∈ N and s ∈ Btape:

(1) (a) if pi ∈ CT n and pj ∈ CT n, then i = j,
(b) nt(n + 1) ◦ CT ′

n ∈ pi iff n = max({m | ∃k ∈ [1, l] • pk ∈ CTm});
(2) if S ′′(Mhd[n]) = T, then:

(a) there exists a unique k ∈ [1, l] such that pk ∈ CT n,
(b) for all k′ ∈ [1, l] and n′ ∈ N, n′ 6= n implies pk′ 6∈ CT ′

n′ ;
(3) if S ′′(Mhd[n]) = T, pi ∈ CT n, pi 6≡ S and pi 6≡ D, then there exist a T ′′ ∈

SM ′′
T

and p′1 ∈ p1, . . . , p′i−1 ∈ pi−1 such that (‖f(〈p1〉y . . .y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈pi〉 y . . . y 〈pl〉 y 〈p′1〉 y . . . y 〈p′i−1〉), T ′′) and T ′′ ¹ Mtape = S ′′ ¹ Mtape

and T ′′(Mhd[n]) = T;
(4) if S ′′(Mhd[n]) = T and p1 ≡ CT n, then there exists a T ′′ ∈ SM ′′

T
such that

(‖f(〈p1〉y . . .y〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT n+1〉y〈CT ′
n〉y〈p2〉y . . .y〈pl〉), T ′′)

and T ′′ ¹ Mtape = S ′′ ¹ Mtape and T ′′(Mhd[n]) = T;

29

(5) if S ′′(Mhd[n]) = T, p1 ≡ CT ′
n and S ′′(Mthr[ntl(S ′′, S ′′(rr))]) 6∈ {S, D},

then:
(a) if π2(S

′′(Mthr[ntl(S ′′, S ′′(rr))])) = test:s, then there exists a T ′′ ∈ SM ′′
T

such that (‖f(〈p1〉 y . . . y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT ′′
n〉 y 〈p2〉 y . . . y

〈pl〉), T ′′) and T ′′ ¹ (Mtape ∪ {rr}) = Otest:s:n(S ′′) ¹ (Mtape ∪ {rr}) and
T ′′(Mhd[n]) = T;

(b) if π2(S
′′(Mthr[ntl(S ′′, S ′′(rr))])) = write:s, then there exists a T ′′ ∈

SM ′′
T

such that (‖f(〈p1〉y . . .y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT ′′
n〉y 〈p2〉y . . .y

〈pl〉), T ′′) and T ′′ ¹ (Mtape ∪ {rr}) = Owrite:s:n(S ′′) ¹ (Mtape ∪ {rr}) and
T ′′(Mhd[n]) = T;

(c) if π2(S
′′(Mthr[ntl(S ′′, S ′′(rr))])) = mover, then there exist a T ′′ ∈ SM ′′

T

and p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉 y . . . y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈p′2〉y. . .y〈p′l〉y〈CT ′′
n〉), T ′′) and T ′′¹(Mtape∪{rr}) = Omover(S

′′)¹
(Mtape ∪ {rr}) and T ′′(Mhd[n + 1]) = T;

(d) if π2(S
′′(Mthr[ntl(S ′′, S ′′(rr))])) = movel, then there exist a T ′′ ∈ SM ′′

T

and p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉 y . . . y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈p′2〉y . . .y〈p′l〉y〈CT ′′
n〉), T ′′) and T ′′ ¹(Mtape∪{rr}) = Omovel(S

′′)¹
(Mtape ∪{rr}) and either n > 0 and T ′′(Mhd[n− 1]) = T or n = 0 and
T ′′(Mhd[n]) = T;

(6) if S ′′(Mhd[n]) = T, p1 ≡ CT ′
n and S ′′(Mthr[ntl(S ′′, S ′′(rr))]) ∈ {S, D},

then:
(a) if S ′′(Mthr[ntl(S ′′, S ′′(rr))]) = S, then there exists a T ′′ ∈ SM ′′

T
such

that (‖f(〈p1〉y . . .y 〈pl〉), S ′′) `∗M ′′
T

(S, T ′′) and T ′′ ¹Mtape = S ′′ ¹Mtape

and T ′′(Mhd[n]) = T;
(b) if S ′′(Mthr[ntl(S ′′, S ′′(rr))]) = D, then there exists a T ′′ ∈ SM ′′

T
such

that (‖f(〈p1〉y . . .y 〈pl〉), S ′′) `∗M ′′
T

(D, T ′′) and T ′′ ¹Mtape = S ′′ ¹Mtape

and T ′′(Mhd[n]) = T;
(7) if S ′′(Mhd[n]) = T and p1 ≡ CT ′′

n, then there exist a T ′′ ∈ SM ′′
T

and
p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉y . . .y 〈pl〉), S ′′) `∗M ′′

T
(‖f(〈CT ′

n〉y
〈p′2〉 y . . . y 〈p′l〉), T ′′) and T ′′ ¹ Mtape = S ′′ ¹ Mtape and T ′′(Mhd[n]) = T.

Property 1 is easily proved by induction on m. Using property 1, property 2
is easily proved by induction on n. Using properties 1 and 2, property 3 is
easily proved by case distinction between the different forms p1, . . . , pl can
take. Using properties 1 and 2, the remaining properties are easily proved by
case distinction between the different forms p2, . . . , pl can take.

Let (pm, Sm) be the m+1-th element in the full path of (p, S0) on MT , let
(p′′0, S

′′
0) be the first element in the full path of (‖f(〈CT 0〉), S ′′0) on M ′′

T , and let
(p′′m+1, S

′′
m+1) be the element in the full path of (‖f(〈CT 0〉), S ′′0) on M ′′

T that
follows the m+1-th element of which the first component equals ‖f(〈exsba:n ◦
CT ′′

n〉 y α) for some n ∈ N and α ∈ Tfinrec
∗. Then, using the above equations

and other properties, it is straightforward to prove by induction on m that:

30

• pm is represented by the part of sthr(p) to which ntl(S ′′m, S ′′m(rr)) points;
• Sm ¹ (Mtape ∪ {rr}) = S ′′m ¹ (Mtape ∪ {rr}) and for all n ∈ N, Sm(head) = n iff

S ′′m(Mhd[n]) = T.

(if m < ||(p, S0)||MT
in case p converges from S0 on MT). From this, the theorem

follows immediately. 2

Example 7 Consider again the Turing machine from Example 1. The Turing
thread that corresponds to the finite-state control of this Turing machine is
given in Example 3. The stored graph representation sthr of this Turing thread
is as follows:

sthr(Mthr[0]) = (1, test:0, 2) ,

sthr(Mthr[1]) = (5, write:1, 5) ,

sthr(Mthr[2]) = (3, test:1, 4) ,

sthr(Mthr[3]) = (5, write:0, 5) ,

sthr(Mthr[4]) = S ,

sthr(Mthr[5]) = (6, test:0, 7) ,

sthr(Mthr[6]) = (0, mover, 0) ,

sthr(Mthr[7]) = (6, test:1, 6) .

Supposing that execution of this stored thread started off under control of the
multi-thread ‖f(〈CT 0〉) and n is the head position, execution of basic action
test:s amounts to performing operation Otest:s:n and execution of basic action
write:s amounts to performing operation Owrite:s:n. Thus, the adaptation of the
Turing thread as described in Section 9 is in fact carried out in a dynamic
manner.

The way to simulate Turing machines on a Maurer machine described in this
section involves interleaving of the threads in a thread vector. The thread vec-
tor concerned consists of finite-state threads only. Initially, the thread vector
consists of one thread. The length of the thread vector usually increases dur-
ing execution. However, we conclude from Theorem 6 and the definition of the
apply operator that it remains finite in the case of convergence.

In Section 8, the operations used to simulate Turing machines includes op-
erations with an infinite input region and operations with an infinite output
region. In Section 9, only operations with a finite input region and a finite
output region are used together with adapted Turing threads. However, an-
other kind of infinity arises: the adaptation turns many Turing threads, which
are finite-state threads, into infinite-state threads. In this section, the adap-
tation of Turing threads is circumvented by storing the Turing threads and
then executing the stored Turing threads under control of a multi-thread that

31

makes the head position part of the operations. By using thread forking in the
way described, the execution remains controlled by a finite-state thread in the
case of convergence. However, still another kind of infinity arises: the thread
forking function needed is an injective function with an infinite domain, viz.
N.

11 Fair Strategic Interleaving

Cyclic interleaving with perfect forking is a simple instance of a fair inter-
leaving strategy. In this section, we make precise what it means for basic
interleaving strategies with support of perfect forking to be fair. It happens
that the way to simulate Turing machines on a Maurer machine presented
in Section 10 works with any fair basic interleaving strategy with support of
perfect forking.

In [11], it is demonstrated that it is in essence open-ended what counts as an
interleaving strategy. However, here we have to make precise what we consider
to be an interleaving strategy. Our choice is conditioned by the simple fact
that strategies that are not relevant to the present purpose can be left out.
This means that we consider only basic interleaving strategies with support of
perfect forking, but without support of other special features. For instance, we
do not consider interleaving strategies that support the case where processing
of certain actions may be temporarily blocked and/or blocked forever. And we
do not consider any kind of non-perfect forking either.

A basic strategic interleaving operator ‖s() is an operator on a thread vector
such that for all α ∈ Tfinrec

∗, p′, p′′ ∈ Tfinrec, a ∈ Atau \ NT and n ∈ dom(φ):

‖s(〈 〉) = S ,

‖s(〈S〉 y α) = ‖s(α) ,

‖s(〈D〉 y α) = SD(‖s(α)) ,

∃!α′, α′′ ∈ Tfinrec
∗ •

(α′ ∈ perm(〈p′〉 y α) ∧ α′′ ∈ perm(〈p′′〉 y α) ∧
‖s(〈p′ £ a ¥ p′′〉 y α) = ‖s(α

′) £ a¥ ‖s(α
′′)) ,

∃!α′ ∈ Tfinrec
∗ •

(α′ ∈ perm(〈p′〉 y α y 〈φ(n)〉) ∧
‖s(〈p′ £ nt(n) ¥ p′′〉 y α) = tau ◦ ‖s(α

′)) . 5

5 We write D∗ for the set of all finite sequences with elements from set D, D+ for
the set of all non-empty finite sequences with elements from set D, and perm(α) for

32

The strategic interleaving operators characterized here basically operate as
follows: at each interleaving step, the first thread in the thread vector gets a
turn to perform an action and then the remaining thread vector is permuted in
a deterministic manner. Hence, for a given basic strategic interleaving operator
‖s(), the axioms can always be given in the following way:

‖s(〈 〉) = S ,

‖s(〈S〉 y α) = ‖s(α) ,

‖s(〈D〉 y α) = SD(‖s(α)) ,

‖s(〈x £ a¥ y〉 y α) = ‖s(pv
+a
s (〈x〉 y α)) £ a¥ ‖s(pv

−a
s (〈y〉 y α)) ,

‖s(〈x £ nt(n) ¥ y〉 y α) = tau ◦ ‖s(pv
+nt(n)
s (〈x〉 y α y 〈φ(n)〉)) ,

where a stands for an arbitrary member of Atau\NT , for unary functions pv+a
s ,

pv−a
s and pv+nt(n)

s on Tfinrec
+ such that, for all α ∈ Tfinrec

+, pv+a
s (α) ∈ perm(α),

pv−a
s (α) ∈ perm(α) and pv+nt(n)

s (α) ∈ perm(α).

In order to determine whether a basic interleaving strategy is fair, we need
to know how thread vectors are permuted. If α is a thread vector in which a
thread occurs more than once, we cannot infer from α and the thread vector
resulting from a permutation of α how α is permuted. Hence, the functions
pv+a

s and pv−a
s are not sufficient to determine whether a basic interleaving

strategy is fair.

Therefore, we assume that, for all a ∈ Atau, b ∈ A \ NT and α ∈ Tfinrec
+,

functions pp+a
s (α), pp−b

s (α) : [1, |α|] → [1, |α|] are given such that:

pv+a
s (〈p1〉 y . . . y 〈pn〉) = 〈p′1〉 y . . . y 〈p′n〉 ⇒
∀i ∈ [1, n] • pi ≡ p′

pp+a
s (〈p1〉y...y〈pn〉)(i) ,

pv−b
s (〈p1〉 y . . . y 〈pn〉) = 〈p′1〉 y . . . y 〈p′n〉 ⇒
∀i ∈ [1, n] • pi ≡ p′

pp−b
s (〈p1〉y...y〈pn〉)(i) .

Auxiliary relations
+a
; ⊆ Tfinrec

+ × Tfinrec
+, for a ∈ Atau, and

−b
; ⊆

Tfinrec
+ × Tfinrec

+, for b ∈ A \ NT , are used below to define fairness of basic

the set of all permutations of sequence α.

33

interleaving strategies. They are defined as follows:

α
+a
; α′ ⇔
∃p, p′ ∈ Tfinrec, α

′′ ∈ Tfinrec
∗ •

(α = 〈p £ a¥ p′〉 y α′′ ∧ α′ = pv+a
s (〈p〉 y α′′)) if a 6∈ NT ,

α
+nt(n)
; α′ ⇔
∃p, p′ ∈ Tfinrec, α

′′ ∈ Tfinrec
∗ •

(α = 〈p £ nt(n) ¥ p′〉 y α′′ ∧ α′ = pv+nt(n)
s (〈p〉 y α′′ y 〈φ(n)〉)) ,

α
−b
; α′ ⇔
∃p, p′ ∈ Tfinrec, α

′′ ∈ Tfinrec
∗ •

(α = 〈p £ b ¥ p′〉 y α′′ ∧ α′ = pv−b
s (〈p′〉 y α′′)) .

In other words, α
+a
; α′ iff ‖s(α) is capable of performing basic action a and

then proceeding as ‖s(α
′) if a positive reply is produced, and similarly for

α
−b
; α′.

Let ‖s() be a basic strategic interleaving operator. Then ‖s() is fair if for
all α0, α1, . . . ∈ Tfinrec

+ and j0 ∈ [1, |α0|], j1 ∈ [1, |α1|], . . . :

∧

i∈N
(∃a ∈ Atau • (αi

+a
; αi+1 ∧ pp+a

s (αi)(ji) = ji+1) ∨
∃a ∈ A \ NT • (αi

−a
; αi+1 ∧ pp−a

s (αi)(ji) = ji+1)) ⇒
∨

i∈N
ji+1 = 1 .

In words, ‖s() is fair if, for each thread vector that leads to infinitely many
interleaving steps, there will eventually come a next turn for each thread in
that thread vector.

According to the above definitions, cyclic interleaving with perfect forking is
a fair basic interleaving strategy. The way to simulate Turing machines on a
Maurer machine shown in Section 10 works not only with cyclic interleaving,
but also with any other fair basic interleaving strategy.

Theorem 8 Theorem 6 goes through if we replace the strategic interleaving
operator for cyclic interleaving by any other fair basic interleaving strategy.

PROOF. The proof follows the same line as the proof of Theorem 6. Proper-
ties 4, 5a and 5b from that proof are too strong in the case of an arbitrary fair
basic interleaving strategy. We have the following weaker properties instead:

4′. if S ′′(Mhd[n]) = T and p1 ≡ CT n, then there exist a T ′′ ∈ SM ′′
T

and

34

p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉y . . .y〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT n+1〉y
〈CT ′

n〉y〈p′2〉y. . .y〈p′l〉), T ′′) and T ′′¹Mtape = S ′′¹Mtape and T ′′(Mhd[n]) =
T;

5′. if S ′′(Mhd[n]) = T, p1 ≡ CT ′
n and S ′′(Mthr[ntl(S ′′, S ′′(rr))]) 6∈ {S, D},

then:
(a) if π2(S

′′(Mthr[ntl(S ′′, S ′′(rr))])) = test:s, then there exist a T ′′ ∈ SM ′′
T

and p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉 y . . . y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT ′′
n〉y〈p′2〉y. . .y〈p′l〉), T ′′) and T ′′¹(Mtape∪{rr}) = Otest:s:n(S ′′)¹

(Mtape ∪ {rr}) and T ′′(Mhd[n]) = T;
(b) if π2(S

′′(Mthr[ntl(S ′′, S ′′(rr))])) = write:s, then there exist a T ′′ ∈ SM ′′
T

and p′2 ∈ p2, . . . , p′l ∈ pl such that (‖f(〈p1〉 y . . . y 〈pl〉), S ′′) `∗M ′′
T

(‖f(〈CT ′′
n〉y〈p′2〉y. . .y〈p′l〉), T ′′) and T ′′¹(Mtape∪{rr}) = Owrite:s:n(S ′′)¹

(Mtape ∪ {rr}) and T ′′(Mhd[n]) = T.

These weaker properties are sufficient to complete the proof. 2

12 Concluding Remarks

There are many ways to simulate Turing machines on Maurer machines. In this
paper, we have presented three ways which give insight into the connections
between Turing machines, Maurer machines and real computers:

• In the first way, the Maurer machine on which Turing machines are simu-
lated has the most obvious operations for the simulation of Turing machines.
Moreover, the transition function of the Turing machine in question is ren-
dered in an obvious way into a finite-state thread which is applied to that
Maurer machine. Unlike real computers, the Maurer machine used for the
simulation has operations with an infinite input region or an infinite output
region.

• In the second way, the Maurer machine on which Turing machines are sim-
ulated has only operations with a finite input region and a finite output
region. This is attained by replacing each operation with an infinite input
region or an infinite output region by a countably infinite number of opera-
tions, namely one for each different head position. The necessary adaptation
of the thread into which the transition function of a Turing machine is ren-
dered, usually results in an infinite-state thread. Unlike finite-state threads,
infinite-state threads cannot be regarded as behaviours of programs under
execution on a real computer.

• In the third way, the Maurer machine on which Turing machines are simu-
lated has again only operations with a finite input region and a finite output
region. However, the thread into which the transition function of a Turing
machine is rendered is not adapted, but first stored in the memory of the

35

Maurer machine and then executed under control of a multi-thread that
makes the head position part of the operations. The multi-thread forks off
for every head position a control thread of itself on the head reaching the
preceding position for the first time. Thus, the multi-thread remains finite
in the case of convergence.

The third way also illustrates that some main concepts of contemporary pro-
gramming, namely multi-threads and thread forking, have an interesting the-
oretical application.

In [10], we have demonstrated the feasibility of an approach based on Maurer
machines and basic thread algebra to model micro-architectures and to verify
their correctness and anticipated speed-up results. In [4], we have made use
of the experience gained in that feasibility study to model micro-architectures
with pipelined instruction processing. Maurer’s model for computers is rela-
tively unknown, whereas Turing’s model, which is quite different, belongs to
the foundations of theoretical computer science. To relate our approach to
model and analyse micro-architectures to these foundations, we have investi-
gated the connections between the two models in this paper.

The work presented in this paper, as well as the work presented in [10,4],
was in part carried out in the framework of a project investigating micro-
threading [13,19], a technique for speeding up instruction processing on a
computer that makes use of the abilities of the computer to process instruc-
tions simultaneously in cases where the state changes involved do not influence
each other. This technique requires that programs are parallelized by judicious
use of forking. In [6], we have investigated parallelization for simple programs,
called straight-line programs, using Maurer machines and basic thread algebra
as well.

In [4,6], program algebra [3] is used, in addition to Maurer machines and
basic thread algebra, to investigate issues related to instruction processing.
This is convenient because programs are viewed as instruction sequences in
program algebra. In this paper, program algebra is not used. Only threads
matter to the simulation of Turing machines on Maurer machines, in the sense
that only the threads represented by the programs that could replace them
would be relevant. The replacement would lead to needless complications when
investigating the simulation of Turing machines on Maurer machines.

The work presented in this paper, as well as the work presented in [10,4,6], is
an application of thread algebra. Thread algebra is the theory about threads
and multi-threads, introduced in [11], which originates in basic thread algebra.
Extensions of the theory introduced in [11] are presented in [7–9].

The work presented in this paper, as well as the work presented in [10,4], has
convinced us that a special notation for the description of Maurer machines

36

is desirable. For example, it is annoying that, for each memory element that
is not affected by an operation, this must be described explicitly. However,
we found that fixing an appropriate notation still requires some significant
design decisions. We aim at a notation of which the semantics can simply be
given by a translation to logical formulas, much in the spirit of predicative
methodology [15].

Acknowledgements

The work presented in this paper has been partly carried out in the framework
of the GLANCE-project MICROGRIDS, which is funded by the Netherlands
Organisation for Scientific Research (NWO).

The work presented in this paper has been partly carried out while the second
author was at Eindhoven University of Technology, Department of Mathemat-
ics and Computer Science.

We thank two anonymous referees for suggesting improvements of the presen-
tation of the paper.

References

[1] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 1990.

[2] J. A. Bergstra and I. Bethke. Polarized process algebra and program
equivalence. In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger,
editors, Proceedings 30th ICALP, volume 2719 of Lecture Notes in Computer
Science, pages 1–21. Springer-Verlag, 2003.

[3] J. A. Bergstra and M. E. Loots. Program algebra for sequential code. Journal
of Logic and Algebraic Programming, 51(2):125–156, 2002.

[4] J. A. Bergstra and C. A. Middelburg. Maurer computers for pipelined
instruction processing. Computer Science Report 06-12, Department of
Mathematics and Computer Science, Eindhoven University of Technology,
March 2006.

[5] J. A. Bergstra and C. A. Middelburg. Splitting bisimulations and retrospective
conditions. Information and Computation, 204(7):1083–1138, 2006.

[6] J. A. Bergstra and C. A. Middelburg. Synchronous cooperation for explicit
multi-threading. Computer Science Report 06-29, Department of Mathematics
and Computer Science, Eindhoven University of Technology, September 2006.

37

[7] J. A. Bergstra and C. A. Middelburg. Thread algebra with multi-level strategies.
Fundamenta Informaticae, 71(2/3):153–182, 2006.

[8] J. A. Bergstra and C. A. Middelburg. A thread calculus with molecular
dynamics. Computer Science Report 06-24, Department of Mathematics and
Computer Science, Eindhoven University of Technology, August 2006.

[9] J. A. Bergstra and C. A. Middelburg. Distributed strategic interleaving with
load balancing. Computer Science Report 07-03, Department of Mathematics
and Computer Science, Eindhoven University of Technology, January 2007.

[10] J. A. Bergstra and C. A. Middelburg. Maurer computers with single-thread
control. To appear in Fundamenta Informaticae, 2007. Preliminary version:
Computer Science Report 05-17, Department of Mathematics and Computer
Science, Eindhoven University of Technology.

[11] J. A. Bergstra and C. A. Middelburg. Thread algebra for strategic interleaving.
To appear in Formal Aspects of Computing, 2007. Preliminary version:
Computer Science Report 04-35, Department of Mathematics and Computer
Science, Eindhoven University of Technology.

[12] J. A. Bergstra and A. Ponse. Combining programs and state machines. Journal
of Logic and Algebraic Programming, 51(2):175–192, 2002.

[13] A. Bolychevsky, C. R. Jesshope, and V. Muchnick. Dynamic scheduling in RISC
architectures. IEE Proceedings Computers and Digital Techniques, 143(5):309–
317, 1996.

[14] M. D. Davis and E. J. Weyuker. Computability, Complexity, and Languages.
Academic Press, New York, 1983.

[15] E. C. R. Hehner, L. E. Gupta, and A. J. Malton. Predicative methodology.
Acta Informatica, 23:487–505, 1986.

[16] H. Hermes. Enumerability, Decidability, Computability. Springer-Verlag, Berlin,
1965.

[17] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, 1985.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, Reading, MA, second
edition, 2001.

[19] C. R. Jesshope and B. Luo. Micro-threading: A new approach to future
RISC. In Australian Computer Architecture Conference 2000, pages 34–41.
IEEE Computer Society Press, 2000.

[20] P. Linz. An Introduction to Formal Languages and Automata. Jones and
Bartlett Publishers, Sudbury, MA, 1997.

[21] W. D. Maurer. A theory of computer instructions. Journal of the ACM,
13(2):226–235, 1966.

38

[22] W. D. Maurer. A theory of computer instructions. Science of Computer
Programming, 60:244–273, 2006.

[23] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs,
1989.

[24] A. M. Turing. On computable numbers, with an application to the
Entscheidungs problem. Proceedings of the London Mathematical Society, Series
2, 42:230–265, 1937. Correction: ibid, 43:544–546, 1937.

39

