
Variable Binding Operators

in Transition System Specifications

C.A. Middelburg

Computing Science Department, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Department of Philosophy, Utrecht University

P.O. Box 80126, 3508 TC Utrecht, the Netherlands

mailto:keesm@win.tue.nl, http://www.win.tue.nl/~keesm

Abstract

In this paper the approach to structural operational semantics (SOS) using tran-
sition system specifications (TSSs) is extended to deal with variable binding op-
erators and many-sortedness. Bisimulation and Verhoef’s transition rule format,
known as the panth format, generalize naturally to the new TSSs. It is shown
that in this setting bisimulation is still a congruence for meaningful TSSs in
panth format. Formats guaranteeing that bisimulation is a congruence are im-
portant for the application of TSSs to provide process calculi, and programming
and specification languages, with an operational semantics. The new congruence
result is relevant because in many of these applications, variable binding oper-
ators and many-sortedness are involved. It is also sketched how the presented
approach can be further extended to deal with given sorts and parametrized
transition relations. Given sorts are useful if the semantics of the terms of cer-
tain sorts has been given beforehand. This happens frequently in practice, as
does the often related need of parametrized transition relations.

Keywords & Phrases: structural operational semantics (SOS), transition system
specifications (TSSs), panth format, bisimulation, congruence, variable binding
operators, many-sortedness, binding terms, binding algebras, partial stable mod-
els.

1994 CR Categories: D.3.1, F.1.1, F.3.2, F.4.1, I.2.3.

1 Introduction

In [24], an approach to structural operational semantics using transition system
specifications (TSSs) was introduced. The approach considers transition sys-
tems where the states are the closed terms over a given signature. The original
TSSs define binary transition relations by means of transition rules with pos-
itive premises. The approach has first been extended in [22, 10] to transition
rules with positive and negative premises and next in [38] to the specification of

unary and binary relations. In all these cases, variable binding operators and
many-sortedness are not supported. In many applications of TSSs, it is conve-
nient to use negative premises or to define unary relations (see e.g. [22] and [38]).
Negative premises can often be avoided, but at the expense of simplicity. Rep-
resention of unary relations by binary relations is possible, but this trick does
not contribute to comprehensibility.

In many applications of TSSs, it is in addition necessary to have support for
many-sortedness or variable binding operators. Many-sortedness is found, for
example, in process algebras with timing (see e.g. [4], [11] and [30]). Examples
of variable binding operators are the integration operator

∫
of real time ACP [4]

and the recursion operator µ of CSP [25] and CCS [28]. Using transition rules
to cope with many-sortedness is unpractical and obscures the fact that it is a
static matter. Variable binding operators can not be coped with at all without
further extension. In [17], an extension to deal with variable binding operators
and many-sortedness is proposed. Another one is proposed in this paper. An
important difference between the extension presented in [17] and the one pre-
sented in this paper is that in the latter distinction between formal and actual
variables, formal and actual terms, formal and actual substitutions, etc. is not
made. This leads to TSSs that are more closely related to the original ones than
the TSSs of [17]. As a consequence, the transition rule format introduced in [38],
known as the panth format, generalizes naturally to the new TSSs.

The main difference with the original TSSs is that terms are used in which
operators may bind variables in their arguments and variables may have ar-
guments. The terms concerned are essentially the binding terms investigated
in [36]. Similar expressions were also part of the meta-language used in [2] to
introduce Frege structures. Variables that may have arguments are also known
from combinatory reduction systems [27], where they occur as meta-variables in
schematic rewrite rules for term rewriting with bound variables. Having vari-
ables that may have arguments obviates the need to distinguish two kinds of
variables, terms, substitutions, etc. in TSSs. Such a distinction, which is made
in [17], hinders generalization of definitions and results concerning TSSs without
support for variable binding operators. Besides, it is doubtful that the complex-
ity introduced by the distinction pays off in terms of the extent of applicability.

The meaning of TSSs proposed in [10], and reformulated in [21], also gener-
alizes naturally to the TSSs presented in this paper. In [10], the meaning of a
TSS is defined in a way that facilitates proving certain theorems related to the
use of stratification (see e.g. [22]) as a technique to check if a TSS is meaningful.
In [21], it is defined in a way that makes comparison with potential alterna-
tives easier. In this paper, the meaning of TSSs is defined in still another way
aimed at clarity in this intricate issue. It goes without saying that the different
definitions agree with each other.

Support for many-sortedness has some interesting consequences. It happens
frequently in practice that the semantics of the terms of certain sorts, called
given sorts, has been given beforehand. The sort that represents the time do-
main in process algebras with timing is a typical example. It is impractical and

2

unnecessary to redefine the semantics of the terms of given sorts. Furthermore,
distinguishing given sorts makes it possible to relax the panth format and to
deal with transition relations parametrized by terms of given sorts. This is also
discussed in this paper.

The structure of this paper is as follows. First of all, in Section 2, we present
binding terms and TSSs that define transition relations on binding terms. Bind-
ing algebras, the structures in which binding terms are interpreted, are presented
in Section 2 as well. In Section 3, we discuss the meaning of TSSs. Then, in
Section 4, we first define the bisimulation equivalence induced by TSSs and the
panth format for TSSs, and then show that for meaningful TSSs in panth format
bisimulation equivalence is a congruence. After that, in Section 5, we explain
how to deal with given sorts and parametrized transition relations using the
TSSs introduced in Section 2. Finally, in Section 6, we make some concluding
remarks.

2 Binding terms and TSSs

In this section, we first introduce the notions of binding term and binding alge-
bra. The latter are the structures in which binding terms are interpreted. Next,
we generalize the notion of TSS from conventional terms to binding terms. The
meaning of TSSs is discussed in Section 3.

Abstract notions of binding term and binding algebra were introduced in [14].
The kind of binding terms and binding algebras introduced in this section are
essentially many-sorted versions of the ones that were first introduced in [36].

2.1 Binding terms

We define terms over a many-sorted signature, roughly speaking a collection of
sorts and operators, and a variable domain. Therefore, we first define the notions
of binding sort, many-sorted binding signature and variable domain.

We assume a set S of base sorts. A base sort stands for a set of which the
elements are called ordinary objects. A binding sort is either a base sort or a sort
that stands for a set of functions from certain sets of ordinary objects to a certain
set of ordinary objects – all determined by given base sorts. As explained below,
sorts of the latter kind are used for variable binding in arguments of operators.

Definition 2.1 Let S ⊆ S. Then the set B(S) of binding sorts over S is induc-
tively defined by the following formation rules (n > 0):

1. S ⊆ B(S);

2. s1, . . . , sn, s ∈ S ⇒ s1, . . . , sn . s ∈ B(S).

We assume a B(S)
∗ × S-indexed family of mutually disjoint sets of binding op-

erators O = 〈Oτ 〉τ∈B(S)∗×S . We also assume a B(S)-indexed family of mutually

disjoint, countably infinite sets of variables V = 〈Vs〉s∈B(S). It is assumed that

the sets
⋃
τ∈B(S)∗×S Oτ and

⋃
s∈B(S) Vs are disjoint. We write o:s1×. . .×sn → s

3

to indicate that o ∈ O(〈s1,...,sn〉,s) and we write x : s to indicate that x ∈ Vs. A
variable x is called ordinary if x : s for some s ∈ S.

An operator o : s1 × . . . × sn → s has n arguments. If si = si1, . . . , sini . si
(1 ≤ i ≤ n), then it binds ni variables, of base sorts si1, . . . , sini , in the i-th
argument. Otherwise, i.e. if si ∈ S, it does not bind any variable in the i-th
argument.

Definition 2.2 A (many-sorted) binding signature is a pair Σ = (S,O), with
S ⊆ S and O ⊆ O, such that for all o ∈ O, if o : s1 × . . . × sn → s, then
s1, . . . , sn, s ∈ B(S).

Definition 2.3 Let Σ = (S,O) be a binding signature. Then a variable domain
for signature Σ is a setX ⊆

⋃
s∈B(S) Vs such that for all s ∈ S, Vs ⊆ X. For every

s ∈ B(S), we write Xs for the set {x ∈ X | x : s}. We write OV(X) and PV(X)
for the sets {x ∈ X | x is ordinary} and {x ∈ X | x is not ordinary}, respec-
tively. We write XΣ and VΣ for the variable domains

⋃
s∈S Vs and

⋃
s∈B(S) Vs,

respectively.

Next, in Definition 2.4, we define the notion of binding term. Formation rule 2
shows that variables, with the exception of ordinary variables, have arguments.
Variables are bound in terms formed by formation rule 3. Notice that the terms
formed by application of this rule serve only as arguments of operators.

Definition 2.4 Let Σ = (S,O) be a binding signature and X be a variable
domain for Σ . Then TΣ (X) = 〈TΣ (X)s〉s∈B(S), the family of sets of binding
terms over signature Σ and variables X, is inductively defined by the following
formation rules:

1. x ∈ OV(X), x : s⇒ x ∈ TΣ (X)s;

2. x ∈ PV(X), x : s1, . . . , sn . s, t1 ∈ TΣ (X)s1 , . . . , tn ∈ TΣ (X)sn ⇒
x(t1, . . . , tn) ∈ TΣ (X)s;

3. x1, . . . , xn ∈ OV(X) and mutually distinct, x1 : s1, . . . , xn : sn, t ∈ TΣ (X)s ⇒
x1, . . . , xn . t ∈ TΣ (X)s1,...,sn.s;

4. o ∈ O, o : s1 × . . .× sn → s, t1 ∈ TΣ (X)s1 , . . . , tn ∈ TΣ (X)sn ⇒
o(t1, . . . , tn) ∈ TΣ (X)s.

In o(t1, . . . , tn), we usually omit the parentheses whenever n = 0. We write TΣ
for TΣ (VΣ). For t ∈

⋃
s∈B(S) TΣ (X)s, we write s(t) for the s ∈ B(S) such that

t ∈ TΣ (X)s.

Example 2.5 In CCS [28], the operator µ is used to define processes recursively.
For example, the expression µx . ax denotes the solution of the equation x = ax,
i.e. the process that will keep on performing action a forever. The recursion
operator µ is actually a unary variable binding operator that binds one variable
in its argument. The expression µx . ax abbreviates the binding term µ(x . ax).

The following definition makes the notion of closed binding term precise. It also
introduces the notions of free and bound occurrence of a variable.

4

Definition 2.6 An occurrence of a variable x in a term t is bound if the oc-
currence is in the term t′ of a subterm of the form x1, . . . , xn . t

′ where x ∈
{x1, . . . , xn}; otherwise it is free. If x has at least one free occurrence in t,
it is called a free variable of t. A term t is closed if it is a term without
free variables. We write CTΣ (X) for the family of sets of closed binding terms
〈{t ∈ TΣ (X)s | t is closed}〉s∈B(S). We write CTΣ for CTΣ (VΣ).

Substitution of binding terms for variables is needed in many occasions. We
first define a notion of substitution restricted to ordinary variables. It allows
us to define the notion of term algebra in the setting of binding algebras (see
Section 2.2). Using the notion of term algebra, we will define a notion of substi-
tution that is not restricted to ordinary variables. Notice that free and bound
occurrences of variables are treated differently in substitution.

Definition 2.7 Let Σ = (S,O) be a binding signature and X be a vari-
able domain for Σ . Then an ordinary substitution σ : X → TΣ (X) of terms
in TΣ (X) for ordinary variables in X is an S-indexed family of functions
〈σs :Xs → TΣ (X)s〉s∈S . An ordinary substitution σ extends from ordinary vari-
ables to terms in the usual way: σs(t)(t) is the term obtained by simultaneously
replacing in t all free occurrences of ordinary variables x by σs(x)(x), renaming
bound occurrences of ordinary variables in t if needed to avoid free occurrences
of variables in the replacing terms becoming bound. For every ordinary substi-
tution σ :X → TΣ (X) and t ∈ TΣ (X)s, we write σ(t) or tσ for σs(t). We write
[t1, . . . , tn/x1, . . . , xn] for the ordinary substitution σ such that σ(x1) = t1, . . . ,
σ(xn) = tn and σ(x) = x if x 6∈ {x1, . . . , xn}.

Notice that ordinary substitution is defined up to change of bound variables.
This does not pose any problem, because binding terms that can be obtained
from each other by change of bound variables are semantically equivalent (see
Definition 2.9). Indeed, we will introduce an equivalence relation formalizing
this identification (see Definition 2.11).

2.2 Binding algebras

Binding terms are interpreted in binding algebras. Binding algebras constitute
a restricted kind of second-order algebras, suitable to deal with variable binding
operators, which can be regarded as an algebraic generalization of the Frege
structures introduced in [2].

We define binding algebras with respect to a binding signature. An important
condition to be satisfied by a binding algebra is that each term can be given an
interpretation in it for any object or function its free variables may stand for.
Obviously, the interpretation of a term depends on the objects and functions that
are associated with its free variables. Assignments, which are defined first, model
such associations. They can be viewed as semantic counterparts of substitutions
that are not restricted to ordinary variables (see Definition 2.16).

Definition 2.8 Let Σ = (S,O) be a binding signature and X be a variable
domain for Σ . Furthermore, let D be a B(S)-indexed family of sets 〈Ds〉s∈B(S).

5

Then an assignment α:X → D of values in D to variables in X is a B(S)-indexed
family of functions 〈αs :Xs → Ds〉s∈B(S). We write [X → D] for the set of all

assignments α :X → D. For every assignment α :X → D and x :s, we write α(x)
for αs(x). For every assignment α :X → D, x : s and d ∈ Ds, we write α(x→ d)
for the α′ :X → D such that α′(y) = α(x) if y 6= x and α′(x) = d.

In Definition 2.9, binding algebras are defined. Rules 1, 2 and 3 make precise
what the intended interpretation of binding sorts and binding operators are.
Rule 1 and 3 are familiar from ordinary many-sorted algebras. Rule 2 shows
that binding sorts other than base sorts are interpreted as sets of functions.
Rule 4 makes the above-mentioned condition on the interpretability of terms in
binding algebras precise. In the terminology of [2], this condition is equivalent
to an explicit closure condition for the interpretations of the binding sorts, and
an F-functional condition for the interpretation of each binding operator (here
F = 〈Ds〉s∈B(S)).

Definition 2.9 Let Σ = (S,O) be a binding signature. Then a binding algebra
with signature Σ is a pair A = (〈Ds〉s∈B(S), 〈Io〉o∈O), where

1. for each s ∈ B(S), Ds is a non-empty set, called the carrier set for s;

2. for each s ∈ B(S) \ S, s = s1, . . . , sn . s, Ds ⊆ Ds1 × . . .×Dsn → Ds;
3. for each o ∈ O, o :s1× . . .×sn → s, Io is a function Io :Ds1× . . .×Dsn → Ds,

called the denotation of o;

4. there exists a family of functions

[[]] = 〈[[]]
s

: TΣ s × [VΣ → 〈Ds〉s∈B(S)]→ Ds〉
s∈B(S)

such that for all terms and assignments (writing [[t]]α for [[t]]αs(t)):

(a) [[x]]α = α(x);

(b) [[x(t1, . . . , tn)]]α = α(x)([[t1]]α, . . . , [[tn]]α);

(c) [[x1, . . . , xn . t]]α is the function f ∈ Ds(x1),...,s(xn).s(t) such that
for all d1 ∈ Ds(x1), . . . , dn ∈ Ds(xn) we have
f(d1, . . . , dn) = [[t]]α(x1→d1)...(xn→dn);

(d) [[o(t1, . . . , tn)]]α = Io([[t1]]α, . . . , [[tn]]α).

For a given binding algebra A = (D, I), [[]] is uniquely determined and is called
the family of evaluation functions associated with A. Furthermore, an assign-
ment α : X → D, where X is a variable domain for Σ , is called an assignment
in A.

Notice that a term of the form x or o(t1, . . . , tn) is evaluated as in the case of
ordinary many-sorted algebras. Notice further that a term of the form x1, . . . , xn.
t can only be evaluated if it denotes a function that is an element of the carrier
set for the sort of the term.

6

Example 2.10 We consider the recursion operator from Example 2.5 again.
Let Σ be a binding signature that includes, among other things, a sort P of
processes, a constant 0 : → P, unary operators a : P → P (for certain actions
a), and a unary operator µ : P . P → P. Let A = (D, I) be a binding algebra
with signature Σ . The denotation Iµ of µ is a function Iµ : (DP → DP) → DP.
Notice that, in order to be a binding algebra with signature Σ , it is not required
that f(Iµ(f)) = Iµ(f) for all f :DP → DP, i.e. application of Iµ does not have
to yield a fixed point. The binding term µx . ax is evaluated in A as follows:
[[µx . ax]]α = Iµ(Ia). If α assigns Ia to z, i.e. α(z) = Ia, the binding term
z(µx . ax) is evaluated as follows: [[z(µx . ax)]]α = Ia(Iµ(Ia)) (= [[aµx . ax]]α).

Interesting among the binding algebras for a given signature are the term
algebras. For their construction, we need an equivalence relation on the bind-
ing terms over the binding signature concerned. Therefore, we first define this
equivalence relation. It is a version of α-conversion. It identifies terms that can
be obtained from each other by a change of bound variables. Notice that this
equivalence relation is a congruence by construction.

Definition 2.11 Let Σ = (S,O) be a binding signature and X be a variable
domain for Σ . Then ≈̇ is the B(S)-indexed family of least equivalence relations
〈≈̇s⊆ TΣ (X)s × TΣ (X)s〉s∈B(S) such that, writing t ≈̇ t′ for t ≈̇s(t) t

′:

1. x1, . . . , xn . t ≈̇ y1, . . . , yn . t[y1, . . . , yn/x1, . . . , xn]
(for mutually distinct variables y1, . . . , yn not free in t);

2. x1, . . . , xn . t ≈̇ y1, . . . , yn . t′ ⇒ t[z1, . . . , zn/x1, . . . , xn] ≈̇ t′[z1, . . . , zn/y1, . . . , yn]
(for mutually distinct variables z1, . . . , zn not free in x1, . . . , xn . t or y1, . . . , yn . t′);

3. t ≈̇ t′ and x1, . . . , xn ∈ OV(X)⇒ x1, . . . , xn . t ≈̇ x1, . . . , xn . t′;

4. t1 ≈̇ t′1, . . . , tn ≈̇ t′n, x : s(t1), . . . , s(tn) . s⇒ x(t1, . . . , tn) ≈̇ x(t′1, . . . , t
′
n);

5. t1 ≈̇ t′1, . . . , tn ≈̇ t′n, o : s(t1)× . . .× s(tn)→ s⇒ o(t1, . . . , tn) ≈̇ o(t′1, . . . , t
′
n).

Furthermore, let t ∈ TΣ (X)s and T ⊆ TΣ (X)s for some s ∈ B(S). Then we
write [t] for {t′ ∈ TΣ (X)s | t ≈̇ t′}, and [T] for {[t] | t ∈ T}.

It is easy to see that, for all s ∈ B(S) and t, t′ ∈ TΣ (X)s, t ≈̇ t′ implies that in
all binding algebras A = (D, I) with signature Σ we have [[t]]α = [[t′]]α for all
assignments α :X → D.

Example 2.12 For the binding term µx . ax used in Examples 2.5 and 2.10, we
have µx . ax ≈̇ µy . ay for variables y : P.

To refer to the interpretations of binding terms in (binding) term algebras, we
also introduce the notation •[t]. The intended meaning of •[t] is simply [t] if
t is not of the form x1, . . . , xn . t

′. The intended meaning of •[x1,...,xn.t′] is a
function on sets of ≈̇-equivalence classes of terms, viz. the function of which
application corresponds to taking the ≈̇-equivalence class of the term obtained
by substitution of representatives of the arguments concerned for x1, . . . , xn in
t′.

7

Definition 2.13 Let Σ = (S,O) be a binding signature and X be a vari-
able domain for Σ . Furthermore, let t ∈ TΣ (X)s for some s ∈ S and let
x1, . . . , xn . t

′ ∈ TΣ (X)s for some s ∈ B(S) \ S. Then we write •[t] for [t], and
•[x1,...,xn.t′] for the function f : [TΣ (X)s(x1)] × . . . × [TΣ (X)s(xn)] → [TΣ (X)s(t)]
such that for all t1 ∈ TΣ (X)s(x1), . . . , tn ∈ TΣ (X)s(xn) we have f([t1], . . . , [tn]) =
[t′[t1, . . . , tn/x1, . . . , xn]].

Notice that the function denoted by •[x1,...,xn.t′] is well-defined because ≈̇ is a
congruence.

Example 2.14 Consider the binding signature Σ used in Example 2.10 and
suppose that X is a variable domain for Σ . Let x ∈ X be such that x : P. Then
•[x.ax] denotes the function f : [TΣ (X)P] → [TΣ (X)P] such that for all terms
t ∈ TΣ (X)P we have f([t]) = [at].

In Definition 2.15, term algebras are defined. Base sorts are interpreted as
sets of ≈̇-equivalence classes of terms. Binding sorts other than base sorts are
interpreted as sets of functions of the application-by-substitution kind described
above on these sets of ≈̇-equivalence classes of terms. Binding operators are
interpreted as functions on these sets of either ≈̇-equivalence classes or functions.

Definition 2.15 Let Σ = (S,O) be a binding signature and X be a variable
domain for Σ . Then the binding algebra of terms with signature Σ on X is the
binding algebra A = (〈Ds〉s∈B(S), 〈Io〉o∈O), where

1. for each s ∈ B(S), Ds = {•[t] | t ∈ TΣ (X)s};
2. for each o ∈ O, o :s1× . . .×sn → s, Io is the function F :Ds1× . . .×Dsn → Ds

such that for all t1 ∈ TΣ (X)s1 , . . . , tn ∈ TΣ (X)sn we have F (•[t1], . . . , •[tn]) =
•[o(t1,...,tn)].

The binding algebra of terms with signature Σ on X is the free algebra with
signature Σ on X. It is the initial algebra with signature Σ if X = XΣ .

The following definition shows that substitutions of binding terms over Σ
and X for variables in X are closely related to assigments in the binding algebra
of terms with signature Σ on X.

Definition 2.16 Let Σ = (S,O) be a binding signature and X be a variable do-
main for Σ . Furthermore, let [[]] be the family of evaluation functions associated
with the binding algebra of terms with signature Σ on X. Then a substitution
σ : X → TΣ (X) of terms in TΣ (X) for variables in X is a B(S)-indexed family
of functions 〈σs :Xs → TΣ (X)s〉s∈B(S). The extension of σ from variables to

terms is a B(S)-indexed family of functions 〈σs : TΣ (X)s → TΣ (X)s〉s∈B(S) such

that for all s ∈ B(S) and t ∈ TΣ (X)s we have [σs(t)] = [[t]]αs
, where α is the

assignment α : X → 〈{•[t] | t ∈ TΣ (X)s}〉s∈B(S) such that for all s ∈ B(S) and

x ∈ Xs we have α(x) = •[σ(x)]. For every substitution σ : X → TΣ (X) and
t ∈ TΣ (X)s, we write σ(t) or tσ for σs(t). A substitution σ : X → TΣ (X) is
closed if σ(x) ∈ CTΣ (X) for all x ∈ X. As in case of ordinary substitutions,
we write [t1, . . . , tn/x1, . . . , xn] for the substitution σ such that σ(x1) = t1, . . . ,
σ(xn) = tn and σ(x) = x if x 6∈ {x1, . . . , xn}.

8

Substitution extends ordinary substitution from ordinary variables to all vari-
ables. Notice that substitution is defined up to ≈̇-equivalence explicitly. Notice
further that

σ(x) = x1, . . . , xn . t⇒ σ(x(t1, . . . , tn)) ≈̇ t[σ(t1), . . . , σ(tn)/x1, . . . , xn]

Example 2.17 Consider again the binding signature Σ used in Example 2.10
and suppose that X is a variable domain for Σ . Let x, z ∈ X be such that x : P
and z :P .P. Then µx.z(x) and z(µx.z(x)) are binding terms over Σ and X with
free variable z. Substitution of x . ax for z in these terms yields the following
results: µx . z(x)[x . ax/z] ≈̇ µx . ax and z(µx . z(x))[x . ax/z] ≈̇ aµx . ax.

2.3 Transition system specifications

In this subsection, we generalize the notion of TSS from conventional terms to
binding terms. The meaning of TSSs is discussed in Section 3.

The TSSs of [24], which originate from [35], define binary transition relations
by means of transition rules with positive premises. An extension to transition
rules with positive and negative premises was presented in [22, 10] and a fur-
ther extension to the specification of unary and binary relations was presented
in [38]. In all three cases, variable binding operators and many-sortedness are
not supported. Such an extension was first proposed in [17]. An important dif-
ference between that extension and the one presented here is that in the latter
distinction between formal and actual variables, formal and actual terms, formal
and actual substitutions, etc. is not made. This leads to TSSs that are more
closely related to the original ones than the TSSs of [17].

We define TSSs in terms of transition rules and transition rules in terms
of transition formulas. We define transition formulas over a binding signature
and a domain of transition predicates. Therefore, we first define the notion of
domain of transition predicates.

We assume a B(S)
∗
-indexed family of mutually disjoint sets of predicates

P = 〈Pτ 〉τ∈B(S)∗ . It is assumed that the sets
⋃

s∈B(S) Vs,
⋃
τ∈B(S)∗×S Oτ and⋃

τ∈B(S)∗ Pτ are mutually disjoint. We write p : s1 × . . . × sn to indicate that
p ∈ P〈s1,...,sn〉.

A predicate p : s1 × . . . × sn has n arguments. If si = si1, . . . , sini
. si (1 ≤ i ≤

n), then it binds ni variables, of base sorts si1, . . . , sini
, in the i-th argument.

Otherwise, i.e. if si ∈ S, it does not bind any variable in the i-th argument.

Definition 2.18 Let Σ = (S,O) be a binding signature. Then a domain of
transition predicates on terms over Σ is a set Π ⊆ P such that for all p ∈ Π ,
if p : s1 × . . . × sn, then s1, . . . , sn ∈ B(S), s1 ∈ S and 1 ≤ n ≤ 2. A transition
predicate p ∈ Π is called ordinary if p : s1 × . . .× sn for some s1, . . . , sn ∈ S.

Just as in [38], we consider both unary and binary predicates as transition pred-
icates. The restriction that a transition predicate is a unary or binary predicate
is formulated here to anticipate its relaxation in Section 5. We do not consider
predicates that bind variables in their first argument as transition predicates.

9

The main reason for this exclusion is that we can not conceive of an obvious
generalization of the notion of bisimulation in case variables are bound in the
first argument.

Next, in Definition 2.19, we define the notions of positive and negative transi-
tion formula. We also introduce the notion of denial of a transition formula and
make the notion of closed transition formula precise. Like in [22, 10] and [38], we
consider both positive and negative transition formulas. The formation rule for
negative formulas does not allow a negative formula of the form ¬p(t1) for binary
predicates p, i.e. predicates p with p : s1× s2 for some sorts s1 and s2. In [22, 10]
and [38], such expressions are considered to be negative formulas. We consider
them to be abbreviations of sets of negative formulas (see also Definition 2.23).

Definition 2.19 Let Π be a domain of transition predicates on terms over
binding signature Σ = (S,O). Then F+

Σ ,Π , the set of positive transition formu-
las over signature Σ and transition predicates Π , is inductively defined by the
following formation rule (1 ≤ n ≤ 2):

p ∈ Π , p : s1 × . . .× sn, t1 ∈ TΣ s1 , . . . , tn ∈ TΣ sn ⇒ p(t1, . . . , tn) ∈ F+
Σ ,Π ;

and F−Σ ,Π , the set of negative transition formulas over signature Σ and transition
predicates Π , is inductively defined by the following formation rule (1 ≤ n ≤ 2):

p ∈ Π , p : s1 × . . .× sn, t1 ∈ TΣ s1 , . . . , tn ∈ TΣ sn ⇒ ¬p(t1, . . . , tn) ∈ F−Σ ,Π .

We use in general postfix notation for unary predicates and infix notation for
binary predicates.

We write FΣ ,Π for F+
Σ ,Π ∪ F

−
Σ ,Π . For φ ∈ FΣ ,Π , φ, the denial of φ, is defined

as follows:

1. p(t1, . . . , tm) = ¬p(t1, . . . , tm);

2. ¬p(t1, . . . , tm) = p(t1, . . . , tm).

A positive or negative transition formula φ is closed if all terms occurring in
it are closed. We write CF+

Σ ,Π for {φ ∈ F+
Σ ,Π | φ is closed} and CF−Σ ,Π for

{φ ∈ F−Σ ,Π | φ is closed}. Furthermore, we write CFΣ ,Π for CF+
Σ ,Π ∪ CF

−
Σ ,Π .

Example 2.20 In previous examples, we used µx .ax as an example of a closed
binding term. Suppose that we have a transition predicate a−→ : P × P. The
intended meaning of a transition formula of the form t a−→ t′ can be explained as
follows: process t is capable of first performing action a and then proceeding as
process t′. Hence, the transition formula µx .ax

a−→ µx .ax expresses that µx .ax
is capable of performing action a forever.

In the following definition, the notion of transition rule is defined. Like
in [22, 10] and [38], negative formulas are not allowed as conclusions of transition
rules. The notions of substitution instance and closed substitution instance of a
transition rule are also introduced.

10

Definition 2.21 Let Π be a domain of transition predicates on terms over
binding signature Σ = (S,O). Then RΣ ,Π , the set of transition rules over
signature Σ and predicates Π , is inductively defined by the following formation
rule:

Φ ⊆ FΣ ,Π , ψ ∈ F+
Σ ,Π ⇒

Φ
ψ
∈ RΣ ,Π .

Let r = Φ
ψ

be a transition rule. Then the transition formulas in Φ are the

premises of r and the transition formula ψ is the conclusion of r. A transition
rule r is closed if all formulas occurring in it are closed. Substitution extends
from terms to formulas and rules as expected. For every substitution σ :V → TΣ
and transition rule r, the transition rule σ(r) is a substitution instance of r. If σ
is a closed substitution, the transition rule σ(r) is a closed substitution instance
of r. We write instances(r) for the set of all substitution instances of r, and
cinstances(r) for the set of all closed substitution instances of r.

Example 2.22 The transition rule for the recursion operator of CCS is as fol-
lows:

z(µx . z(x)) α−→ x′

µx . z(x) α−→ x′

Finally, the notion of TSS is defined. The main difference with the original
notion of TSS is that binding terms are used instead of conventional terms. This
means not only that operators may bind variables in their arguments, but also
that variables may have arguments. Having variables that may have arguments
obviates the need to distinguish two kinds of variables, terms, substitutions, etc.
in TSSs, like in [17].

Definition 2.23 A transition system specification (TSS) is a triple P =
(Σ ,Π , R), where

1. Σ is a binding signature;

2. Π is a domain of transition predicates on terms over Σ ;

3. R ⊆ RΣ ,Π .

A TSS is positive if all premises of its transition rules are positive transition
formulas. We write instances(R) for the set {instances(r) | r ∈ R}, and
cinstances(R) for the set {cinstances(r) | r ∈ R}.

For each p ∈ Π , p : s1× s2, and t1 ∈ TΣ s1 , we write ¬p(t1) for the set of formulas
{¬p(t1, t2) | t2 ∈ CTΣ s2}.

Recall that, unlike in [22, 10] and [38], an expression of the form ¬p(t1) is
not considered to be a negative formula if p is a binary predicate. Instead, it is
considered to be an abbreviation of the set of formulas that contains all formulas
¬p(t1, t2) where t2 is a closed term of the appropriate sort. This leads to some
simpler definitions in the remaining sections.

11

Example 2.24 We consider a fragment of CCS without restriction and relabel-
ing, but with recursion. CCS assumes a set N of names. The set A of actions
is defined by A = N ∪ N ∪ {τ}, where N = {a | a ∈ N}. Elements a ∈ N are
called co-names and τ is called the silent step. The signature of the TSS for this
fragment of CCS consists of the sort P of processes, the inaction constant 0:→ P,
an action prefix operator α : P → P for each action α ∈ A, the choice operator
+:P× P→ P, the composition operator |:P×P→ P, and the recursion (variable
binding) operator µ : P . P → P. The transition predicate domain consists of a
binary transition predicate α−→ : P × P for each α ∈ A. The transition rules are
the transition rules given below and the transition rule given in Example 2.22
(α ∈ A, a ∈ N).

αx α−→ x
x α−→ x′

x+ y α−→ x′
y α−→ y′

x+ y α−→ y′

x
α−→ x′

x | y α−→ x′ | y
y

α−→ y′

x | y α−→ x | y′
x

a−→ x′, y
a−→ y′

x | y τ−→ x′ | y′
x

a−→ x′, y
a−→ y′

x | y τ−→ x′ | y′

3 The meaning of TSSs

In this section, we first introduce the basic notions relevant to the issue of asso-
ciating models with TSSs. These basic notions are sufficient in case of positive
TSSs. Next, we discuss the principle underlying the association of a model with
a positive TSS. Finally, using this principle as a guideline, we introduce the ad-
ditional notions relevant to the issue of associating models with TSSs that are
not positive.

The meaning of TSSs with negative premises has been extensively studied for
TSSs that define transition relations on conventional terms, see e.g. [1], [22], [38],
[10] and [21]. Most definitions and results generalize naturally to the case of TSSs
that define transition relations on ≈̇-equivalence classes of binding terms, which
will henceforth often loosely be referred to as transition relations on binding
terms. However, the smooth generalization is perhaps not apparent because
the presentation of the material is new here. All work on the meaning of TSSs
with negative premises uses many results of work on logic programming with
negation. An excellent survey of relevant work in that area is [3].

3.1 Supported models

We define the notions of model of a TSS and interpretation supported by a TSS.
This requires to introduce first a kind of structures in which transition rules
can be interpreted. We introduce two equivalent kinds: transition systems and
Herbrand interpretations. However, in the sequel, we will focus on Herbrand
interpretations.

The most obvious choice of structures for the interpretation of transition
rules is probably the choice of transition systems. They are defined here with
respect to a TSS, but they can alternatively be defined with respect to a binding
signature and a domain of transition predicates.

12

Definition 3.1 Let P = (Σ ,Π , R) be a TSS. A transition system for P is a
family of relations J = 〈Jp〉p∈Π , where

for each p ∈ Π , p : s1 × . . .× sn, Jp is a relation Jp ⊆ [CTΣ s1]× . . .× [CTΣ sn],
called the denotation of p.

So predicates are interpreted as relations on sets of ≈̇-equivalence classes of closed
binding terms. This makes precise that we identify binding terms that can be
obtained from each other by change of bound variables. This identification of
binding terms induces the following identification of transition formulas.

Definition 3.2 Let Π be a domain of transition predicates on terms over bind-
ing signature Σ = (S,O). Then ≈̇ is the least equivalence relation ≈̇⊆ FΣ ,Π ×
FΣ ,Π such that

t1 ≈̇ t′1, . . . , tn ≈̇ t′n, p : s(t1)× . . .× s(tn)⇒
p(t1, . . . , tn) ≈̇ p(t′1, . . . , t′n), ¬p(t1, . . . , tn) ≈̇ ¬p(t′1, . . . , t′n).

Furthermore, let φ ∈ FΣ ,Π and Φ ⊆ FΣ ,Π . Then we write [φ] for {ψ ∈ FΣ ,Π |
φ ≈̇ ψ}, and [Φ] for {[φ] | φ ∈ Φ}.

Another choice of structures for the interpretation of transition rules, customary
in logic programming, is the choice of Herbrand interpretations.

Definition 3.3 Let P = (Σ ,Π , R) be a TSS. A Herbrand interpretation for P
is a set M⊆ CF+

Σ ,Π such that [M] ⊆M.

An Herbrand interpretation is simply a set of transition formulas. The condition
[M] ⊆M implies that either all transition formulas from the same ≈̇-equivalence
class are in a Herbrand interpretation or none is. Thus, it is guaranteed that
there exists a bijection between the class of Herbrand interpretations for P and
the class of transition systems for P : a Herbrand interpretationM corresponds
to the transition system J = 〈Jp〉p∈Π such that

for each p ∈ Π , Jp = {([t1], . . . , [tn]) | p(t1, . . . , tn) ∈M}.

Hence, a transition relation on binding terms over Σ can be regarded as a set of
closed positive transition formulas over Σ . Therefore, closed positive transition
formulas will sometimes loosely be referred to as transitions. Likewise, closed
negative transition formulas will sometimes be referred to as negative transitions.
Because of the existence of a bijection between the class of Herbrand interpreta-
tions for a TSS and the class of transition systems for it, we can safely focus on
Herbrand interpretations. The latter structures make it easier to explain what
model is associated with a TSS that is not positive.

Before we can define what Herbrand interpretations for a TSS are models of
that TSS and what Herbrand interpretations for a TSS are supported by that
TSS, we have to make precise what it means for a transition formula to hold
in a Herbrand interpretation. The following definition states that a positive
transition formula holds in a Herbrand interpretation if it is contained in that
Herbrand interpretation and a negative transition formula holds in a Herbrand
interpretation if its denial is not contained in that Herbrand interpretation.

13

Definition 3.4 Let M be a Herbrand interpretation for a TSS P = (Σ ,Π , R).
Furthermore, let φ ∈ CFΣ ,Π . Then φ holds in M, written M |= φ, if

1. either φ ∈ CF+
Σ ,Π and φ ∈M;

2. or φ ∈ CF−Σ ,Π and φ 6∈ M.

For Φ ⊆ CFΣ ,Π , we write M |= Φ to indicate that M |= φ for all φ ∈ Φ.

Notice that M |= φ iff M |= [φ]. Next, in Definitions 3.5 and 3.6, we define
the notions of model of a TSS and interpretation supported by a TSS. Roughly
speaking, these definitions express that a Herbrand interpretation for a TSS is a
model of that TSS if it obeys the transition rules of the TSS and that a Herbrand
interpretation for a TSS is supported by that TSS if all transitions contained in
it are justified by the transition rules of the TSS.

Definition 3.5 Let M be a Herbrand interpretation for a TSS P = (Σ ,Π , R).
Then M is a Herbrand model of P , written M |= P , if for all ψ ∈ CF+

Σ ,Π :

M |= ψ ⇐ ∃Φ
ψ
∈ cinstances(R) •M |= Φ.

Definition 3.6 Let M be a Herbrand interpretation for a TSS P = (Σ ,Π , R).
Then M is supported by P if for all ψ ∈ CF+

Σ ,Π :

M |= ψ ⇒ ∃Φ
ψ
∈ cinstances(R) •M |= Φ.

Finally, we define what Herbrand interpretations for a TSS agree with that TSS.
This notion of agreeing with a TSS, which is used in e.g. [22, 38, 21], is also known
as “being a supported model of a TSS”.

Definition 3.7 Let M be a Herbrand interpretation for a TSS P = (Σ ,Π , R).
Then M agrees with P if M is a Herbrand model of P and M is supported by
P . If M is a Herbrand interpretation that agrees with P , we say that M is a
supported model of P .

Example 3.8 Consider the simple TSS with a one-sorted signature consisting

of a constant c only, two transition predicates a−→ and b−→, and the following
transition rules:

c 6 a−→
c b−→ c

c a−→ c
c

a−→ c

As usual, we use the notation c 6 a−→ instead of ¬(c
a−→). Both {c a−→ c} and

{c b−→ c} agree with this TSS.

Every positive TSS has a least supported model with respect to set inclusion.
The least supported model of a positive TSS has two interesting alternative
characterizations, which will be given in Section 3.2.

14

3.2 Proofs and positive TSSs

We define a general notion of proof from a TSS by allowing to prove transition

rules. The proof of a transition rule Φ
ψ

corresponds to the proof of the transition

formula ψ under the assumptions Φ. In Section 3.3, it happens that allowing to
prove transition rules is quite useful.

Definition 3.9 Let P = (Σ ,Π , R) be a TSS. Then a proof of a transition rule
Φ
ψ

from P is a well-founded, upwardly branching tree of which the nodes are

labelled by formulas in FΣ ,Π , such that

1. the root is labelled by ψ;

2. if a node is labelled by φ and Φ′ is the set of labels of the nodes directly above
this node, then there exists a ψ′ such that φ ≈̇ ψ′ and

(a) either ψ′ ∈ Φ and Φ′ = ∅,

(b) or Φ′

ψ′
∈ instances(R).

A transition rule r is provable from P , written P ` r, if there exists a proof of
r from P . A positive transition formula φ is provable from P , written P ` φ, if

there exists a proof of ∅
φ

from P .

Example 3.10 In Example 2.20, we used µx . ax a−→ µx . ax as an example of a
transition formula. The proof of µx . ax a−→ µx . ax is as follows:

◦ aµx . ax a−→ µx . axx
◦ µx . ax a−→ µx . ax

The non-root node is obtained from the first rule given in Example 2.24 with
substitution of µx . ax for x. The root node is obtained from the non-root node
and the rule for the recursion operator given in Example 2.22 with substitution
of x . ax for z and µx . ax for x′ (see also Example 2.17).

It is easy to see that, if φ ∈ Φ ⇔ ∃φ′ ∈ Φ′ • φ ≈̇ φ′, φ′ ∈ Φ′ ⇔ ∃φ ∈ Φ • φ′ ≈̇ φ

and ψ ≈̇ ψ′, then P ` Φ
ψ
⇔ P ` Φ′

ψ′
. We have the following soundness result:

If P ` Φ
ψ

, then for all Herbrand models M of P , M |= Φ ⇒ M |= ψ.

The intended model of a positive TSS reflects the idea that the following
principle implicitly applies to a TSS: “the only transition formulas that hold in
the intended model are those derivable from the transition rules”.

Definition 3.11 The intended Herbrand model of a positive TSS P =
(Σ ,Π , R), written MP , is the Herbrand model {φ ∈ CF+

Σ ,Π | P ` φ}.

15

Clearly, every positive TSS has a unique intended Herbrand model. Moreover,
the intended Herbrand model of a positive TSS is the least supported model of
that TSS. The intended model of a positive TSS can also be characterized by
means of the immediate consequence operator originating from [13]. The imme-
diate consequence operator for a TSS P applied to a Herbrand interpretationM
yields the smallest Herbrand interpretation containing all closed positive transi-
tion formulas that are immediate consequences of the closed transition formulas
that hold in M and the transition rules of P .

Definition 3.12 Let P = (Σ ,Π , R) be a TSS. Then the immediate consequence
operator for P is the unary function TP on Herbrand interpretations for P such
that for all Herbrand interpretations M for P :

TP (M) =
⋃
{[ψ] | ψ ∈ CF+

Σ ,Π and ∃Φ
ψ
∈ cinstances(R) •M |= Φ}.

For all Herbrand interpretations M for a positive TSS P = (Σ ,Π , R):

1. TP (M) ⊆M ⇔ M is a Herbrand model of P ,

2. TP (MP) =MP ;

i.e. M is a Herbrand model of P iff M is closed under TP and the intended
Herbrand model MP is the least Herbrand interpretation closed under TP – as
well as the least supported model of P . In case P is not positive, the existence of
a least Herbrand interpretation closed under TP – and also of a least supported
model of P – is not guaranteed.

Example 3.13 Consider the simple positive TSS P with a one-sorted signature
consisting of a constant c and a unary operator f only, a transition predicate
a−→, and the following transition rules:

c a−→ c
c

a−→ y
c a−→ f(y)

According to Definition 3.11, MP = {c a−→ fn(c) | n ≥ 0}. Obviously, we have
TP (MP) =MP .

3.3 Stable models

In case a TSS is not positive, it is possible that proofs exist for transition rules
N
ψ

, where N is a non-empty set of closed negative transition formulas and ψ is a

closed positive transition formula. Such proofs can never be extended to proofs
of the conclusions concerned because no rule of a TSS has a negative transition
formula as its conclusion. This means that for the intended model of a TSS that
is not positive, it is reasonable to adapt the principle that implicitly applies to a
TSS as follows: “the only transition formulas that hold in the intended model are
those derivable from the transition rules under assumption of negative transition
formulas that do not lead to inconsistencies”. In order to formalize this principle,
it is useful to introduce an operator that replaces in a TSS the original transition
rules by the provable closed transition rules without positive premises.

16

Definition 3.14 Let P = (Σ ,Π , R) be a TSS. Then the TSS P ∗ is defined as
(Σ ,Π , R∗), where

R∗ = {N
ψ
| N ⊆ CF−Σ ,Π , ψ ∈ CF

+
Σ ,Π and P ` N

ψ
}.

Adopting the above-mentioned principle, we conclude that the intended model
of a TSS P = (Σ ,Π , R) must be a model M such that TP∗(M) ⊆ M. Such a
model is called a stable model of P . Stable models were first introduced in [20]
to give a semantics of logic programming with negation.

However, even in case the adapted principle is applied, it is possible that
there remain closed positive transition formulas φ for which it is not possible
to decide whether φ holds in the intended model or not. In such cases, the
TSS concerned is called incomplete. Clearly, an incomplete TSS does not have
a (stable) model that can be designated as its intended model. In other words,
an incomplete TSS does not have a least stable model, i.e. a modelM such that
TP∗(M) = M. Besides, an unsound transition rule, i.e. a rule with a premise
that contradicts the conclusion, is simply ignored in case the adapted principle
is applied. For these reasons, we use the auxiliary notion of partial Herbrand
interpretation to define the intended model of a TSS that is not positive.

Example 3.15 Consider the simple TSS with a one-sorted signature consisting

of a constant c only, two transition predicates a−→ and b−→, and the following
transition rules:

c 6 a−→
c b−→ c

c 6 b−→
c a−→ c

c 6 a−→
c a−→ c

The Herbrand interpretation {c a−→ c} is a stable model of this TSS, although
the premise and conclusion of the last transition rule contradict each other.

Definition 3.16 Let P = (Σ ,Π , R) be a TSS. A partial Herbrand interpreta-
tion for P is a pair M = (M+,M−), with sets M+,M− ⊆ CF+

Σ ,Π such that

[M+] ⊆ M+ and [M−] ⊆ M−. A partial Herbrand interpretation M for P is
consistent ifM+∩M− = ∅. A partial Herbrand interpretationM for P is total
if M+ ∪M− = CF+

Σ ,Π . Let M = (M+,M−) and N = (N+,N−) be partial

Herbrand interpretations for P . Then M⊆ N iff M+ ⊆ N+ and M− ⊆ N−.

The intuition is that the positive component M+ contains the transitions that
certainly hold and the negative component M− contains the transitions that
certainly do not hold. Thus, a unique partial Herbrand model can be associ-
ated with all TSSs, even the incomplete ones. The conditions [M+] ⊆ M+

and [M−] ⊆ M− imply that either all transition formulas from the same ≈̇-
equivalence class are in one of the two components of a partial Herbrand inter-
pretation or none is. Obviously, every Herbrand interpretation M for a TSS
P = (Σ ,Π , R) can be identified with the total, consistent partial Herbrand
interpretation (M, CF+

Σ ,Π \M). The ordering ⊆ on partial Herbrand interpre-
tations is called the information ordering on partial Herbrand interpretations: if

17

M⊆ N , then the transitions about which N contains status information include
the transitions about which M contains status information. Partial Herbrand
interpretations were first introduced in [15] in the context of logic programming.
They are also known as three-valued Herbrand interpretations.

We will define an immediate consequence operator on partial Herbrand in-
terpretations as well. Before we can do so, we have to make precise what it
means for a transition formula to hold in a partial Herbrand interpretation. The
following definition states that a positive transition formula holds in a partial
Herbrand interpretation if it is contained in the positive component of that par-
tial Herbrand interpretation and a negative transition formula holds in a partial
Herbrand interpretation if its denial is contained in the negative component of
that partial Herbrand interpretation.

Definition 3.17 LetM = (M+,M−) be a partial Herbrand interpretation for
a TSS P = (Σ ,Π , R). In addition, let φ ∈ CFΣ ,Π . Then φ holds in M, written
M |=3 φ, if

1. either φ ∈ CF+
Σ ,Π and φ ∈M+;

2. or φ ∈ CF−Σ ,Π and φ ∈M−.

For Φ ⊆ CFΣ ,Π , we write M |=3 Φ to indicate that M |=3 φ for all φ ∈ Φ.

Furthermore, we write M |=3 Φ to indicate that M |=3 φ for some φ ∈ Φ.

In Definition 3.18, we define an immediate consequence operator on partial Her-
brand interpretations. This operator takes into account that a TSS may be
incomplete: it yields both the closed positive transition formulas of which it can
be decided that they are immediate consequences and the ones of which it can
be decided that they are not immediate consequences.

Definition 3.18 Let P = (Σ ,Π , R) be a TSS. Then the immediate consequence
operator for P for partial Herbrand interpretations is the unary function T3

P

on partial Herbrand interpretations for P such that for all partial Herbrand
interpretations M = (M+,M−) for P :

T3
P (M) = (N+,N−) where

N+ =
⋃
{[ψ] | ψ ∈ CF+

Σ ,Π and ∃Φ
ψ
∈ cinstances(R) •M |=3 Φ};

N− =
⋃
{[ψ] | ψ ∈ CF+

Σ ,Π and ∀Φ
ψ
∈ cinstances(R) •M |=3 Φ}.

Example 3.19 Consider the simple TSS P with a one-sorted signature consist-
ing of a constant c and a unary operator f only, a transition predicate a−→, and
the following transition rules:

c a−→ c
x 6 a−→ c

f(x) a−→ c

The partial Herbrand interpretation ({f2n(c) a−→ c | n ≥ 0}, {f2n+1(c) a−→ c | n ≥
0}) is the least partial Herbrand interpretation, with respect to the information
ordering, closed under T3

P . It is also consistent and total.

18

Using Definitions 3.14 and 3.18, we now define the counterpart of stable
models for partial Herbrand interpretations.

Definition 3.20 A partial stable model of a TSS P = (Σ ,Π , R), is a partial
Herbrand interpretationM for P such that T3

P∗(M) ⊆M, where ⊆ is the infor-
mation ordering; i.e. a partial stable model is a partial Herbrand interpretation
closed under T3

P∗ . There exists a unique least partial stable model for any TSS.
The least partial stable model is consistent for any TSS. We write M3

P for the
least partial stable model of P .

Example 3.21 Consider the simple TSS P from Example 3.19. Obviously, the
partial Herbrand interpretation ({f2n(c)

a−→ c | n ≥ 0}, {f2n+1(c)
a−→ c | n ≥ 0})

is also the least partial Herbrand interpretation closed under T3
P∗ . Hence, it is

the least partial stable model of P .

Because the immediate consequence operator for partial Herbrand interpreta-
tions yields consequences on the basis of what certainly holds and what cer-
tainly does not hold, this operator also prevents unsound transition rules from
being unnoticed. Unsound transition rules lead to the partial stable model (∅, ∅).
Least partial stable models were shown in [32] to coincide with the well-founded
models introduced earlier in [19] in the context of logic programming.

There exists a least partial stable model for every TSS. However, we are only
interested in those TSSs of which the least partial stable model can be identified
with a stable model.

Definition 3.22 A TSS P is meaningful if its least partial stable modelM3
P is

total.

In [21], a lot of evidence is given for the claim that the definition of meaningful
TSS given above is the most general one without undesirable properties. Oc-
casionally, we may also be interested in TSSs of which the least partial stable
model is not total. However, excluded are occasions on which it is essential that
it can be decided for every transition whether it holds in the intended model
or not. Hence, excluded are occasions on which it must be derivable from the
TSS concerned whether two terms are bisimilar, such as in case of a transition
rule format guaranteeing that bisimulation is a congruence. Devising a stratifi-
cation [38] for a TSS is a proven technique to check whether it is meaningful.

Definition 3.23 The intended Herbrand model of a meaningful TSS P =
(Σ ,Π , R), written MP , is the Herbrand model of P such that M3

P =
(MP , CF+

Σ ,Π \ MP). MP is also called the Herbrand model associated with
P .

Clearly for positive TSSs, Definition 3.11 coincides with Definition 3.23. In
other words, for positive TSSs, least supported models and least stable models
coincide.

Example 3.24 In Example 3.8, a TSS was given which has two minimal sup-

ported models. The intended model of that TSS is {c b−→ c}. In Example 3.15,

19

a TSS was given which has a stable model, although it has a transition rule
with a premise contradicting the conclusion. That TSS does not have an in-
tended model. In Example 3.19, a TSS was given which has a least partial
stable model that is total (see also Example 3.21). The intended model of that
TSS is {f2n(c) a−→ c | n ≥ 0}.

4 Bisimulation as a congruence

In this section, we first generalize the notion of bisimulation to TSSs that define
transition relations on binding terms. Next, we generalize the transition rule
format known as the panth format [38] accordingly. The main result of this paper
is that the generalized panth format guarantees that generalized bisimulation is
a congruence. The proof of the congruence theorem is outlined in Appendix B.

Bisimulation is a frequently used equivalence to abstract from irrelevant de-
tails of operational semantics. Originally introduced in modal logic, it was intro-
duced in process theory in [31]. The first format guaranteeing that bisimulation
is a congruence appears to be the de Simone format [35]. The original panth
format generalizes the ntyft/ntyxt format of [22] for unary predicates, which in
turn extends the tyft/tyxt format of [24] with negative premises. The original
panth format also extends the path format of [6] with negative premises, and the
path format in turn generalizes the tyft/tyxt format for unary predicates. The
well-known GSOS format [9], which supports only binary predicates and both
positive and negative premises, but which is more restrictive than the ntyft/ntyxt
format, guarantees other useful properties.

4.1 Bisimulation

In Definition 4.1, we define the notion of bisimulation based on a TSS for TSSs
that define transition relations on binding terms. Rule 1 is needed because we
identify binding terms that can be obtained from each other by change of bound
variables. Rule 2 and 3 are familiar from ordinary (strong) bisimulation. Rule 4
is reminiscent of the closure-under-substitutions property of open bisimulation
equivalence, an equivalence proposed for the π-calculus in [34].

Definition 4.1 Let P = (Σ ,Π , R), where Σ = (S,O), be a TSS. Then
a bisimulation B based on P is a family of symmetric binary relations
〈Bs ⊆ CTΣ s × CTΣ s〉s∈B(S) such that, writing B(t, t′) for Bs(t)(t, t

′):

1. t ≈̇ t′ ⇒ B(t, t′);

2. B(t1, t
′
1) and p(t1, t2) ∈MP ⇒ ∃t′2 • p(t′1, t′2) ∈MP and B(t2, t

′
2);

3. B(t1, t
′
1) and p(t1) ∈MP ⇒ p(t′1) ∈MP ;

4. B(x1, . . . , xn . t, y1, . . . , yn . t
′)⇒ ∀t1 ∈ CTΣ s(x1), . . . , tn ∈ CTΣ s(xn)•

B(t[t1, . . . , tn/x1, . . . , xn], t′[t1, . . . , tn/y1, . . . , yn]).

Two closed terms t, t′ ∈ CTΣ s (s ∈ B(S)) are bisimilar in P , written t ↔P t′, if
there exists a bisimulation B such that B(t, t′).

20

Example 4.2 Consider the TSS for a fragment of CCS from Example 2.24. It
follows from rule 2 of Definition 4.1 that at and at+at are bisimilar for all closed
terms t of this fragment. It follows from this result and rule 4 of Definition 4.1,
that also x . ax and y . (ay + ay) are bisimilar.

4.2 Panth format

In Definition 4.3, we generalize the panth format of [38] to TSSs that define tran-
sition relations on binding terms. There is no essential difference between the
panth format defined in [38] and the one defined here if only conventional terms
are used in the transition rules. Rules 1, 3 and 4 of Definition 4.3 correspond
closely to the rules of the definition given in [1] for TSSs that define transi-
tion relations on conventional terms. However, that definition would restrict
the possible forms of the first argument of a conclusion to x and o(x1, . . . , xn).
Rule 2 is only needed because we chose to treat expressions of the form ¬p(t1)
as abbreviations if p is a binary predicate.

Definition 4.3 Let P = (Σ ,Π , R) be a TSS. Then a transition rule r = Φ
ψ
∈ R

is in panth format if it satisfies the following restrictions:

1. for each positive premise of the form p(t1, t2) ∈ Φ, the second argument t2 is
a variable;

2. for each negative premise of the form ¬p(t1, t2) ∈ Φ, the second argument t2
is a closed term;

3. the conclusion ψ has the form p(t1) or p(t1, t2), where in either case the first
argument t1 has one of the following forms:

(a) x,

(b) x(x1, . . . , xn),

(c) o(u1, . . . , un), where ui (1 ≤ i ≤ n) is a variable or a term of the form
x1, . . . , xm . x(x1, . . . , xm);

4. the variables that occur as second argument of positive premises of the form
p(t1, t2) or as free variable of the first argument of the conclusion are mutually
distinct.

The TSS P is in panth format if each transition rule r ∈ R is in panth format.

Example 4.4 Consider the TSS for a fragment of CCS from Example 2.24. It
is straightforward to see that this TSS is in panth format. In all transition rules,
all premises are positive and have two arguments of which the second one is
a variable. Hence, restrictions 1 and 2 are met by all transition rules. In all
transition rules, except the one for the recursion operator, the first argument of
the conclusion has the form o(x1, . . . , xn). In the transition rule for the recursion
operator, the first argument of the conclusion has the form o(x1 . x(x1)). Hence,
restriction 3 is met by all transition rules as well. It is also easy to check that
restriction 4 is met by all transition rules.

21

In Definitions 4.5 and 4.6, we define the notion of well-founded transition
rule and the related notion of pure transition rule. These notions are used in the
proofs of the congruence theorems from [10] and [38]. The proofs concerned make
use of the result from [16] that a TSS in ntyft/ntyxt format or panth format can
be transformed into an equivalent TSS in the format concerned with transition
rules that are well-founded. This result extends to the generalized panth format
presented above if only ordinary transition predicates, i.e. transition predicates
that do not bind any variable in their arguments, are used in positive premises.

Definition 4.5 Let P = (Σ ,Π , R) be a TSS. In addition let Φ ⊆ F+
Σ ,Π . Then

the variable dependency graph of Φ is a directed unlabeled graph with the vari-
ables occurring in Φ as nodes and as edges:

{(x, x′) | ∃p(t, t′) ∈ Φ • x is a free variable of t and x′ is a free variable of t′}.

Φ is well-founded if every backward chain of edges in its variable dependency

graph is finite. A transition rule r = Φ
ψ
∈ R is well-founded if the set {φ ∈ Φ |

φ ∈ F+
Σ ,Π } is well-founded. The TSS P is well-founded if each transition rule

r ∈ R is well-founded.

Definition 4.6 Let P = (Σ ,Π , R) be a TSS and r ∈ R. A variable x is free in
r if it is a free variable of an argument of either a premise of r or the conclusion
of r, but does not occur as second argument of a positive premise of the form
p(t1, t2) or as free variable of the first argument of the conclusion. The transition
rule r is pure if r is well-founded and there are no variables free in r.

Notice that free variables of an argument of a premise or the conclusion are not
necessarily free in the rule.

The following result shows that a meaningful TSS in panth format is equivalent
to one that is well-founded if only ordinary transition predicates are used in
positive premises.

Theorem 4.7 Let P = (Σ ,Π , R) be a meaningful TSS in panth format. If
all transition predicates occurring in positive premises of rules in R are ordi-
nary, then there exists a well-founded TSS P ′ = (Σ ,Π , R′) in panth format with
MP ′ =MP .

Proof. The proof is outlined in Appendix B. First, we prove the case of
TSSs that only define binary relations. The proof amounts to careful checking
of the proof of Theorem 5.4 from [16] – a well-foundedness theorem for the
ntyft/ntyxt format – and adapting it to the case with variable binding operators
where needed. Next, we make use of an immediate corollary of the proof of
Theorem 4.9: a TSS that defines unary relations as well can be transformed into
a TSS that only defines binary relations such that the models associated with
the TSSs are isomorphic. 2

It is an open question whether Theorem 4.7 can be proved without the restriction
to ordinary transition predicates in positive premises. The course pursued in the

22

proof of Theorem 5.4 from [16] can not be pursued if this restriction is not made.
The problem experienced in that case is illustrated in Example 4.8.

Example 4.8 Consider the one-sorted signature with a sort S, a constant c:→ S
and a binary operator f : S× S→ S, and the following two transition predicates

on terms over this signature: a−→ : S × S and b−→ : S × S . S. The transition rule
over this signature and these predicates given below is in panth format, but it
is not well-founded.

z(x) a−→ y, y b−→ z

f(x, y)
a−→ c

For a TSS containing this transition rule, we can not conceive a transformation
to an equivalent TSS that is well-founded.

4.3 Congruence theorem

The following result shows that bisimulation is a congruence if well-founded
transition rules in panth format are used.

Theorem 4.9 Let P = (Σ ,Π , R) be a meaningful TSS in panth format. If P
is well-founded, then ↔P is a congruence.

Proof. The proof is outlined in Appendix B. First, we prove the case of TSSs
that only define binary relations. The proof amounts to careful checking of the
proof of Theorem 8.13 from [10] – the congruence theorem for the ntyft/ntyxt
format – and adapting it to the case with variable binding operators where
needed. Next, we show that each TSS that defines unary relations as well can be
reduced to a TSS that only defines binary relations, while preserving bisimilarity.
This is straightforward in the many-sorted case. 2

Usually, proofs of congruence theorems are intricate. This includes the proof
of the congruence theorem from [10]. Fortunately, the proof of Theorem 4.9
goes for the greater part exactly like the proof of that congruence theorem. The
following is a corollary of Theorems 4.7 and 4.9.

Corollary 4.10 Let P = (Σ ,Π , R) be a meaningful TSS in panth format. If all
transition predicates occurring in positive premises of rules in R are ordinary,
then ↔P is a congruence.

In case not all transition predicates occurring in positive premises are ordinary,
well-foundedness has to be checked.

Example 4.11 Consider the TSS for a fragment of CCS from Example 2.24.
Because it is a positive TSS, we have immediately that it is a meaningful TSS.
Moreover, it is in panth format (see also Example 4.4). All transition predicates
are ordinary. Hence, by Corollary 4.10, bisimilation is a congruence in that TSS.

23

5 Given sorts and parametrization

In various applications of TSSs, it is impractical and unnecessary to provide the
terms of certain sorts with an operational semantics because there exists a fully
established semantics for them. We will call such sorts given sorts. It is common
to identify terms of given sorts if they are semantically equivalent. This can be
formalized as follows. First of all, we introduce ≈̈, the (sort-indexed) family of
least congruence relations on binding terms that includes both ≈̇ and the equiv-
alence induced by the semantics for the terms of given sorts. Next, we replace in
the definitions of Sections 3 and 4 all occurrences of ≈̇ by ≈̈. These replacements
slightly alter the notions of transition system, Herbrand interpretation, proof,
partial Herbrand interpretation, and bisimulation. Indirectly, they also alter the
immediate consequence operators (TP and T3

P), the partial stable models for
a TSS, and the intended Herbrand model of a TSS (MP). In all cases, the
alteration is simply that more terms are identified. Finally, we replace clause (c)
of rule 3 in the definition of the panth format (Definition 4.3) by the following
clause:

(c′) o(u1, . . . , un), where ui (1 ≤ i ≤ n) is a variable or a term of the form
x1, . . . , xm . x(x1, . . . , xm) or a term of a given sort;

This modification permits, for given sorts s, that a term of sort s is used where
the original rule only permits that a variable of sort s is used. The congruence
theorem goes through in the case of TSSs with given sorts (obviously with the
altered definitions of bisimulation and panth format). The proof goes like the
proof of Theorem 4.9.

Distinguishing given sorts does not only make it possible to relax the panth
format. It also allows for TSSs that define parametrized transition relations,
where the parameters are closed terms of given sorts. Put differently, we can
relax the restriction that a transition predicate p is a predicate p : s1 × . . .× sn
with 1 ≤ n ≤ 2 to the restriction that a transition predicate p is a predicate
p : s1 × . . . × sn with at most two sorts among s1, . . . , sn that are not given
sorts. Suppose that p is a parametrized transition predicate p : s1× . . .× sn and
i1, . . . , ik (n − 2 ≤ k ≤ n − 1) are the indices of the given sorts in increasing
order. Then we can take a fresh predicate pt1,...,tk for each closed term t1 of
sort si1 , . . . , closed term tk of sort sik . It is easy to see that carrying on in this
way, we can reduce any TSS that defines parametrized transition relations to a
TSS that only defines unparametrized – unary and binary – transition relations,
while preserving bisimilarity.

Example 5.1 In Appendix A, a TSS of BPAsat with integration (see [5]) is
given. It is a TSS that defines parametrized transition relations. The sort R≥0
of non-negative real numbers and the sort P(R≥0) of sets of non-negative real
numbers are considered given sorts. There is one transition rule with a negative
premise. Moreover, a variable binding operator, viz. the integration operator∫

, is involved. There exists a stratification for this TSS and consequently it
is meaningful. It is easy to see that the TSS is in the relaxed panth format.

24

In addition, all transition predicates concerned are ordinary. Hence, ↔P is a
congruence.

In [18], in which the tyft/tyxt format has essentially been extended to deal
with many-sortedness, given sorts and parametrized transition relations, there
is a need for restrictions on the rule format concerning the distinctness of the
free variables of the arguments of given sorts and a compatibility condition
with respect to the equivalence induced by the semantics for the terms of given
sorts. We do not need such restrictions because we look at transition systems
that consist of transition relations on ≈̈-equivalence classes of closed terms (see
Section 3), instead of transition relations on closed terms. This approach to the
meaning of TSSs, chosen on semantic grounds, guarantees that terms of given
sorts can not prevent bisimulation equivalence from being a congruence.

Example 5.2 From the TSS of BPAsat given in Appendix A, we can immedi-
ately prove 〈ã, 0〉 a−→ 〈

√
, 0〉 and 〈ã, 0〉 a−→ 〈

√
, 1 − 1〉 (for any action a). In our

approach, these formulas refer to the same transition. In the approach of [18],
they refer to different transitions – which can be exchanged for each other in so
far as bisimulation is concerned.

6 Concluding remarks

The notion of TSS was first introduced in [24] and then generalized in [22], [10],
[6] and [38]. We generalized it further to cover variable binding operators and
many-sortedness. We found that the notions of bisimulation and panth format
generalize naturally to the generalized TSSs, and moreover that in the gener-
alized setting bisimulation is still a congruence for meaningful TSSs in panth
format. Therefore, we expect that the applicability of TSSs to provide process
calculi, specification languages and programming languages with an operational
semantics has been improved. The generalized TSSs can amongst other things
deal with: the integration operator

∫
of real time ACP [4], the sum operator

∑
of µCRL [23], and the recursion operator µ of CSP [25] and CCS [28]. If the
π-calculus [29] would separate names and variables, guaranteeing that distinct
constants remain distinct, π-calculus features such as input action prefixes x(y)
and the restriction operator ν could be dealt with as well.

Our main motivation to take up the work presented in this paper stems
directly from work on an integrated treatment of all versions of ACP with tim-
ing [5]. That work created the need of a generalization of the framework from [38]
that takes variable binding operators and many-sortedness into account. The
notion of TSS was already generalized to deal with variable binding operators
and many-sortedness in [17]. That paper gives syntactic criteria for the (opera-
tional) conservativity property of extensions, but not for the congruence property
of bisimulation equivalence. Initially, we tried to generalize the congruence result
of [38] to the generalized TSSs of [17]. This turned out to be far from straight-
forward because of the distinction made between formal and actual variables,
formal and actual terms, formal and actual substitutions, etc. In addition, it

25

was an obstacle that there is little semantic clarification in [17] of the notations
introduced. Therefore, we chose to introduce an alternative generalization. We
did not give syntactic criteria for conservativity of extensions, which is important
in cases where an existing calculus or language is extended with new features.
We keep this topic for future research, but we expect that it is easy to generalize
the relevant results of [12] or to adapt the results of [17].

The generalized TSSs presented in this paper are TSSs that define transition
relations on binding terms. Binding terms are basically second-order terms of
a restricted kind, suitable to deal with variable binding operators. As a result,
binding terms are not meant to deal with general second-order operators. Bind-
ing terms do not support higher-order operators other than the second-order
operators that can be regarded as variable binding operators. Consequently, the
generalized TSSs are not appropriate to provide higher-order process calculi and
higher-order functional programming languages with an operational semantics.
Approaches to structural operational semantics for the higher-order case has
been studied extensively by others.

Approaches for higher-order process calculi are investigated, for example,
in [8]. In that paper attention is concentrated on CHOCS-like process calculi [37].
The paper introduces higher-order transition rules that define typed transition
relations. Higher-order versions of bisimulation and the GSOS format are also
proposed. Interesting is that for the restriction to the second-order case another
version of bisimulation, called white bisimulation, is proposed and a correspond-
ing congruence result is given. White bisimulation generalizes bisimulation as
defined in Section 4.1 from binding terms to general second-order terms.

Approaches to structural operational semantics for (higher-order) functional
programming languages are investigated, for example, in [26]. Just like most
other papers on this issue, the focus in that paper is a restricted kind of tran-
sition systems and a variant of bisimulation, known as evaluation systems and
applicative bisimulation, respectively. The proposed approach requires to distin-
guish two kinds of variables, terms, substitutions, etc. – like in [17]. A transition
rule format is proposed for which a congruence result is given. The format con-
cerned is virtually incomparable with the generalized panth format defined in
Section 4.2. In [33], which has been inspired by [26], another format, called
the GDSOS format, is introduced. That format is more restrictive, but guar-
antees other properties which permit, for example, to use a kind of fixed-point
induction.

Higher-order features of process calculi, and programming languages and
specification languages, can sometimes be dealt with in a first-order framework
by apposite choice of auxiliary sorts and operators, and parametrized transi-
tion predicates in the sense of Section 5. This is illustrated in [7]. In that
paper, a generalization of the tyft/tyxt format, called the promoted tyft/tyxt
format, is proposed for which a congruence result is given. This format applies
to parametrized transition predicates with only one parameter. The promoted
tyft/tyxt format impose restrictions on the parameter which are weaker than
the requirement that the sort of the parameter must be a given sort.

26

References

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process
Algebra. Elsevier, 2000.

[2] P. Aczel. Frege structures and the notions of proposition, truth and set. In
J. Barwise, H.J. Keisler, and K. Kunen, editors, The Kleene Symposium,
pages 31–59. North-Holland, 1980.

[3] K.R. Apt and R.N. Bol. Logic programming and negation: A survey. Jour-
nal of Logic Programming, 19–20:9–71, 1994.

[4] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142–188, 1991.

[5] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: Real
time and discrete time. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra. Elsevier, 2000.

[6] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured oper-
ational semantics with predicates. In E. Best, editor, CONCUR’93, pages
477–492. LNCS 715, Springer-Verlag, 1993.

[7] K.L. Bernstein. A congruence theorem for structured operational semantics
of higher-order languages. In LICS ’98, pages 153–164. IEEE Computer
Science Press, 1998.

[8] B. Bloom. CHOCOLATE: Calculi of higher order communication and
lambda terms. In Symposium on Principles of Programming Languages,
pages 339–347. ACM Press, 1994.

[9] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42:232–268, 1995.

[10] R.N. Bol and J.F. Groote. The meaning of negative premises in transition
system specifications. Journal of the ACM, 43:863–914, 1996.

[11] L. Chen. An interleaving model for real-time systems. In A. Nerode and
M. Taitslin, editors, Symposium on Logical Foundations of Computer Sci-
ence, pages 81–92. LNCS 620, Springer-Verlag, 1992.

[12] P.R. D’Argenio and C. Verhoef. A conservative extension theorem in pro-
cess algebras with inequalities. Theoretical Computer Science, 177:351–380,
1997.

[13] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23:733–742, 1976.

[14] M.P. Fiore, G.D. Plotkin, and D. Turi. Abstract syntax and variable bind-
ing. In LICS ’99, pages 199–203. IEEE Computer Science Press, 1999.

27

[15] M. Fitting. A Kripke-Kleene semantics for general logic programs. Journal
of Logic Programming, 2:295–312, 1985.

[16] W.J. Fokkink and R.J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree
rules. Information and Computation, 126:1–10, 1996.

[17] W.J. Fokkink and C. Verhoef. A conservative look at operational semantics
with variable binding. Information and Computation, 146:24–54, 1998.

[18] V.C. Galpin. Comparison of process algebra equivalences using formats. In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, Proceedings
26th ICALP, pages 341–350. LNCS 1644, Springer Verlag, 1999.

[19] A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38:620–650, 1991.

[20] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In R.A. Kowalski and K.A. Bowen, editors, Fifth International
Conference and Symposium on Logic Programming, pages 1070–1080. ALP,
MIT Press, 1988.

[21] R.J. van Glabbeek. The meaning of negative premises in transition system
specifications II. In F. Meyer auf der Heide and B. Monien, editors, Pro-
ceedings 23th ICALP, pages 502–513. LNCS 1099, Springer Verlag, 1996.

[22] J.F. Groote. Transition system specifications with negative premises. The-
oretical Computer Science, 118:263–299, 1993.

[23] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating
Processes 1994, pages 26–62. Workshop in Computing Series, Springer-
Verlag, 1995.

[24] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202–260,
1992.

[25] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[26] D.J. Howe. Proving congruence of bisimulation in functional programming
languages. Information and Computation, 124:103–112, 1996.

[27] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory re-
duction systems: Introduction and survey. Theoretical Computer Science,
121:279–308, 1993.

[28] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[29] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I
and II. Information and Computation, 100:1–40 and 41–77, 1992.

28

[30] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
application. Information and Computation, 114:131–178, 1994.

[31] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference, pages 167–183. LNCS 104, Springer
Verlag, 1981.

[32] T.C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundamenta Informaticae, 13:445–463, 1990.

[33] D. Sands. From SOS rules to proof principles: An operational metathe-
ory for functional languages. In Symposium on Principles of Programming
Languages, pages 428–441. ACM Press, 1997.

[34] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica,
33:69–97, 1996.

[35] R. de Simone. Higher-level synchronising devices in MEIJE–SCCS. Theo-
retical Computer Science, 37:245–267, 1985.

[36] Sun Yong. An algebraic generalization of Frege structures – Binding alge-
bras. Theoretical Computer Science, 211:189–232, 1999.

[37] B. Thomsen. A theory of higher order communicating systems. Information
and Computation, 116:38–57, 1995.

[38] C. Verhoef. A congruence theorem for structured operational semantics with
predicates and negative premises. Nordic Journal of Computing, 2:274–302,
1995.

A TSS of BPAsat with integration

In this appendix, we give the signature, the domain of transition predicates and
the transition rules of BPAsat with integration. In BPAsat, basic standard real
time process algebra with absolute timing, parallelism and communication are
not considered. The integration operator

∫
provides for alternative composition

over a continuum of alternatives. In BPAsat, a set A of actions is assumed. P is
the sort of processes.

The signature of BPAsat consists of an urgent action constant ã:→ P for each
a ∈ A, the urgent deadlock constant δ̃ :→ P, the immediate deadlock constant
δ
·

: → P, the alternative composition operator + : P× P → P, the sequential
composition operator ·:P×P→ P, the absolute delay operator σabs :R≥0×P→ P,
and the integration (variable binding) operator

∫
: P(R≥0)× R≥0 . P→ P.

The process ã is only capable of performing action a, immediately followed
by successful termination, at time 0. The process δ̃, although existing at time
0, is incapable of doing anything. The process δ

·
is the process that exhibits

inconsistent timing at time 0. This means that δ
·
, different from δ̃, does not exist

at time 0 and hence causes a time stop at time 0. The process σpabs(x) is the

29

process x shifted in time by p. Thus, the process σpabs(δ̃) is capable of idling
from time 0 upto and including time p – and at time p it gets incapable of doing
anything – whereas the process σpabs(δ

·
) is only capable of idling from time 0 upto,

but not including, time p. So σpabs(δ
·
) can not reach time p.

We need four kinds of transition predicates:

a predicate 〈 , 〉 a−→ 〈 , 〉 : P× R≥0 × P× R≥0 for each a ∈ A,

a predicate 〈 , 〉 a−→ 〈
√
, 〉 : P× R≥0 × R≥0 for each a ∈ A,

a predicate 〈 , 〉 7−→ 〈 , 〉 : P× R≥0 × P× R≥0,
a predicate ID() : P.

The four kinds of transition predicates are called the action step, action ter-
mination, time step and immediate deadlock predicates. We will only define
transition relations for which 〈t, p〉 a−→ 〈t′, q〉 and 〈t, p〉 a−→ 〈

√
, q〉 never hold if

p 6= q. The four kinds of transition predicates can be explained as follows:

〈t, p〉 a−→ 〈t′, p〉: process t is capable of first performing action a at time p
and then proceeding as process t′;

〈t, p〉 a−→ 〈
√
, p〉: process t is capable of first performing action a at time p

and then terminating successfully;

〈t, p〉 7−→ 〈t′, q〉: process t is capable of first idling from time p to time q
and then proceeding as process t′;

ID(t): process t is not capable of reaching time 0.

The transition rules for BPAsat with integration are given in Tables 1 and 2.

〈ã, 0〉 a−→ 〈
√
, 0〉

〈x, p〉 a−→ 〈x′, p〉
〈σ0

abs(x), p〉
a−→ 〈x′, p〉

〈x, p〉 a−→ 〈x′, p〉, 0 < r

〈σr
abs(x), p+r〉

a−→ 〈σr
abs(x

′), p+r〉
〈x, p〉 a−→ 〈

√
, p〉

〈σq
abs(x), p+q〉

a−→ 〈
√
, p+q〉

〈x, p〉 a−→ 〈x′, p〉
〈x+ y, p〉 a−→ 〈x′, p〉

〈y, p〉 a−→ 〈y′, p〉
〈x+ y, p〉 a−→ 〈y′, p〉

〈x, p〉 a−→ 〈
√
, p〉

〈x+ y, p〉 a−→ 〈
√
, p〉

〈y, p〉 a−→ 〈
√
, p〉

〈x+ y, p〉 a−→ 〈
√
, p〉

〈x, p〉 a−→ 〈x′, p〉
〈x · y, p〉 a−→ 〈x′ · y, p〉

〈x, p〉 a−→ 〈
√
, p〉

〈x · y, p〉 a−→ 〈y, p〉 ID(δ
·
)

ID(x)
ID(σ0

abs(x))
ID(x), ID(y)
ID(x+ y)

ID(x)
ID(x · y)

p < p′, p′ < r

〈σr
abs(x), p〉 7−→ 〈σ

r
abs(x), p

′〉
¬ID(x), p < r

〈σr
abs(x), p〉 7−→ 〈σ

r
abs(x), r〉

〈x, p〉 7−→ 〈x, p′〉
〈σq

abs(x), p+q〉 7−→ 〈σ
q
abs(x), p

′+q〉

〈x, p〉 7−→ 〈x, p′〉
〈x+ y, p〉 7−→ 〈x+ y, p′〉

〈y, p〉 7−→ 〈y, p′〉
〈x+ y, p〉 7−→ 〈x+ y, p′〉

〈x, p〉 7−→ 〈x, p′〉
〈x · y, p〉 7−→ 〈x · y, p′〉

(a ∈ A, x, x′, y, y′ : P, p, p′, q, r, v : R≥0)

Table 1: Rules for operational semantics of BPAsat

These rules are easy to understand. We will only explain the rules for the
absolute delay operator (σabs). The rules in the second row express that the
action related capabilities of a process σ0

abs(x) at time p include those of process
x at time p and that the action related capabilities of a process σrabs(x) (r > 0) at

30

〈P (q), p〉 a−→ 〈x′, p〉, q ∈ V
〈
∫
v∈V P (v), p〉 a−→ 〈x′, p〉

〈P (q), p〉 a−→ 〈
√
, p〉, q ∈ V

〈
∫
v∈V P (v), p〉 a−→ 〈

√
, p〉

〈P (q), p〉 7−→ 〈x′, p′〉, q ∈ V
〈
∫
v∈V P (v), p〉 7−→ 〈

∫
v∈V P (v), p′〉

ID(
∫
v∈∅ P (v))

ID(P (q))
ID(

∫
v∈{q} P (v))

ID(
∫
v∈V P (v)), ID(

∫
v∈W P (v))

ID(
∫
v∈V ∪W P (v))

(a ∈ A, P : R≥0 . P, x
′ : P, p, q, r, v : R≥0, V,W : P(R≥0))

Table 2: Additional rules for integration

time p+r include those of process x at time p shifted in time by r. The first and
second rule in the fifth row express that a process σrabs(x) (r > 0) can idle from
any time p ≥ 0 to any time p′ < r and that it can also idle to time r provided
that process x can reach time 0. The third rule in the fifth row expresses that
the time related capabilities of a process σqabs(x) (q ≥ 0) at time p + q include
those of process x at time p shifted in time by q.

B Outline of proofs

Theorem 4.7 (Well-foundedness) Let P = (Σ ,Π , R) be a meaningful TSS
in panth format. If all transition predicates occurring in positive premises of
rules in R are ordinary, then there exists a well-founded TSS P ′ = (Σ ,Π , R′)
in panth format with MP ′ =MP .

Proof. If Theorem 5.4 from [16] goes through for many-sorted terms with
variable binding in case all transition predicates occurring in positive premises
are ordinary, the theorem follows immediately. It is straightforward to check that
Theorem 5.4 from [16] goes through. The proof presented in [16] makes, directly
or indirectly, use of Lemma 3.2 and adaptations of Lemmas and Theorems 4.1,
4.5 and 4.9 from that paper. It is immediately clear that Lemma 3.2 goes
through for many-sorted terms with variable binding seeing that its proof does
not depend on the term structure. The proof of the adaptation of Lemma 4.1
needs a slight adaptation of the substitutions because the operators may now
be variable binding operators. In the proofs of the adaptations of Theorems 4.5
and 4.9, it is now necessary to make case distinctions wherever the form of
the first argument of premises or conclusions matters because it may have the
form x(x1, . . . , xn) as well. However, the additional cases are similar to the the
original ones. 2

Theorem 4.9 (Congruence) Let P = (Σ ,Π , R), where Σ = (S,O), be a
meaningful TSS in panth format. If P is well-founded, then ↔P is a congruence.

Proof. First, we prove the case that all predicates in Π are binary predicates.
Next, we show that, if there are also unary predicates in Π , we can construct
from the TSS P a new TSS P ′ without unary predicates such that two closed
terms over Σ are bisimilar in P if and only if they are bisimilar in P ′.

Theorem 8.13 from [10] covers the case that all predicates in Π are binary
predicates for single-sorted terms without variable binding. In that theorem the

31

requirement of well-foundedness is omitted because it follows from Theorem 5.4
from [16] that it can be omitted. Theorem 8.13 from [10] goes through for many-
sorted terms with variable binding if we add the requirement of well-foundedness.
The proof presented in [10] makes, directly or indirectly, use of the Lemmas,
Theorems and Corollaries 5.5–5.8, 8.6, 8.8, 8.9 and 8.12 from that paper as well
as Theorem 5.4 from [16]. We do not have to check that Theorem 5.4 from [16]
goes through because we do not omit the requirement of well-foundedness in
our congruence theorem. It is immediately clear that Lemmas, Theorems and
Corollaries 5.5–5.8 go through for many-sorted terms with variable binding seeing
that their proofs do not depend on the term structure. It requires little effort to
check that Lemmas 8.6, 8.8 and 8.12 go through as well. The proof of Lemma 8.6
needs a slight adaptation of the substitutions σf because f may now be a variable
binding operator. The proof of Lemma 8.8 remains straightforward after the
adaptation of RP , meant to be the minimal congruence that includes ↔P , to
terms in which variables are bound. The proof of Lemma 8.12 simply combines
Corollary 5.8 and Lemma 8.9.

Surprisingly, it is also straightforward to check that Lemma 8.9, which is the
main lemma, goes through. That lemma consist of two parts. In the proof of
both parts, it is now necessary to show as well that

x1, . . . , xn . u RP y1, . . . , yn . v ⇒ ∀t1 ∈ CTΣ s(x1), . . . , tn ∈ CTΣ s(xn)•

u[t1, . . . , tn/x1, . . . , xn] RP v[t1, . . . , tn/y1, . . . , yn].

This follows immediately from the definitions of ↔P and RP . The proof of
the first part makes use of Claim 8.10 and the proof of the second part makes
use of Claim 8.11. Both claims concern the existence of a substitution with
certain properties. In the proof of property (b) of both claims, now two cases
have to be distinguished: (i) xi : s for some s ∈ S and (ii) xi : s for some
s = s1 × . . . × sn . s ∈ B(S). The proof for case (ii) is easy using the following
fact:

σ(xi) 6∈ Vs ⇒ σ(xi) ≈̇ σ(y1, . . . , yn . xi(y1, . . . , yn)).

This fact follows immediately from the definition of substitution. In the proof of
both parts, it is also necessary to take into account that the last transition rule
applied in a proof may have a conclusion of the form p(x′(x1, . . . , xn), t). This
means that variants of Claims 8.10 and 8.11 have to be proved that include the
additional property

(b′) if x = x′ then σ′(x) = x1, . . . , xn . f(x1, . . . , xn),

which is easy to prove.
Constructing from the TSS P a new TSS P ′ without unary predicates that

preserves bisimilarity is for many-sorted terms much easier than for single-sorted
terms (see Theorem 4.5 in [38] for an appropriate construction in the single-
sorted case). For many-sorted terms with variable binding, the construction of
P ′ = (Σ ′,Π ′, R′), where Σ ′ = (S′, O′), goes as follows:

1. S′ = S ∪ {sξ}, where sξ ∈ S \ S;

32

2. O′ = O ∪ {ξ}, where ξ :→ sξ;

3. Π ′ = {p ∈ Π | ∃s1 ∈ S, s2 ∈ B(S) • p : s1 × s2}∪
{pξ ∈ P | ∃p ∈ Π , s ∈ S • p : s and pξ : s× sξ};

4. R′ = {{Ξ(φ) | φ ∈ Φ}
Ξ(ψ)

| Φ
ψ
∈ R},

where Ξ(p(t1, t2)) = p(t1, t2), Ξ(¬p(t1, t2)) = ¬p(t1, t2),
Ξ(p(t)) = pξ(t, z) (z fresh and z ∈ Vξ), Ξ(¬p(t)) = ¬pξ(t, ξ).

That is, sξ is a fresh sort, ξ is the only term of sort sξ, binary predicates pξ take
the place of unary predicates p, and the new transition rules are obtained from
the old ones by replacing each positive transition formula p(t) by pξ(t, z) and each
negative transition formula ¬p(t) by ¬pξ(t, ξ). The proviso that the variables z
used in these replacements must be fresh means that they are mutually distinct.
It follows immediately that σ(pξ(t, x)) = pξ(σ(t), ξ) for all closed substitutions
σ. Next it is easy to see that p(t) ∈ MP ⇔ pξ(t, ξ) ∈ MP ′ , p(t1, t2) ∈ MP ⇔
p(t1, t2) ∈MP ′ , and ξ ↔P ′ ξ. Consequently, for all s ∈ B(S), for all t, t′ ∈ CTΣ s,
t ↔P t

′ ⇔ t ↔P ′ t
′. 2

33

