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Abstract

We investigate the connections between the process algebra for hybrid systems of
Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al.
We give interpretations of hybrid automata in the process algebra for hybrid systems
and compare them with the standard interpretation of hybrid automata as timed
transition systems. We also relate the synchronized product operator on hybrid
automata to the parallel composition operator of the process algebra. It turns out
that the formalism of hybrid automata matches a fragment of the process algebra
for hybrid systems closely. We present an adaptation of the formalism of hybrid
automata that yields an exact match.
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1 Introduction

Hybrid systems are systems that exhibit both discrete and continuous be-
haviour. They typically consist of a controlling subsystem made up of digital
components and a controlled subsystem made up of analog components. The
controlling subsystem exhibits discrete behaviour and the controlled subsys-
tem exhibits continuous behaviour. In general, the controlling subsystem is
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embedded in the controlled subsystem without being accessible from the out-
side. Moreover, the behaviour of the controlling subsystem generally depends
on the behaviour of the controlled subsystem and cannot be considered in
isolation. Hybrid systems constitute a topic that is vital to computer science,
for they are found in many areas.

It was proposed almost at the outset of the interest for hybrid systems in com-
puter science to model them as hybrid automata [1–3]. Hybrid automata are
automata equipped with variables that evolve continuously with time. They
can be viewed as a generalization of timed automata [4,5]. The study of hybrid
systems in computer science is up to now largely focussed on hybrid automata,
in particular on model checking for hybrid automata (see e.g. Refs. [6–9]).
Satisfaction of properties expressed in an expressive temporal logic can be
automatically verified for a restricted subclass of hybrid automata, known
as linear hybrid automata. Conservative approximations are needed for other
hybrid automata to make automatic verification possible.

In Ref. [10], we have introduced a process algebra for hybrid systems. This
process algebra comprises:

• mathematical expressions for hybrid systems;
• equational axioms for equational reasoning about hybrid systems;
• rules for lifting results from real analysis to equations about hybrid systems;
• a structural operational semantics of the expressions.

The expressions are constructed by means of operators, each of which corre-
sponds to a distinct and natural way in which hybrid systems can be combined
or adapted. The axioms and lifting rules make fully precise how to establish
whether two expressions constructed in different ways represent the same hy-
brid system. The structural operational semantics induces a transition system
for each expression. The transition systems concerned are similar to the ones
used for model checking in the setting of hybrid automata.

The process algebra for hybrid systems introduced in Ref. [10] can be regarded
as originating from the formalism of hybrid automata. Both adopt the view
that a hybrid system is a system in which an instantaneous state transition
takes place when the system performs an action and a continuous state evo-
lution takes place while the system is idling between performing successive
actions. The process algebra for hybrid systems from Ref. [10] is an exten-
sion of the process algebra with continuous relative timing from the collection
of process algebras with timing, each dealing with timing in a different way,
presented in Refs. [11,12]. All the process algebras with timing presented in
Refs. [11,12] are extensions of ACP [13,14].

To the best of our knowledge, the other existing process algebras for hybrid
systems are a variant of timed CSP [15], called hybrid CSP, introduced in
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Ref. [16], a variant of the π-calculus [17], called the φ-calculus, introduced
in Ref. [18], and another extension of ACP [14], called HyPA, introduced in
Ref. [19]. In comparison with the process algebra for hybrid systems proposed
in Ref. [10], hybrid CSP and the φ-calculus have certain limitations with regard
to the description and/or analysis of hybrid systems. Hybrid CSP, the φ-
calculus and HyPA are further discussed in Ref. [10].

In this paper, we take a closer look at the connections between the process
algebra for hybrid systems from Ref. [10] and the formalism of hybrid au-
tomata. The purpose of this is twofold. Firstly, we want to substantiate our
claim made in Ref. [10] that hybrid automata can be faithfully interpreted in
the proposed process algebra for hybrid systems in a uniform and direct way.
Secondly, we want to lay the foundation of the adaptation of model checking
tools developed for hybrid automata to restricted versions of the proposed
process algebra for hybrid systems. We show that the formalism of hybrid
automata matches a fragment of the process algebra for hybrid systems from
Ref. [10] closely. Hybrid automata can be faithfully interpreted in a uniform
and direct way, but a faithful interpretation of synchronized products of hy-
brid automata cannot be obtained in a compositional way. We introduce an
adaptation of the formalism of hybrid automata, which does not lead to any
loss of generality, and show that the adaptation yields an exact match.

The structure of this paper is as follows. First of all, we give a brief summary
of the version of process algebra for hybrid systems from Ref. [10] (Section 2).
Next, we describe the form and meaning of the propositions used in the process
algebra for hybrid systems and the formalism of hybrid automata (Section 3).
Then, we give a summary of the formalism of hybrid automata (Section 4).
Following, we discuss the semantic issues concerning the process algebra for hy-
brid systems that are relevant to the rest of the paper (Section 5). Thereupon,
we investigate the connections between the process algebra for hybrid systems
and the formalism of hybrid automata (Section 6). After that, we present an
adaptation of the formalism of hybrid automata that yields a better match
than the old one (Section 7). Finally, we make some concluding remarks (Sec-
tion 8). For reference, the operational semantics of the process algebra for
hybrid systems is given in Appendix A. For a comprehensive overview of this
process algebra, the reader is referred to Ref. [10].

Various constants and operators of the process algebra with continuous rel-
ative timing from Refs. [11,12] have counterparts in the other versions from
the above-mentioned collection. A notational distinction is made between a
constant or operator of one version and its counterparts in another version,
by means of different decorations of a common symbol, if they should not be
identified in case versions are integrated. So long as one uses a single version,
one can safely omit those decorations. However, we refrain from omitting them
in this paper because we think that change of notation in a series of technical
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publications is undesirable.

2 Process Algebra for Hybrid Systems

In this section, we give an overview of the process algebra for hybrid systems
proposed in Ref. [10]. For an extensive treatment, the reader is referred to
that paper. We distinguish between ACPsrt

hs , the process algebra that is the
mere adaptation of ACPsrt to the description and analysis of hybrid systems,
and two extensions that are useful in many applications: integration, which
provides for alternative composition over a continuum of differently timed
alternatives, and guarded recursion, which allows for the description of (po-
tentially) non-terminating processes.

2.1 ACPsrt
hs

ACPsrt
hs is obtained by extending a combination of two existing extensions of

ACP [13], namely ACPsrt, the process algebra with continuous relative timing
from Ref. [12], and ACPps, the process algebra with propositional signals from
Ref. [20], with two new operators. A process may idle for some period of
time before it performs its next action (instantaneously), in which case the
next action is performed after a delay. ACPsrt covers this aspect of process
behaviour. The state of processes is kept invisible. In ACPps, a process can
have its state to some extent visible. The basic idea is that the visible part of
the state of a process, called the signal emitted by the process, is a proposition.
Only discrete state changes, caused by performing actions, are covered.

One of the new operators, called signal evolution, makes it possible to deal
with continuous state changes during delays as well. With this new operator,
we can have signals at all points of time during a delay instead of only at its
begin and end. Algebraic and differential equations and inequalities concern-
ing named state components are taken as the atomic propositions from which
the signals are generated. The other new operator, called signal transition,
makes it possible to deal better with instantaneous state changes where the
state immediately after the change depends upon the state immediately be-
fore the change. The resulting process algebra has, in addition to equational
axioms, some rules to derive further equations with the help of real analysis.
These lifting rules permit to cast the effects of continuous state changes into
equations about processes.

An extensive treatment of ACPsrt
hs can be found in Ref. [10]. In this section,

we only give a brief overview of the constants and operators of ACPsrt
hs .
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As usual in ACP-style process algebras, we assume that a fixed but arbitrary
set A of actions and a fixed but arbitrary partial commutative and associative
communication function γ : A × A → A have been given. The function γ is
regarded to give the result of synchronously performing any two actions for
which this is possible, and to be undefined otherwise.

ACPsrt
hs has the following constants and operators in common with ACPsrt:

• for each action a in A, the undelayable action a, written ˜̃a, is the process
that immediately performs action a at the current point of time, and then
terminates successfully;

• the undelayable deadlock, written ˜̃δ, is the process that is neither capable
of performing any action nor capable of idling beyond the current point of
time;

• the relative delay of P for a period of time r, written σr
rel(P ), is the process

that idles for a period of time r and then behaves like P ;
• the alternative composition of P1 and P2, written P1+P2, is the process that

either behaves like P1 or behaves like P2 (but not both, unless P1 equals
P2);

• the sequential composition of P1 and P2, written P1 ·P2, is the process that
first behaves like P1, but when P1 terminates successfully it continues by
behaving like P2;

• the parallel composition of P1 and P2, written P1 ‖ P2, is the process that
proceeds with P1 and P2 in parallel;

• the left merge of P1 and P2, written P1 bb P2, is the same as P1 ‖ P2 except
that P1 bb P2 starts with performing an action of P1;

• the communication merge of P1 and P2, written P1 |P2, is the same as P1‖P2

except that P1 | P2 starts with performing an action of P1 and an action of
P2 synchronously;

• the encapsulation of P with respect to H, written ∂H(P ), keeps P from
performing actions in H;

• the relative undelayable time-out of P , written νrel(P ), keeps P entirely from
idling.

In ACPsrt
hs , propositions are used as signals that are emitted by processes.

The intuition is that the signal emitted by a process, as well as each of its
logical consequences, holds at the start of the process. The propositions con-
cerned, called state propositions, are constructed in the usual way from atomic
propositions that are algebraic and differential equations and inequalities con-
cerning named state components. The named state components, called state
variables, are real-valued functions of time. Their values may change both in-
stantaneously at the points of time at which an action is performed and con-
tinuously during the periods in between. In order to deal with instantaneous
state transitions, propositions concerning the values of the state variables im-
mediately before and after a transition are used as well. Those propositions
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are called transition propositions. The form and meaning of state propositions
and transition propositions are described in Section 3. It is assumed that a
fixed but arbitrary set V of state variables has been given.

ACPsrt
hs , has, in addition to the constants and operators in common with

ACPsrt, the following constants and operators:

• the non-existent process, written ⊥, is a process that emits a signal that
cannot hold;

• P emitting signal ψ, written ψ ∧N P , is the process that behaves like P , but
moreover emits the signal ψ;

• P proceeding conditionally on ψ, written ψ :→P , is the process that behaves
like P if state proposition ψ holds at its start, and otherwise behaves like
undelayable deadlock;

• P in evolution according to φ with V smooth (V a finite subset of V),
written φ ∩H

V P , is the process P of which the emitted signal changes contin-
uously till it performs its first action in such a way that state proposition
φ is satisfied and without discontinuities for the state variables in V ; sig-
nal evolution does not take its signal changing effect if the first action is
performed immediately, but what remains in such cases is that P emits the
signal φ;

• P in transition according to χ, written χ uH P , is the process P of which
the signal changes instantaneously over performing its first action in such
a way that transition proposition χ is satisfied if it performs its first action
immediately; otherwise signal transition does not take its signal changing
effect, and in either case the process χuHP behaves like undelayable deadlock
if there is no transition satisfying χ possible at the start of P .

The operational semantics of ACPsrt
hs is described in a mathematically precise

way in Appendix A. Here, we only point at the most important issues:

• In P1 + P2, there is an arbitrary choice between P1 and P2. The choice
is resolved on one of them performing its first action, and not otherwise.
Consequently, the choice between two idling processes will always be post-
poned until at least one of the processes can perform its first action. Only
when both processes cannot idle any longer, further postponement is not
an option. If the choice has not yet been resolved when one of the processes
cannot idle any longer, the choice will simply not be resolved in its favour.
As long as both processes idle their emitted signals change jointly.

• P1 ‖ P2 can behave in the following ways: (i) first either P1 or P2 performs
its first action and next it proceeds in parallel with the process following
that action and the process that did not perform an action; (ii) if their first
actions can be performed synchronously, first P1 and P2 perform their first
actions synchronously and next it proceeds in parallel with the processes
following those actions. However, P1 and P2 may have to idle before they
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can perform their first action. Therefore, P1‖P2 can only start with: (i) per-
forming an action of P1 or P2 if it can do so before or at the ultimate point
of time for the other process to start performing actions or to deadlock;
(ii) performing an action of P1 and an action of P2 synchronously if both
processes can do so at the same point of time. Moreover, the state transition
caused by performing the first action of P1 or P2 must not be precluded by
the other process: (i) the signal emitted by the other process must hold
in the state immediately before the transition and the state immediately
after the transition; (ii) if the other process is idling when the action is per-
formed, a state evolution with discontinuities for the state variables of which
the value changes by the transition must be possible for the other process.
There is only one action left when actions are performed synchronously.

The axioms and lifting rules of ACPsrt
hs , as well as the additional axioms for in-

tegration and guarded recursion, can be found in Ref. [10]. In Section 3.3, after
the description of the form and meaning of state propositions and transition
propositions, we give simple equations, derivable from those axioms and lifting
rules, that illustrate the kind of calculations that are possible with them. For
examples of the use of this process algebra for the description and analysis of
hybrid systems, the reader is referred to Ref. [10] as well.

We use the notation
∑

i∈I ti, where I = {i1, . . . , in} and ti1 , . . . , tin are terms

of ACPsrt
hs , for ti1 + . . . + tin . The convention is that

∑
i∈I ti stands for ˜̃δ if

I = ∅. Throughout this paper, the need to use parentheses is reduced by
using the associativity of the operators + and ·, and by ranking the prece-
dence of the binary operators. We adhere to the following precedence rules:
(i) the operator + has lower precedence than all others, (ii) the operator · has
higher precedence than all others, and (iii) all other operators have the same
precedence.

2.2 Integration

In order to allow for alternative composition over an infinite set of differently
timed alternatives, we add integration to ACPsrt

hs . Integration was first intro-
duced for a timed variant of ACP in Ref. [21].

Integration is represented by the variable-binding operator
∫
. Let P be an

expression, possibly containing variable u, such that P [p/u] (P with p substi-
tuted for u) represents a process for all p ∈ R≥; and let U ⊆ R≥. Then the
integration

∫
u∈UP behaves like one of the processes P [p/u] for p ∈ U . Hence,

integration is a form of alternative composition over a set of alternatives that
may be infinite and even uncountable.

The operational semantics for integration is described in Appendix A.
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2.3 Guarded Recursion

In order to allow for the description of (potentially) non-terminating processes,
we add guarded recursion to ACPsrt

hs .

A recursive specification over ACPsrt
hs is a set of recursive equations E = {X =

tX | X ∈ V } where V is a set of variables and each tX is a term of ACPsrt
hs

that only contains variables from V . We write V(E) for the set of all variables
that occur on the left-hand side of an equation in E. A solution of a recursive
specification E is a set of processes (in some model of ACPsrt

hs ) {PX | X ∈
V(E)} such that the equations of E hold if, for all X ∈ V(E), X stands for
PX . Let t be a term of ACPsrt

hs containing a variable X. We call an occurrence
of X in t guarded if t has a subterm of the form ˜̃a · t′ or σr

rel(t
′), where a ∈ A,

r > 0 and t′ a term of ACPsrt
hs , with t′ containing this occurrence of X. A

recursive specification over ACPsrt
hs is called a guarded recursive specification if

all occurrences of variables in the right-hand sides of its equations are guarded
or it can be rewritten to such a recursive specification using the axioms of
ACPsrt

hs and the equations of the recursive specification. A guarded recursive
specification has a unique solution.

For each guarded recursive specification E and each variable X ∈ V(E), we
introduce a constant 〈X|E〉 which is interpreted as the unique solution of E
for X. We often write X for 〈X|E〉 if E is clear from the context. In such
cases, it should also be clear from the context that we use X as a constant.
The constants 〈X|E〉 were first introduced in Ref. [22] under the name R-
expressions.

The operational semantics for guarded recursion is described in Appendix A.

3 State Propositions and Transition Propositions

The propositions used in ACPsrt
hs and the formalism of hybrid automata to

describe state evolutions and state transitions are roughly the same. We de-
scribe in this section the form and meaning of those propositions. We also
give simple examples of their use in ACPsrt

hs . Actually, the sets of propositions
available in ACPsrt

hs are slightly richer than described here, but the differences
are irrelevant to the purpose of this paper.
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3.1 Formation of State and Transition Propositions

We assume that a fixed but arbitrary set V of state variables has been given.
For each state variable v ∈ V, we introduce an additional state variable v̇,
standing for the derivative of v. We write V̇ for {v̇ | v ∈ V}. For each state
variable v ∈ V∪ V̇, we further introduce two additional state variables •v and
v•, standing for the state variable v immediately before and immediately after
a transition. We write •V for {•v | v ∈ V ∪ V̇} and V• for {v• | v ∈ V ∪ V̇}.
We further assume that a set of constants, arithmetic operators and relational
operators of real arithmetic, including the basic ones (0, 1, +, −, ·, −1, <),
has been given.

The set of state expressions is inductively defined by the following formation
rules:

• each state variable v ∈ V ∪ V̇ is a state expression;
• each constant c is a state expression;
• if o is an arithmetic operator of arity n and s1, . . . , sn are state expressions,

then o(s1, . . . , sn) is a state expression.

The set of atomic state propositions is inductively defined by the following
formation rules:

• T and F are atomic state propositions;
• if s1 and s2 are state expressions, then s1 = s2 is an atomic state proposition;
• if π is a relational operator of arity n, and s1, . . . , sn are state expressions,

then π(s1, . . . , sn) is an atomic state proposition.

State propositions are constructed from atomic state propositions in the usual
way with the various logical connectives.

The set of transition expressions is inductively defined by the following for-
mation rules:

• each state variable v ∈ •V ∪ V• is a transition expression;
• each constant c is a transition expression;
• if o is an arithmetic operator of arity n and t1, . . . , tn are transition expres-

sions, then o(t1, . . . , tn) is a transition expression.

The set of atomic transition propositions is inductively defined by the following
formation rules:

• T and F are atomic transition propositions;
• if t1 and t2 are transition expressions, then t1 = t2 is an atomic transition

proposition;
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• if π is a relational operator of arity n, and t1, . . . , tn are transition expres-
sions, then π(t1, . . . , tn) is an atomic transition proposition.

Transition propositions are constructed from atomic transition propositions
in the usual way with the various logical connectives.

We write Pst for the set of all state propositions, and Ptr for the set of all
transition propositions. Let V ⊆ V. Then we write Pst(V ) for the set of all
state propositions that only contain variables from V , and Ptr(V ) for the set
of all transition propositions that only contain variables from V .

We shall henceforth use v, v′, . . . to stand for arbitrary elements of V, ψ, ψ′, . . .
and φ, φ′, . . . to stand for arbitrary state propositions, χ, χ′, . . . to stand for
arbitrary transition propositions, V, V ′, . . . to stand for arbitrary subsets of V.

3.2 Satisfaction of State and Transition Propositions

A valuation of state variables is a function α : V ∪ V̇ → R or β : •V ∪ V• → R.
We write Vst for the set of all valuations α : V ∪ V̇ → R and Vtr for the set of
all valuations β : •V∪V• → R. In ACPsrt

hs , a valuation α ∈ Vst is called a state.

A valuation α ∈ Vst can be extended to state expressions, atomic state propo-
sitions and state propositions in the usual homomorphic way, and a valuation
β ∈ Vtr can be extended to transition expressions, atomic transition proposi-
tions and transition propositions in the usual homomorphic way. We will use
the same name for a valuation and its extensions.

Let ρ : [0, r] → (V → R), where r ∈ R>, and V ⊆ V. Then, for every v ∈ V,
we write ρv for the function ρv : [0, r] → R defined by ρv(t) = ρ(t)(v). We say
that ρ is a state evolution if ρv is piecewise of class C∞ in [0, r) for all v ∈ V.
We say that ρ is smooth for V if ρv is of class C∞ in [0, r] for all v ∈ V . We
write Er for the set of all state evolutions ρ : [0, r] → (V → R).

If we replace C∞ by C 1, the soundness results for ACPsrt
hs and its extension

with integration and guarded recursion, which can be found in Ref. [10], go
through. In other words, we could have chosen for state variables that are
functions from R≥ to R that are piecewise of class C 1 in R≥. However, that
choice would complicate the theory and might inhibit useful extensions.

If ρ ∈ Er, we say that a valuation α ∈ Vst agrees with ρ at time t, t ∈ [0, r], if
for all v ∈ V:

α(v) = ρv(t) , α(v̇) = ρ̇v(t) .
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For a given state evolution ρ ∈ Er and a given time t ∈ [0, r], there is a
unique valuation from Vst that agrees with ρ at t. We write αρ

t for this unique
valuation.

If (α, α′) ∈ Vst × Vst, we say that a valuation β ∈ Vtr agrees with (α, α′) if for
all v ∈ V:

β(•v) = α(v) , β(•v̇) = α(v̇) , β(v•) = α′(v) , β(v̇•) = α′(v̇) .

For a given pair (α, α′) ∈ Vst × Vst, there is a unique valuation from Vtr that
agrees with (α, α′). We write βα

α′ for this unique valuation.

Satisfaction of state propositions and transition propositions is defined as fol-
lows:

• state proposition ψ is satisfied by α ∈ Vst, written α |= ψ, if

α(ψ) = T ;

• state proposition φ is satisfied by ρ ∈ Er, written ρ |= φ, if

αρ
t (φ) = T for all t ∈ [0, r] ;

• transition proposition χ is satisfied by (α, α′) ∈ Vst×Vst, written α−→α′ |= χ,
if

βα
α′(χ) = T .

We write α
r,ρ7−−→α′ |=V φ for

ρ ∈ Er, α
ρ
0 = α, αρ

r = α′, ρ is smooth for V and ρ |= φ .

3.3 Use of State and Transition Propositions in ACPsrt
hs

In this subsection, we give some examples of the use of state propositions and
transition propositions in ACPsrt

hs . The examples concern simple equations,
derivable from the axioms and lifting rules of ACPsrt

hs , that illustrate the kind
of calculations that are possible with those axioms and lifting rules.

The following derivable equation illustrates how signal transition changes the
signal emitted by a process over performing an action:

(v = 0) ∧N ((•v + v• = 1) uH ˜̃a · ˜̃b)
= (v = 0) ∧N ((•v + v• = 1) uH ˜̃a · ((v = 1) ∧N ˜̃b)) .
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The following derivable equation illustrates how signal emission changes the
signal emitted by a process over idling:

(v = 0) ∧N ((v ≤ 5 ∧ v̇ = 1) ∩Hσ4
rel(˜̃a))

= (v = 0) ∧N ((v ≤ 5 ∧ v̇ = 1) ∩Hσ4
rel((v = 4) ∧N ˜̃a)) .

The following derivable equation illustrates that signal emission forces an
idling process to deadlock as soon as the state proposition concerned cannot
be satisfied any longer:

(v = 0) ∧N ((v ≤ 5 ∧ v̇ = 1) ∩Hσ6
rel(˜̃a))

= (v = 0) ∧N ((v ≤ 5 ∧ v̇ = 1) ∩Hσ5
rel(

˜̃δ)) .

The following derivable equation illustrates that signal emission turns an idling
process into the non-existent process if the state proposition concerned is not
satisfiable:

((v = 0) ∧ (v̇ = 1)) ∩Hσ1
rel(˜̃a) = ⊥ .

The following derivable equations illustrate how signal transition and signal
emission may interact in parallel composition:

σ2
rel((v

• = •v + 1) uH ˜̃a · σ1
rel(

˜̃b)) ‖ ((v̇ = 0) ∩H{v} σ
3
rel(˜̃c))

= (v̇ = 0) ∩H{v} σ
2
rel(

˜̃δ) ,

σ2
rel((v

• = •v + 1) uH ˜̃a · σ1
rel(

˜̃b)) ‖ ((v̇ = 0) ∩H∅ σ
3
rel(˜̃c))

= (v̇ = 0) ∩H∅

σ2
rel((v

• = •v + 1) uH ˜̃a · ((v̇ = 0) ∩H∅ σ
1
rel(

˜̃b · (v̇ = 0) ∧N ˜̃c+ ˜̃c · ˜̃b))) .

Note the difference on the left hand side of these equations: (v̇ = 0) ∩H{v}
σ3

rel(˜̃c) precludes discontinuities for v, but (v̇ = 0) ∩H∅ σ
3
rel(˜̃c) does not preclude

discontinuities for v.

4 The Formalism of Hybrid Automata

In this section, we give a brief summary of the formalism of hybrid automata.
For a more extensive treatment, the reader is referred to Refs. [8,23]. First,
we define the notion of hybrid automaton and related notions, including the
interpretation of a hybrid automaton as a timed transition system. Next, we
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define the notion of synchronized product of hybrid automata. We also show
how the interpretation of the synchronized product of two hybrid automata
can be expressed in terms of the interpretations of the two hybrid automata.

4.1 Hybrid Automata

Informally, a hybrid automaton is a labelled multigraph equipped with a fi-
nite set of state variables. The edges of the graph, called control switches, are
used to model discrete state changes. Each control switch is labelled with a
condition on the values of the state variables immediately before and imme-
diately after the discrete state change concerned. The vertices of the graph,
called control modes, are used to model continuous state changes. Each con-
trol mode is labelled with a condition on the values and derivatives of the
state variables during the continuous state change concerned. The conditions
on discrete state changes and the conditions on continuous state changes are
called jump conditions and flow conditions, respectively. In addition, each con-
trol mode is labelled with a condition on the initial values and derivatives of
the state variables in case of a start in that control mode, and each control
switch is labelled with the event on which that control switch takes place. Like
in Ref. [8], we make invariant conditions implicit within flow conditions.

A hybrid automaton H consists of

• a finite set V of state variables ;
• a finite set M of control modes ;
• a finite set E of events ;
• a finite set S of control switches ;
• a source function µ : S →M ,
• a target function ν : S →M ,
• an event function ε : S → E,
• a jump function χ : S → Ptr(V ),
• a flow function φ :M → Pst(V ),
• an init function ψ :M → Pst(V ).

We often write ms for µ(s), m′
s for ν(s), es for ε(s), χs for χ(s), φm for φ(m),

and ψm for ψ(m).

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton. Then we write
V(H) for V , M(H) for M , E(H) for E and S(H) for S.

The definition of hybrid automata given above is essentially the same as the
definition given in Ref. [8], except for leaving out the labeling of control modes
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with final conditions. 1 The omitted feature allows for the description of (nega-
tions of) safety properties, but is considered to be irrelevant to the use of
hybrid automata for modeling hybrid systems.

In most applications of hybrid automata, there is only one control mode of
which the initial condition can be satisfied. However, this is not a requirement.
Consequently, there may be two or more initial control modes.

A hybrid automaton H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) has initial non-deter-
minism if there exist more than one m ∈ M such that ψm is satisfiable. In
the case where H has no initial non-determinism, we will refer by m0 to the
unique control mode m for which ψm is satisfiable.

The meaning of hybrid automata is given in terms of timed transition systems,
i.e. labelled transition systems of which each transition is labelled with an
action or a non-negative real number. A transition is labelled with an action to
indicate that the transition takes place on performing that action. Transitions
of this kind are called jump transitions. A transition is labelled with an non-
negative real number to indicate that the transition takes place on idling for
that number of time units. Transitions of this kind are called flow transitions.
We use transition systems of which each state is labelled with an observation.
The labelling of states is to anticipate that later on we have to prevent states
from being identified if they show differences that are relevant to the behaviour
of hybrid systems.

A timed transition system T consists of

• a set Q of states ;
• a set Q0 ⊆ Q of initial states ;
• a set A of actions ;
• a set `−→ ⊆ Q×Q of `-transitions, for each ` ∈ A ∪ R>;
• a set O of observations ;
• a set ||o|| ⊆ Q of o-states, for each o ∈ O.

Instead of (q, q′) ∈ `−→, we write q `−→ q′ in the case where ` ∈ A and q
`7−→ q′ in

the case where ` ∈ R>. We write −→ for the family of sets ( `−→)`∈A∪R> and || ||
for the family of sets (||o||)o∈O.

Let T = (Q,Q0, A,−→, O, || ||) be a timed transition system. Then the set
−→→ ⊆ Q× (A ∪ R>)∗×Q of generalized transitions of T is the smallest subset
of Q× (A ∪ R>)∗ ×Q satisfying:

1 In Ref. [8], control modes are identified with pairs of control switches. Conse-
quently, a multiset of control modes is needed. We circumvent the need for a multiset
by leaving out the identification.
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• q ε−→→ q for each q ∈ Q;
• if q `−→ q′, then q `−→→ q′;

• if q σ−→→ q′ and q′ σ′−→→ q′′, then q σ σ′−−→→ q′′.

A state q ∈ Q is called a reachable state of T if there is a q0 ∈ Q0 and a
σ ∈ (A ∪ R>)∗ such that q0

σ−→→ q.

A version of bisimilarity is used to identify timed transition systems that only
differ in details that are considered to be irrelevant to the behaviour of any
system.

Let Ti = (Qi, Q
0
i , A,−→i, O, || ||i), for i = 1, 2, be timed transition systems with

the same set of actions and the same set of observations. Then a bisimulation
between T1 and T2 is a binary relation B ⊆ Q1 ×Q2 such that for all q1 ∈ Q1

and q2 ∈ Q2:

• if q1 ∈ Q0
1, then there is a q2 ∈ Q0

2 such that B(q1, q2);
• if q2 ∈ Q0

2, then there is a q1 ∈ Q0
1 such that B(q1, q2);

• if B(q1, q2) and q1
`−→1 q

′
1, then there is a q′2 such that q2

`−→2 q
′
2 and B(q′1, q

′
2);

• if B(q1, q2) and q2
`−→2 q

′
2, then there is a q′1 such that q1

`−→1 q
′
1 and B(q′1, q

′
2);

• if B(q1, q2) and q1 ∈ ||o||1, then q2 ∈ ||o||2;
• if B(q1, q2) and q2 ∈ ||o||2, then q1 ∈ ||o||1.

We say that T1 and T2 are bisimilar, written T1 ↔ T2, if there exists a bisim-
ulation B between T1 and T2.

Note that, if timed transition systems T1 and T2 are bisimilar, then there exists
a bisimulation B between T1 and T2 such that B(q1, q2) only if q1 and q2 are
reachable states of T1 and T2, respectively.

Below, we define the transition system interpretation of hybrid automata.
Here, we use the notations introduced in Section 3.2 for the first time. We
start to define what the states of the timed transition system associated with
a hybrid automaton are. Like in Ref. [8], we include the derivatives of state
variables in the states.

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton. Then a state of
H is a pair (m,α) ∈M × Vst. A state (m,α) of H is admissible if α |= φm. A
state (m,α) of H is initial if it is admissible and α |= ψm. We usually write
〈m,α〉 instead of (m,α).

The transition system interpretation of H, written [[H]], is the timed transition
system (Q,Q0, E,−→,Vst, || ||) where

• Q is the set of admissible states of H;
• Q0 is the set of initial states of H;
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• the `−→, one for each ` ∈ E ∪ R>, are the smallest subsets of Q × Q such
that:
· if s ∈ S, 〈ms, α〉 ∈ Q, 〈m′

s, α
′〉 ∈ Q and α−→ α′ |= χs, then 〈ms, α〉 es−→

〈m′
s, α

′〉;
· if m ∈ M , r ∈ R> and there exists a ρ ∈ Er such that α

r,ρ7−−→ α′ |=V φm,
then 〈m,α〉 r7−→〈m,α′〉;

• ||α|| = {〈m,α〉 | 〈m,α〉 ∈ Q}, for each α ∈ Vst.

We say that state evolution ρ ∈ Er is a witness of flow transition 〈m,α〉 r7−→
〈m,α′〉 if α

r,ρ7−−→ α′ |=V φm. Note that, in the case of transition system inter-
pretations of hybrid automata, a bisimulation does not relate states of which
the valuation components differ.

Let H1 and H2 be hybrid automata with E(H1) = E(H2). Then we say that
H1 and H2 are bisimilar if [[H1]]↔ [[H2]].

We may have [[H1]] ↔ [[H2]], but not V(H1) = V(H2). This can, for example,
be the case if both H1 and H2 do not have reachable states from which a flow
transition is possible. In the literature on hybrid automata, bisimilarity is only
defined for hybrid automata with the same set of state variables.

We have the following result concerning bisimulations and the witnesses of
flow transitions.

Proposition 1 (Bisimulations and Witnesses of Flow Transitions)
Let H1 and H2 be hybrid automata with [[H1]] = (Q1, Q

0
1, A1,−→1,Vst, || ||1)

and [[H2]] = (Q2, Q
0
2, A2,−→2,Vst, || ||2). Let B be a bisimulation between

[[H1]] and [[H2]]. Suppose B(〈m1, α〉, 〈m2, α〉), 〈m1, α〉
r7−→1 〈m1, α

′〉 and
〈m2, α〉

r7−→2 〈m2, α
′〉. Then, for all ρ ∈ Er, ρ is a witness of 〈m1, α〉

r7−→1 〈m1, α
′〉

iff ρ is a witness of 〈m2, α〉
r7−→2 〈m2, α

′〉.

PROOF. Because 〈m1, α〉
r7−→1 〈m1, α

′〉 and 〈m2, α〉
r7−→2 〈m2, α

′〉, it follows
from the definitions of transition system interpretation and bisimulation be-
tween timed transition systems that V(H1) = V(H2). Suppose that V(H1) =
V(H2) = V . We proceed by distinguishing the case where αρ

0 = α, αρ
r = α′

and ρ is smooth for V and the case where αρ
0 6= α, αρ

r 6= α′ or ρ is not smooth
for V . In the first case, it follows from the definitions of transition system
interpretation and satisfaction of state propositions by state evolutions that,
for i = 1, 2, ρ is a witness of 〈mi, α〉

r7−→i 〈mi, α
′〉 iff for all s such that 0 < s < r

we have 〈mi, α〉
s7−→i 〈mi, α

ρ
s〉. Moreover, because B(〈m1, α〉, 〈m2, α〉), it follows

from the definitions of transition system interpretation and bisimulation be-
tween timed transition systems that for all s such that 0 < s < r we have
〈m1, α〉

s7−→1 〈m1, α
ρ
s〉 iff 〈m2, α〉

s7−→2 〈m2, α
ρ
s〉. Hence, we conclude: ρ is a wit-

ness of 〈m1, α〉
r7−→1 〈m1, α

′〉 iff ρ is a witness of 〈m2, α〉
r7−→2 〈m2, α

′〉. In the
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second case, neither flow transition can have ρ as a witness; and we imme-
diately conclude: ρ is a witness of 〈m1, α〉

r7−→1 〈m1, α
′〉 iff ρ is a witness of

〈m2, α〉
r7−→2 〈m2, α

′〉. 2

4.2 Synchronized Product of Hybrid Automata

Hybrid systems are generally composed of several components that act con-
currently and interact with each other. In order to deal with such composi-
tion in the formalism of hybrid automata, the synchronized product of hybrid
automata has been introduced. In the synchronized product of two hybrid
automata, control modes of the two component automata are conjoined. The
conjunction of the flow conditions and the conjunction of the initial condi-
tions apply. Control switches of the two component automata that take place
on joint events occur simultaneously, others are interleaved. In the former
case, the conjunction of the jump conditions applies. The case where the two
component automata have shared state variables is not excluded.

Let Hi = (Vi,Mi, Ei, Si, µi, νi, εi, χi, φi, ψi), for i = 1, 2, be hybrid automata.
Then the synchronized product of H1 and H2, written H1 ×H2, is the hybrid
automaton

H = (V1 ∪ V2,M1 ×M2, E1 ∪ E2, S, µ, ν, ε, χ, φ, ψ)

where

S = {(s,m) ∈ S1 ×M2 | ε1(s) 6∈ E2} ∪ {(m, s) ∈M1 × S2 | ε2(s) 6∈ E1}
∪ {(s1, s2) ∈ S1 × S2 | ε1(s1) = ε2(s2)} ,

µ(s,m) = (µ1(s),m), µ(m, s) = (m,µ2(s)), µ(s1, s2) = (µ1(s1), µ2(s2)),

ν(s,m) = (ν1(s),m), ν(m, s) = (m, ν2(s)), ν(s1, s2) = (ν1(s1), ν2(s2)),

ε(s,m) = ε1(s), ε(m, s) = ε2(s), ε(s1, s2) = ε1(s1),

χ(s,m) = χ1(s), χ(m, s) = χ2(s), χ(s1, s2) = χ1(s1) ∧ χ2(s2),

φ(m1,m2) = φ1(m1) ∧ φ2(m2) ,

ψ(m1,m2) = ψ1(m1) ∧ ψ2(m2) .

The synchronized product of hybrid automata is defined here like in Ref. [23].
It is the most general definition. It does not require, as already mentioned,
that the sets V1 and V2 are disjunct. In Ref. [3] is only dealt with the case
where this disjunctness requirement is met. Moreover, not the synchronized
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product operator on hybrid automata is described, but rather the correspond-
ing operator on the transition system interpretations of hybrid automata. We
have the following result concerning the composition of transition system in-
terpretations of hybrid automata.

Proposition 2 (TS Interpretation of Synchronized Products) For all
hybrid automata H1, H2 such that [[H1]] = (Q1, Q

0
1, A1,−→1,Vst, || ||1) and

[[H2]] = (Q2, Q
0
2, A2,−→2,Vst, || ||2):

[[H1 ×H2]]↔ (Q,Q0, A1 ∪ A2,−→,Vst, || ||) ,

where

• Q = {〈(m1,m2), α〉 | 〈m1, α〉 ∈ Q1, 〈m2, α〉 ∈ Q2};
• Q0 = {〈(m1,m2), α〉 | 〈m1, α〉 ∈ Q0

1, 〈m2, α〉 ∈ Q0
2};

• the `−→, one for each ` ∈ A ∪ R>, are the smallest subsets of Q × Q such
that:
· if 〈m1, α〉 a−→1 〈m′

1, α
′〉, 〈m2, α〉 ∈ Q2, 〈m2, α

′〉 ∈ Q2 and a 6∈ A2, then
〈(m1,m2), α〉 a−→〈(m′

1,m2), α
′〉;

· if 〈m1, α〉 ∈ Q1, 〈m1, α
′〉 ∈ Q1, a 6∈ A1 and 〈m2, α〉 a−→2 〈m′

2, α
′〉, then

〈(m1,m2), α〉 a−→〈(m1,m
′
2), α

′〉;
· if both 〈m1, α〉 a−→1 〈m′

1, α
′〉 and 〈m2, α〉 a−→2 〈m′

2, α
′〉, then 〈(m1,m2), α〉 a−→

〈(m′
1,m

′
2), α

′〉;
· if both 〈m1, α〉

r7−→1 〈m1, α
′〉 and 〈m2, α〉

r7−→2 〈m2, α
′〉, then 〈(m1,m2), α〉

r7−→
〈(m1,m2), α

′〉;
• ||α|| = {〈m,α〉 | 〈m,α〉 ∈ Q}, for each α ∈ Vst.

PROOF. We check the definitions of Q, Q0, −→ and || || in turn.

• It follows from the definitions of transition system interpretation and syn-
chronized product that 〈(m1,m2), α〉 ∈ Q iff α |= φ(m1,m2) iff α |=
φ(m1) ∧ α |= φ(m2) iff 〈m1, α〉 ∈ Q1 ∧ 〈m2, α〉 ∈ Q2.

• Analogously, it is proved that 〈(m1,m2), α〉 ∈ Q0 iff 〈m1, α〉 ∈ Q0
1∧〈m2, α〉 ∈

Q0
2.

• Suppose that Hi = (Vi,Mi, Ei, Si, µi, νi, εi, χi, φi, ψi), for i = 1, 2. By means
of the definition of synchronized product, we can rewrite the rules of the
inductive definition of −→ from the definition of transition system interpreta-
tion. For jump transitions, the rule has to be split up in three rules because
there are three cases to consider. We obtain the following rules:
· if s1 ∈ S1, m2 ∈ M2, ε1(s1) 6∈ A2, 〈µ1(s1), α〉 ∈ Q1, 〈m2, α〉 ∈
Q2, 〈ν1(s1), α

′〉 ∈ Q1, 〈m2, α
′〉 ∈ Q2, α −→ α′ |= χ1(s1), then

〈(µ1(s1),m2), α〉
ε1(s1)−−−→〈(ν1(s1),m2), α

′〉;
· if m1 ∈ M1, s2 ∈ S2, ε2(s2) 6∈ A1, 〈m1, α〉 ∈ Q1, 〈µ2(s2), α〉 ∈
Q2, 〈m1, α

′〉 ∈ Q1, 〈ν2(s2), α
′〉 ∈ Q2, α −→ α′ |= χ2(s2), then

18



〈(m1, µ2(s2)), α〉
ε2(s2)−−−→〈(m1, ν2(s2)), α

′〉;
· if s1 ∈ S1, s2 ∈ S2, ε1(s1) = ε2(s2), 〈µ1(s1), α〉 ∈ Q1, 〈µ2(s2), α〉 ∈ Q2,
〈ν1(s1), α

′〉 ∈ Q1, 〈ν2(s2), α
′〉 ∈ Q2, α −→ α′ |= χ1(s1), α −→ α′ |= χ2(s2),

then 〈(µ1(s1), µ2(s2)), α〉
ε1(s1)−−−→〈(ν1(s1), ν2(s2)), α

′〉;
· if m1 ∈ M1, m2 ∈ M2, r ∈ R>, and there exists a ρ ∈ Er such that
α

r,ρ7−−→ α′ |=V1
φ1(m1) and α

r,ρ7−−→ α′ |=V2
φ2(m2), then 〈(m1,m2), α〉 r−→

〈(m1,m2), α
′〉.

By means of the definition of transition system interpretation, we can
rewrite the rules once more. For the first rule, we obtain the following rule:
· if 〈µ1(s1), α〉

ε1(s1)−−−→1 〈ν1(s1), α
′〉, ε1(s1) 6∈ A2, 〈m2, α〉 ∈ Q2, 〈m2, α

′〉 ∈ Q2,

then 〈(µ1(s1),m2), α〉
ε1(s1)−−−→〈(ν1(s1),m2), α

′〉.
The other rules are rewritten analogously.

The inductive definition of −→ given in the theorem follows immediately
because 〈m,α〉 a−→i 〈m′, α′〉 only if there exists a s ∈ Si such that µi(s) = m,
νi(s) = m′ and εi(s) = a (i = 1, 2).

• By definition, ||α|| = {〈m,α〉 | 〈m,α〉 ∈ Q}, for each α ∈ Vst.

2

It is worth mentioning that bisimilarity of hybrid automata is not preserved
by the synchronized product operator. It is unknown to us whether this fact
is mentioned earlier in the literature on hybrid automata.

Theorem 3 (Bisimilarity not Preserved by Synchronized Product)
There exist hybrid automata H1, H2, H

′
1 and H ′

2 such that [[H1]] ↔ [[H ′
1]] and

[[H2]]↔ [[H ′
2]], but [[H1 ×H2]] 6↔ [[H ′

1 ×H ′
2]].

PROOF. Consider a hybrid automaton H1 with state variable v, control
modes m0 and m1 and control switches s0 and s1. Control switch s0 is from
m0 to m1 and control switch s1 is from m1 to m0. The jump condition of both
s0 and s1 is v• = 0. The flow conditions of m0 and m1 are v ≤ 1 ∧ v̇ = 1
and v ≥ 0 ∧ v̇ = −1, respectively. The initial conditions of m0 and m1 are
v = 0 and F, respectively. The events associated with s0 and s1 are a and b,
respectively.

Consider the hybrid automaton H ′
1 obtained from H1 by first changing the

flow condition of m1 into v ≥ 0 ∧ v̇ = 2v − 1 and after that replacing control
modes m0 and m1 by m′

0 and m′
1, respectively, and control switches s0 and s1

by s′0 and s′1, respectively.

[[H1]] and [[H ′
1]] are bisimilar. Only the different flow conditions associated with

control modes m1 and m′
1 may preclude bisimilarity. It is easy to see that the

states 〈m1, α〉 with α(v) = 0 and α(v̇) = −1 are the only reachable states of
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[[H1]] with control mode component m1 and the states 〈m′
1, α〉 with α(v) =

0 and α(v̇) = −1 are the only reachable states of [[H ′
1]] with control mode

component m′
1. Because no flow transitions are possible from these states, the

different flow conditions do not matter.

Consider also a hybrid automaton H2 with state variables v and w, control
modes m′′

0 and m′′
1 and control switches s′′0 and s′′1. Control switch s′′0 is from

m′′
0 to m′′

1 and control switch s′′1 is from m′′
1 to m′′

0. The jump conditions of s′′0
and s′′1 are v• = 1 ∧ w• = 1 and w• = 0, respectively. The flow conditions of
m′′

0 and m′′
1 are w ≤ 1 ∧ ẇ = 1 and w ≥ 0 ∧ ẇ = −1, respectively. The initial

conditions of m′′
0 and m′′

1 are w = 0 and F, respectively. The events associated
with s′′0 and s′′1 are c and d, different from a and b, respectively.

Take furthermore H ′
2 identical to H2. Thus, [[H2]] and [[H ′

2]] are trivially bisim-
ilar.

Then [[H1 ×H2]] and [[H ′
1 ×H ′

2]] are not bisimilar. It is not difficult to see
that a bisimulation between [[H1 ×H2]] and [[H ′

1 ×H ′
2]] must relate states

〈(m1,m
′′
0), α〉 and 〈(m′

1,m
′′
0), α〉 with α(v) = 0, α(v̇) = −1, α(w) = 1 and

α(ẇ) = 1. Only one jump transition, with c as associated event, is possi-
ble from these states. The resulting states 〈(m1,m

′′
1), α

′〉 and 〈(m′
1,m

′′
1), α

′′〉
cannot be related because α′ 6= α′′ (α′(v̇) = −1 and α′′(v̇) = 1). Hence, a
bisimulation between [[H1 ×H2]] and [[H ′

1 ×H ′
2]] does not exist. 2

5 ACPsrt
hs Terms: Operational Semantics and Bisimilarity

In Section 6, we will investigate the connections between ACPsrt
hs and the for-

malism of hybrid automata. Among other things, hybrid automata will be
interpreted in ACPsrt

hs . Important is whether the interpretation concerned is
faithfull, i.e. whether two hybrid automata are interpreted as terms that are
identified in ACPsrt

hs if and only if they are identified in the formalism of hybrid
automata. In ACPsrt

hs , like in the formalism of hybrid automata, a version of
bisimilarity is used to identify terms of which the operational semantics only
differ in details that are considered to be irrelevant.

The operational semantics of ACPsrt
hs , and its extensions with integration and

recursion, is described by the transition rules given in Tables A.1–A.6 (Ap-
pendix A). The following transition relations are used:

• a binary relation 〈 , α〉 a−→〈 , α′〉 for each a ∈ A, α, α′ ∈ Vst;
• a unary relation 〈 , α〉 a−→〈

√
, α′〉 for each a ∈ A, α, α′ ∈ Vst;

• a binary relation 〈 , α〉 r,ρ7−−→〈 , α′〉 for each r ∈ R>, ρ ∈ Er, α, α
′ ∈ Vst such

that α = αρ
0 and α′ = αρ

r ;
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• a unary relation α∈ [s( )] for each α ∈ Vst;
• a unary relation α→α′ ∈ [d( )] for each α, α′ ∈ Vst.

The five kinds of transition relations are called the action step, action termi-
nation, time step, signal and discontinuity relations, respectively. They can
be explained as follows:

• 〈t, α〉 a−→〈t′, α′〉: in state α, process t is capable of first performing action a
at the current point of time and then proceeding as process t′ in state α′;

• 〈t, α〉 a−→〈
√
, α′〉: in state α, process t is capable of first performing action a

at the current point of time and then terminating successfully in state α′;
• 〈t, α〉 r,ρ7−−→〈t′, α′〉: in state α, process t is capable of first idling for a period

of time r, meanwhile evolving its state according to ρ, and then proceeding
as process t′ in state α′;

• α∈ [s(t)]: in state α, the signal emitted by process t holds;
• α→α′ ∈ [d(t)]: in state α, discontinuities for the state variables of which

the value changes by an instantaneous transition to state α′ are possible for
process t.

Recall that in ACPsrt
hs , a valuation α ∈ Vst is called a state. Henceforth, we

write PT for the set of closed terms of ACPsrt
hs extended with integration and

recursion.

We have the following corollary of the definition of the operational semantics
of ACPsrt

hs extended with integration and recursion.

Corollary 4 (Signal Emission is Essential) For all t, t′ ∈ PT , α, α′ ∈
Vst, a ∈ A, r ∈ R> and ρ ∈ Er:

• if 〈t, α〉 a−→〈t′, α′〉 or 〈t, α〉 a−→〈
√
, α′〉 or 〈t, α〉 r,ρ7−−→ 〈t′, α′〉 or α→α′ ∈ [d(t)],

then α∈ [s(t)].

Let L = A ∪ {(r, ρ) | r ∈ R> ∧ ρ ∈ Er}. The generalized transition relations
〈 , α〉 σ−→→ 〈 , α′〉 for each σ ∈ L∗ and α, α′ ∈ Vst are the smallest binary rela-
tions on PT satisfying:

• if α∈ [s(t)], then 〈t, α〉 ε−→→ 〈t, α〉;
• if 〈t, α〉 a−→ 〈t′, α′〉, then 〈t, α〉 a−→→ 〈t′, α′〉;
• if 〈t, α〉 r,ρ7−−→ 〈t′, α′〉, then 〈t, α〉 r,ρ−−→→ 〈t′, α′〉;
• if 〈t, α〉 σ−→→ 〈t′, α′〉 and 〈t′, α′〉 σ′−→→ 〈t′′, α′′〉, then 〈t, α〉 σ σ′−−→→ 〈t′′, α′′〉.

Elements of PT × Vst are called configurations. A configuration 〈t′, α′〉 is a
reachable configuration from configuration 〈t, α〉 if there is a σ ∈ L∗ such that
〈t, α〉 σ−→→ 〈t′, α′〉.

Bisimilarity of closed terms is defined as follows.
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A bisimulation is a symmetric binary relation B on PT ×Vst such that for all
t1, t2 ∈ PT and α ∈ Vst:

• if B(〈t1, α〉, 〈t2, α〉) and 〈t1, α〉 a−→ 〈t′1, α′〉, then there is a t′2 such that
〈t2, α〉 a−→ 〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉);

• if B(〈t1, α〉, 〈t2, α〉) and 〈t1, α〉 a−→ 〈
√
, α′〉, then 〈t2, α〉 a−→ 〈

√
, α′〉;

• if B(〈t1, α〉, 〈t2, α〉) and 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉, then there is a t′2 such that

〈t2, α〉
r,ρ7−−→ 〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉);

• if B(〈t1, α〉, 〈t2, α〉) and α∈ [s(t1)], then α∈ [s(t2)];
• if B(〈t1, α〉, 〈t2, α〉) and α→α′ ∈ [d(t1)], then α→α′ ∈ [d(t2)].

Two configurations 〈t1, α1〉 and 〈t2, α2〉 are bisimilar, written 〈t1, α1〉↔ 〈t2, α2〉,
if α1 = α2 and there exists a bisimulation B such that B(〈t1, α1〉, 〈t2, α2〉). Two
closed terms t1 and t2 are bisimilar, written t1 ↔ t2, if 〈t1, α〉 ↔ 〈t2, α〉 for all
α ∈ Vst.

Note that, if t1 ↔ t2, then there exists a bisimulation B with B(〈t1, α〉, 〈t2, α〉)
for all α ∈ Vst. If B is a bisimulation and B(〈t1, α〉, 〈t2, α〉) for all α ∈ Vst,
then we say that B is a bisimulation witnessing t1 ↔ t2

Note further that, if 〈t1, α〉↔ 〈t2, α〉, then there exists a bisimulation B with
B(〈t1, α〉, 〈t2, α〉) such that B(〈t′1, α′〉, 〈t′2, α′〉) only if 〈t′1, α′〉 and 〈t′2, α′〉 are
reachable from 〈t1, α〉 and 〈t2, α〉, respectively.

Lemma 5 (Bisimilarity and Action Prefixing) For all closed ACPsrt
hs

terms t1, t2 and a ∈ A:

t1 ↔ t2 ⇔ ˜̃a · t1 ↔ ˜̃a · t2 .

PROOF. From left to right, suppose that B is a bisimulation witnessing
t1 ↔ t2. Then consider the relation B′′ = B ∪B′ where

B′ = {(〈˜̃a · t1, α〉, 〈˜̃a · t2, α〉) | α ∈ Vst} .

It is easy to see that B′′ is a bisimulation witnessing ˜̃a · t1 ↔ ˜̃a · t2.

From right to left, suppose that B is a bisimulation witnessing ˜̃a·t1 ↔ ˜̃a·t2. This
means that B(〈˜̃a · t1, α〉, 〈˜̃a · t2, α〉) for all α ∈ Vst. Because 〈˜̃a · t1, α〉 a−→〈t1, α′〉
and 〈˜̃a · t2, α〉 a−→〈t2, α′〉 for all α, α′ ∈ Vst, it follows that B(〈t1, α′〉, 〈t2, α′〉) for
all α′ ∈ Vst. So t1 ↔ t2. 2
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6 Relating the Formalism of Hybrid Automata to ACPsrt
hs

In this section, we study the connections between ACPsrt
hs and the formalism

of hybrid automata. First of all, we investigate the interpretation of hybrid
automata in ACPsrt

hs . Next, we investigate the relationship between the syn-
chronized product operator on hybrid automata and the parallel composition
operator of ACPsrt

hs . We illustrate the interpretation of hybrid automata in
ACPsrt

hs by means of an example taken from the literature on hybrid automata.

6.1 Interpretation of Hybrid Automata in ACPsrt
hs

We give two interpretations of hybrid automata in ACPsrt
hs : a strong inter-

pretation, in which discontinuities during state evolutions are impossible for
all state variables, and a weak interpretation, in which discontinuities during
state evolutions are possible for all state variables. Only the strong interpre-
tation agrees with the transition system interpretation from Section 4.1. The
weak interpretation is introduced because of its usefulness in relating the syn-
chronized product operator on hybrid automata to the parallel composition
operator of ACPsrt

hs .

In both interpretations, we use a special initialize action ι to deal with initial
non-determinism. We assume that ι 6∈ E(H) for any hybrid automaton H. The
idea to deal with initial non-determinism in this way is taken from Ref. [24].

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton. Then the strong
process algebra interpretation of H, written [[H]]pa

s , is the term∑
m∈M

˜̃ι · (ψm
∧N 〈Xm|F 〉) ,

where the guarded recursive specification F consists of the following equation
for each m ∈M :

Xm = φm
∩H

V

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)
.

Variable Xm corresponds to control mode m, so the guarded recursive specifi-
cation F contains one equation for each control mode of the hybrid automaton.
The right-hand side of the equation for control mode m has one alternative
for each control switch that may occur from m as well as an alternative for
the case where the control does not switch. This process algebra interpreta-
tion draws attention to the fact that, different from what is said in Ref. [19],
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time-determinism is in line with the hybrid automata approach. Because each
control mode has just one alternative to proceed with idling, time-determinism
is just not an issue.

Note that an equivalent guarded recursive specification is obtained with the
following equation for each m ∈M :

Xm = φm
∩H

V

∫
u∈[0,∞)

σu
rel

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s

)
.

However, we believe that the close correspondence with the transition system
interpretation is less clear with such equations.

We have the following results concerning this process algebra interpretation
and the transition system interpretation of hybrid automata.

Theorem 6 (Relation between TS and Strong PA Interpretations)
Let H be a hybrid automaton, Q be the set of admissible states of H and Q0

be the set of initial states of H. Then the states and transitions of [[H]] and
[[H]]pa

s are related as follows:

〈m,α〉 ∈ Q⇔ α∈ [s(Xm)] ,

〈m,α〉 ∈ Q0 ⇔ α∈ [s(ψm
∧N Xm)] ,

〈m,α〉 e−→〈m′, α′〉 ⇔ 〈Xm, α〉 e−→〈Xm′ , α′〉 ,

〈m,α〉 ∈ Q0 ∧ 〈m,α〉 e−→〈m′, α′〉 ⇔ 〈ψm
∧N Xm, α〉 e−→〈Xm′ , α′〉 ,

〈m,α〉 r7−→〈m,α′〉
⇔ ∃ρ ∈ Er • ∃t ∈ PT • 〈Xm, α〉

r,ρ7−−→〈t, α′〉 ∧ t↔Xm ,

〈m,α〉 ∈ Q0 ∧ 〈m,α〉 r7−→〈m,α′〉
⇔ ∃ρ ∈ Er • ∃t ∈ PT • 〈ψm

∧N Xm, α〉
r,ρ7−−→〈t, α′〉 ∧ t↔Xm ,

for all m,m′ ∈ M(H), α, α′ ∈ Vst, e ∈ E(H) and r ∈ R>.

PROOF. These bi-implications follow easily from the definitions of transition
system interpretation and strong process algebra interpretation. We present
the proof of the last bi-implication. The proofs of the other bi-implications are
similar, but simpler.
From the definition of transition system interpretation, it follows that
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〈m,α〉 ∈ Q0⇔α |= φ(m) ∧ α |= ψ(m) (1)

〈m,α〉 r7−→〈m,α′〉⇔∃ρ ∈ Er • α
r,ρ7−−→α′ |=V(H) φ(m) . (2)

From the definition of strong process algebra interpretation, it follows that

∃ρ ∈ Er • ∃t ∈ PT • 〈ψm
∧N Xm, α〉

r,ρ7−−→〈t, α′〉 ∧ t↔Xm

⇔∃ρ ∈ Er • α
r,ρ7−−→α′ |=V(H) φ(m) ∧ α |= ψ(m) . (3)

Clearly, the conjunction of the right-hand sides of 1 and 2 is equivalent to the
right-hand side of 3. Hence, the conjunction of the left-hand sides of 1 and 2
is equivalent to the left-hand side of 3. 2

Theorem 7 (Faithfulness of Strong PA Interpretation) For all hybrid
automata H1 and H2 with V(H1) = V(H2):

[[H1]]
pa
s
↔ [[H2]]

pa
s ⇔ [[H1]]↔ [[H2]] .

2

PROOF. See Appendix B.1. 2

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton. Then the weak
process algebra interpretation of H, written [[H]]pa

w , is the term

∑
m∈M

˜̃ι · (ψm
∧N 〈Xm|F ′〉) ,

where the guarded recursive specification F ′ consists of the following equation
for each m ∈M :

Xm = φm
∩H∅

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)
.

Note that V has been replaced by ∅. In this way, discontinuities during state
evolutions become possible for all state variables.

The strong and weak process algebra interpretations can be regarded as two
instances of a generic process algebra interpretation that has the set of state
variables for which discontinuities during state evolutions must be impossible

2 Note that on the left-hand side ↔ is bisimilarity on ACPsrt
hs terms and on the

right-hand side ↔ is bisimilarity on timed transition systems.
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as a parameter. However, for a given hybrid automaton H, other choices for
this set than V(H) and ∅ appear to be absolutely arbitrary.

Unlike the strong process algebra interpretation, the weak process algebra
interpretation does not agree with the transition system interpretation from
Section 4.1: in the case of the weak process algebra interpretation, the last
two bi-implications of Theorem 6 do not hold from right to left. That is the
reason why we prefer the strong process algebra interpretation.

Proposition 8 (Weakness of Weak PA Interpretations) There exists a
hybrid automaton H such that in the case of weak process algebra interpreta-
tion:

〈m,α〉 r7−→〈m,α′〉 6⇐ ∃ρ ∈ Er • ∃t ∈ PT • 〈Xm, α〉
r,ρ7−−→〈t, α′〉 ∧ t↔Xm

for some m ∈ M(H), α, α′ ∈ Vst and r ∈ R>.

PROOF. Consider a hybrid automatonH with state variable v, control mode
m and control switch s. Control switch s is from m to m. The jump condition
of s is v• = 0. The flow condition of m is v ≤ 1 ∧ v̇ = 1. The initial condition
of m is v = 0. The event associated with s is a.

Let φm be the flow condition of m. In [[H]]pa
w , because a finite number of

discontinuities may occur, there exist transitions 〈Xm, α〉
r,ρ7−−→ 〈φm

∩H∅ Xm, α
′〉

with r > 1, and φm
∩H∅ Xm ↔Xm; but in [[H]], because no discontinuities may

occur, there do not exist transitions 〈m,α〉 r7−→〈m,α′〉 with r > 1. 2

We have the following result concerning the connection between the two pro-
cess algebra interpretations of hybrid automata.

Proposition 9 (Coarseness of Strong PA Interpretation) For all hy-
brid automata H1 and H2 with V(H1) = V(H2):

[[H1]]
pa
w
↔ [[H2]]

pa
w ⇒ [[H1]]

pa
s
↔ [[H2]]

pa
s .

PROOF. See Appendix B.2. 2

In Proposition 9, “⇒” cannot be replaced by “⇔”.
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Proposition 10 (Coarseness of Strong PA Interpretation is Proper)
There exist hybrid automata H1 and H2 such that:

[[H1]]
pa
w
↔ [[H2]]

pa
w 6⇐ [[H1]]

pa
s
↔ [[H2]]

pa
s .

PROOF. Consider a hybrid automaton H1 with state variable v, control
modes m0 and m1 and control switches s0 and s1. Control switch s0 is from
m0 to m1 and control switch s1 is from m1 to m0. The jump conditions of s0

and s1 are v• = •v and •v = 1 ∧ v• = 0, respectively. The flow condition of
both m0 and m1 is v̇ = 0. The initial conditions of m0 and m1 are v = 0 and
F, respectively. The events associated with s0 and s1 are a and b, respectively.

Consider a hybrid automaton H2 with state variable v, control modes m′
0 and

m′
1 and control switch s′0. Control switch s′0 is from m′

0 to m′
1. The jump

condition of s′0 is v• = •v. The flow condition of both m′
0 and m′

1 is v̇ = 0.
The initial conditions of m′

0 and m′
1 are v = 0 and F, respectively. The event

associated with s0 is a.

[[H1]]
pa
s and [[H2]]

pa
s are bisimilar. Only the presence or absence of a control

switch from control modes m1 and m′
1 may preclude bisimilarity. It is easy

to see that the configurations 〈Xm1 , α〉 with α(v) = 0 and α(v̇) = 0 are the
only reachable configurations of [[H1]]

pa
s with term component Xm1 and the

configurations 〈Xm′
1
, α〉 with α(v) = 0 and α(v̇) = 0 are the only reachable

configurations of [[H2]]
pa
s with term component Xm′

1
. Because no action steps

are possible from these configurations, the presence or absence of a control
switch does not matter.

[[H1]]
pa
w and [[H2]]

pa
w are not bisimilar. It is not difficult to see that a witnessing

bisimulation must relate configurations 〈Xm1 , α〉 and 〈Xm′
1
, α〉 with α(v) = 1

and α(v̇) = 0. An action step is possible from the former configuration, but
not from the latter configuration. Hence, a bisimulation between [[H1]]

pa
w and

[[H2]]
pa
w does not exist. 2

In Ref. [10], ACPsrt
hs is also extended with localization. The localization op-

erator makes it possible to keep discontinuities of a state variable local, in
other words to inhibit discontinuities of the state variable caused by the en-
vironment. The localization of P with respect to v, written v ∇ P , behaves
like P , but with its state evolving without discontinuities for v whenever it is
idling. The operational semantics for localization is described in Appendix A.
We use the notation {v1, . . . , vn}∇ t for v1∇ (v2∇ . . . (vn∇ t) . . .). For hybrid
automata H, we can express, using localization, [[H]]pa

s in terms of [[H]]pa
w .

Proposition 11 (Strengthening of Weak PA Interpretation) For all
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hybrid automata H:

[[H]]pa
s
↔V(H)∇ [[H]]pa

w .

PROOF. See Appendix B.3. 2

In the frequently occurring case where the hybrid automata under consider-
ation have no initial non-determinism, we can give simpler strong and weak
interpretations.

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton that has no initial
non-determinism. Then the restricted strong process algebra interpretation of
H, written [[H]]pa

rs , and the restricted weak process algebra interpretation of H,
written [[H]]pa

rw, are the terms

ψm0 ∧N 〈Xm0|F 〉 and ψm0 ∧N 〈Xm0|F ′〉 ,

respectively, where the guarded recursive specification F and F ′ are the same
as above.

For hybrid automata H without initial non-determinism, we can express both
[[H]]pa

s in terms of [[H]]pa
rs and [[H]]pa

w in terms of [[H]]pa
rw.

Proposition 12 (Lifting Restricted Interpretations) For all hybrid au-
tomata H that have no initial non-determinism:

[[H]]pa
s = ˜̃ι · [[H]]pa

rs and [[H]]pa
w = ˜̃ι · [[H]]pa

rw .

PROOF. Follows immediately from the definitions of the process algebra
interpretations concerned. 2

We have the following corollary of Lemma 5, Theorem 7 and Proposition 12.

Corollary 13 (Faithfulness of Restricted Strong PA Interpretation)
For all hybrid automata H1 and H2 with V(H1) = V(H2) that have no initial
non-determinism:

[[H1]]
pa
rs
↔ [[H2]]

pa
rs ⇔ [[H1]]↔ [[H2]] .
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6.2 Example: Thermostat

In this section, we consider a thermostat with delay. The behaviour of the
thermostat can be described informally as follows.

Initially, the temperature is 18 ◦ C and the heating is on. While the heating is
on, the temperature T in the room goes up according to the the differential
equation Ṫ = −T + 21. When the temperature becomes 20 ◦ C, the heating
will be turned off after a delay of 1 second. While the heating is off, the
temperature T in the room goes down according to the the differential equation
Ṫ = −T+17. When the temperature becomes 18 ◦ C, the heating will be turned
on again after a delay of 1 second.

The example is taken from Ref. [9], but it has been adapted to more realistic
room temperatures. There, the thermostat is described by a hybrid automa-
ton. Here, we give the strong process algebra interpretation of that hybrid
automaton:

˜̃ι · ((T = 18) ∧N 〈Thon|F 〉) ,

where the recursive specification F consists of the following equations:

Thon = (T ≤ 20 ∧ Ṫ = −T + 21) ∩H{T,c}(
(•T = 20 ∧ T • = •T ∧ c• = 0) uH ˜̃high · Thd1 + σ+

rel(Thon)
)
,

Thd1 = (c ≤ 1 ∧ Ṫ = −T + 21 ∧ ċ = 1) ∩H{T,c}(
(•c = 1 ∧ T • = •T ) uH ˜̃turn-off · Thoff + σ+

rel(Thd1)
)
,

Thoff = (T ≥ 18 ∧ Ṫ = −T + 17) ∩H{T,c}(
(•T = 18 ∧ T • = •T ∧ c• = 0) uH ˜̃low · Thd2 + σ+

rel(Thoff)
)
,

Thd2 = (c ≤ 1 ∧ Ṫ = −T + 17 ∧ ċ = 1) ∩H{T,c}(
(•c = 1 ∧ T • = •T ) uH ˜̃turn-on · Thon + σ+

rel(Thd2)
)
.

Here and in Section 7.3, we use the notation σ+
rel(t) for

∫
u∈(0,∞)σ

u
rel(t) with u a

variable not occurring free in t.

The hybrid automaton for the thermostat has no initial non-determinism.
Hence, the restricted strong process algebra interpretation (T = 18)∧N〈Thon|F 〉
makes sense as well.

As usual when a hybrid system is described by a hybrid automaton, the delays
of the thermostat are modelled by means of a state variable c with ċ = 1. In
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ACPsrt
hs , the relative delay operator is available for that purpose. This means

that we can replace the recursive specification given above by the following
one:

Thon = (T ≤ 20 ∧ Ṫ = −T + 21) ∩H{T}(
(•T = 20 ∧ T • = •T ) uH ˜̃high · Thd1 + σ+

rel(Thon)
)
,

Thd1 = (Ṫ = −T + 21) ∩H{T} σ
1
rel

(
(T • = •T ) uH ˜̃turn-off · Thoff

)
,

Thoff = (T ≥ 18 ∧ Ṫ = −T + 17) ∩H{T}(
(•T = 18 ∧ T • = •T ) uH ˜̃low · Thd2 + σ+

rel(Thoff)
)
,

Thd2 = (Ṫ = −T + 17) ∩H{T} σ
1
rel

(
(T • = •T ) uH ˜̃turn-on · Thon

)
.

6.3 Relating Synchronized Product to Parallel Composition

In order to relate the synchronized product operator on hybrid automata to
the parallel composition operator of ACPsrt

hs , we have to extend ACPsrt
hs with

action renaming. This operator provides for change of actions. For f : A → A,
the action renaming of P according to f , written ρf (P ), behaves like P , but

with undelayable actions ˜̃a replaced by ˜̃f(a). The operational semantics for
action renaming is described in Appendix A.

We have the following result concerning the synchronized product operator of
the formalism of hybrid automata and the parallel composition operator of
ACPsrt

hs .

Theorem 14 (Weak PA Interpretation of Synchronized Products)
For all hybrid automata H1, H2:

[[H1 ×H2]]
pa
w
↔ ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )) ,

where A′ = (E(H1) ∩ E(H2)) ∪ {ι}, the renaming function f is such that
f(a) = a if a ∈ A′ and f(a) = a if a 6∈ {a | a ∈ A′}, and the communication
function γ is such that γ(a, a) = a if a ∈ A′ and it is undefined otherwise.

PROOF. See Appendix B.4. 2

Recall that we prefer strong process algebra interpretations. Therefore, Theo-
rem 14 does not give us the compositionality result that we really want. How-
ever, a similar compositionality result does not hold in the case of strong pro-
cess algebra interpretations. The main point is that, in the case of the strong
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process algebra interpretations of the two hybrid automata, jump transitions
of one of them cannot take place during flow transitions of the other. This
is closely related to the fact that in the strong process algebra interpretation
of a hybrid automaton only state evolutions in which no discontinuities occur
are associated with flow transitions. In parallel composition, this precludes
parallel discontinuities due to both jump transitions and flow transitions. For
a compositionality result, the definitions of hybrid automata and synchronized
product have to be adapted. This is worked out in Sections 7.1 and 7.2. We
have the following corollary of Proposition 11 and Theorem 14.

Corollary 15 (Strengthening of Weak PA Interpretation) For all hy-
brid automata H1, H2:

[[H1 ×H2]]
pa
s
↔V(H1 ×H2)∇ ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )) ,

where A′, f and γ are as in Theorem 14.

7 Adapting the Formalism of Hybrid Automata

In Section 6, we found that the formalism of hybrid automata matches a
fragment of the process algebra for hybrid systems closely, but not exactly.
The mismatch manifests itself entirely with the strong process algebra in-
terpretation of synchronous products. It cannot be expressed in terms of the
strong process algebra interpretations of the hybrid automata being composed:
[[H1 ×H2]]

pa
s
↔ ρf (∂A′([[H1]]

pa
s ‖ [[H2]]

pa
s )), for appropriate f and A′, does not

hold for all hybrid automata H1 and H2 (see Section 6.3). In this section we
adapt the definitions of hybrid automaton, transition system interpretation of
a hybrid automaton and synchronized product of hybrid automata such that
an exact match results, as is witnessed by the main theorems: Theorems 18
and 19. We illustrate the use of the adapted formalism of hybrid automata by
means of an example taken from the literature on hybrid automata. We also
add localization to the adapted formalism.

7.1 Continuity Controlled Hybrid Automata

We adapt the definition of hybrid automaton. The underlying idea is that
the continuous changes of some state variables may be interrupted from the
environment, but the continuous changes of other state variables not. Such a
partition of state variables with respect to the interruptability of continuous
changes is impossible with original hybrid automata.
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A continuity controlled hybrid automaton is a tuple

(V,W,M,E, S, µ, ν, ε, χ, φ, ψ)

where V , M , E, S, µ, ν, ε, χ, φ and ψ are as in the definition of hybrid
automaton in Section 4.1, and W ⊆ V . The set W is called the set of robust
state variables. We write W(H) for W .

The difference between continuity controlled hybrid automata and original
hybrid automata is that in the case of continuity controlled hybrid automata
evolutions with a finite number of discontinuities for certain state variables
may take place. The meaning of continuity controlled hybrid automata is
given in terms of hybrid transition systems instead of timed transition systems.
Hybrid transition systems are less abstract than timed transition systems: they
have flow transitions q

r,ρ7−−→ q′, where ρ ∈ Er, instead of q
r7−→ q′.

A hybrid transition system T is a tuple (Q,Q0, A,−→, O, || ||) where Q, Q0, A,
O and || || are as in the definition of timed transition system in Section 4.1,
but −→ consists of

• a set `−→ ⊆ Q×Q of `-transitions, for each ` ∈ A∪ {(r, ρ) | r ∈ R>, ρ ∈ Er}.

Bisimilarity on hybrid transition systems is defined as on timed transition
systems in Section 4.1, on the understanding that the range of ` is changed:
` ∈ A ∪ {(r, ρ) | r ∈ R>, ρ ∈ Er} instead of ` ∈ A ∪ R>.

States, admissible states and initial states of continuity controlled hybrid au-
tomata are defined as for original hybrid automata.

Let H = (V,W,M,E, S, µ, ν, ε, χ, φ, ψ) be a continuity controlled hybrid au-
tomaton. The transition system interpretation of H, written [[H]]cc, is the
hybrid transition system (Q,Q0, E,−→,Vst, || ||) where Q, Q0 and || || are as in

the definition of transition system interpretation in Section 4.1, but the `−→,
one for each ` ∈ E∪{(r, ρ) | r ∈ R>, ρ ∈ Er}, are the smallest subsets of Q×Q
such that:

• if s ∈ S, 〈ms, α〉 ∈ Q, 〈m′
s, α

′〉 ∈ Q and α −→ α′ |= χs, then 〈ms, α〉 es−→
〈m′

s, α
′〉;

• if m ∈M , r ∈ R>, ρ ∈ Er and α
r,ρ7−−→α′ |=W φm, then 〈m,α〉 r,ρ7−−→〈m,α′〉.

Note that evolutions with a finite number of discontinuities for state variables
in V \W may take place. An interesting special case occurs if V = W .

Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be an original hybrid automaton. Then
we write cc(H) for the corresponding continuity controlled hybrid automaton
(V, V,M,E, S, µ, ν, ε, χ, φ, ψ).
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Proposition 16 (Relation Original and CC Hybrid Automata) For
all hybrid automata H1, H2:

[[cc(H1)]]cc ↔ [[cc(H2)]]cc ⇔ [[H1]]↔ [[H2]] .
3

PROOF. From the definitions of transition system interpretation for original
hybrid automata and continuity controlled hybrid automata, it is easy to see
that for any hybrid automaton H, [[cc(H)]]cc and [[H]] only differ in their flow
transitions. For flow transitions, we have:

∃ρ ∈ Er • 〈m,α〉 r,ρ7−−→〈m′, α′〉 ⇔ 〈m,α〉 r7−→〈m′, α′〉 .

From left to right, suppose that B is a bisimulation between [[cc(H1)]]cc and
[[cc(H2)]]cc. Using the bi-implication given above, it follows immediately that
B is a bisimulation between [[H1]] and [[H2]] as well. The proof from right to
left is similar, using Proposition 1. 2

Let H = (V,W,M,E, S, µ, ν, ε, χ, φ, ψ) be a continuity controlled hybrid au-
tomaton. Then the process algebra interpretation of H, written [[H]]pa

cc , is the
term ∑

m∈M

˜̃ι · (ψm
∧N 〈Xm|F 〉) ,

where the guarded recursive specification F consists of the following equation
for each m ∈M :

Xm = φm
∩H

W

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)
.

Note that only evolutions without discontinuities for state variables in W may
take place. Note further that this process algebra interpretation is reminiscent
of the generic process algebra interpretation of original hybrid automata men-
tioned in Section 6.1.

We have the following results concerning the process algebra interpretation
and transition system interpretation of continuity controlled hybrid automata.

3 Note that on the left-hand side↔ is bisimilarity on hybrid transition systems and
on the right-hand side ↔ is bisimilarity on timed transition systems.
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Theorem 17 (Relation between TS and PA Interpretations) Let H
be a continuity controlled hybrid automaton, Q be the set of admissible states
of H and Q0 be the set of initial states of H. Then the state and transitions
of [[H]]cc and [[H]]pa

cc are related as follows:

〈m,α〉 ∈ Q⇔ α∈ [s(Xm)] ,

〈m,α〉 ∈ Q0 ⇔ α∈ [s(ψm
∧N Xm)] ,

〈m,α〉 e−→〈m′, α′〉 ⇔ 〈Xm, α〉 e−→〈Xm′ , α′〉 ,

〈m,α〉 ∈ Q0 ∧ 〈m,α〉 e−→〈m′, α′〉 ⇔ 〈ψm
∧N Xm, α〉 e−→〈Xm′ , α′〉 ,

〈m,α〉 r,ρ7−−→〈m,α′〉
⇔ ∃t ∈ PT • 〈Xm, α〉

r,ρ7−−→〈t, α′〉 ∧ t↔Xm ,

〈m,α〉 ∈ Q0 ∧ 〈m,α〉 r,ρ7−−→〈m,α′〉
⇔ ∃t ∈ PT • 〈ψm

∧N Xm, α〉
r,ρ7−−→〈t, α′〉 ∧ t↔Xm ,

for all m,m′ ∈ M(H), α, α′ ∈ Vst, e ∈ E(H) and r ∈ R>.

PROOF. The proof is analogous to the proof of Theorem 6. 2

Theorem 18 (Faithfulness of PA Interpretation) For all continuity
controlled hybrid automata H1 and H2 with W(H1) = W(H2):

[[H1]]
pa
cc
↔ [[H2]]

pa
cc ⇔ [[H1]]cc ↔ [[H2]]cc .

4

PROOF. The proof is analogous to the proof of Theorem 7. 2

7.2 Synchronized Product of Continuity Controlled Hybrid Automata

The definition of synchronized product has to be adapted to take care of
the constraints with respect to interruption of continuous changes of state
variables.

4 Note that on the left-hand side ↔ is bisimilarity on ACPsrt
hs terms and on the

right-hand side ↔ is bisimilarity on hybrid transition systems.
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Let Hi = (Vi,Wi,Mi, Ei, Si, µi, νi, εi, χi, φi, ψi), for i = 1, 2, be continuity con-
trolled hybrid automata. Then the synchronized product of H1 and H2, written
H1 ×H2, is the continuity controlled hybrid automaton

H = (V1 ∪ V2,W1 ∪W2,M1 ×M2, E1 ∪ E2, S, µ, ν, ε, χ, φ, ψ)

where S, µ, ν, ε, φ and ψ are as in the definition of synchronized product in
Section 4.2, and

χ(s,m) = χ1(s) ∧
∧

v∈W2
(v• = •v ∧ v̇• = •v̇) ,

χ(m, s) =
∧

v∈W1
(v• = •v ∧ v̇• = •v̇) ∧ χ2(s) ,

χ(s1, s2) = χ1(s1) ∧ χ2(s2) .

Note that only for the state variables in V1\W1, continuous changes originating
from H1 may be interrupted by instantaneous changes originating from H2;
and vice versa. This distinction is impossible with original hybrid automata.

We have the following result concerning the synchronized product of continuity
controlled hybrid automata and the parallel composition of ACPsrt

hs terms.

Theorem 19 (PA Interpretation of Synchronized Products) For all con-
tinuity controlled hybrid automata H1, H2:

[[H1 ×H2]]
pa
cc
↔ ρf (∂A′([[H1]]

pa
cc ‖ [[H2]]

pa
cc )) ,

where A′ = (E(H1) ∩ E(H2)) ∪ {ι}, the renaming function f is such that
f(a) = a if a ∈ A′ and f(a) = a if a 6∈ {a | a ∈ A′}, and the communication
function γ is such that γ(a, a) = a if a ∈ A′ and it is undefined otherwise.

PROOF. The proof is similar to the proof of Theorem 14. 2

Recall that Theorem 14 did not give us the compositionality result that we re-
ally wanted. In the case of continuity controlled hybrid automata, Theorem 19
gives us the desired result.

In the setting of continuity controlled hybrid automata, bisimilarity is not
preserved by synchronized product too.

Theorem 20 (Bisimilarity not Preserved by Synchronized Products)
There exist continuity controlled hybrid automata H1, H2, H

′
1 and H ′

2 such that
[[H1]]cc ↔ [[H ′

1]]cc and [[H2]]cc ↔ [[H ′
2]]cc, but [[H1 ×H2]]cc 6↔ [[H ′

1 ×H ′
2]]cc.
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PROOF. With continuity controlled hybrid automata without robust state
variables, the counterexample of preservation of bisimilarity given in the proof
of Theorem 3 goes through. 2

The following is a corollary of Theorems 18 and 20.

Corollary 21 (Bisimilarity not Preserved by Synchronized Products)
There exist continuity controlled hybrid automata H1, H2, H

′
1 and H ′

2 such that
[[H1]]

pa
cc
↔ [[H ′

1]]
pa
cc and [[H2]]

pa
cc
↔ [[H ′

2]]
pa
cc , but [[H1 ×H2]]

pa
cc 6↔ [[H ′

1 ×H ′
2]]

pa
cc .

A positive result can be obtained for a variant of bisimilarity on ACPsrt
hs terms

that is finer than bisimilarity on ACPsrt
hs terms. In Ref. [10], we consider

such a variant, called interference-compatible bisimilarity. The idea behind
interference-compatible bisimulation is the following. A process proceeding in
parallel with a process P can change the state of P at any time. Interference-
compatible bisimulation offers resistance to such changes. For example, if a
configuration 〈t1, α〉 is related to a configuration 〈t2, α〉 and 〈t1, α〉 a−→ 〈t′1, α′〉,
then there is a t′2 such that 〈t2, α〉 a−→ 〈t′2, α′〉 and 〈t′1, α′′〉 and 〈t′2, α′′〉 are
related for all α′′ ∈ Vst.

An interference-compatible bisimulation is a symmetric binary relation B on
PT such that for all t1, t2 ∈ PT :

• if B(t1, t2) and 〈t1, α〉 a−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉 a−→
〈t′2, α′〉 and B(t′1, t

′
2);

• if B(t1, t2) and 〈t1, α〉 a−→ 〈
√
, α′〉, then 〈t2, α〉 a−→ 〈

√
, α′〉;

• if B(t1, t2) and 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉, then there is a t′2 such that 〈t2, α〉

r,ρ7−−→
〈t′2, α′〉 and B(t′1, t

′
2);

• if B(t1, t2) and α∈ [s(t1)], then α∈ [s(t2)];
• if B(t1, t2) and α→α′ ∈ [d(t1)], then α→α′ ∈ [d(t2)].

Two closed terms t1 and t2 are interference-compatible bisimilar, written t1 ↔
t2, if there exists an interference-compatible bisimulation B such that B(t1, t2).

The following is a corollary of the definitions of bisimilarity (Section 5) and
interference-compatible bisimilarity.

Corollary 22 (Interference-Compatible Bisimilarity as Bisimilarity)
For all t1, t2 ∈ PT , t1 ↔ t2 if there exists a bisimulation B witnessing t1 ↔ t2
such that for all t′1, t

′
2 ∈ PT and α′ ∈ Vst:

• if B(〈t′1, α′〉, 〈t′2, α′〉), then B(〈t′1, α〉, 〈t′2, α〉) for all α ∈ Vst.

We say that bisimulation B is closed under changes of valuation if the condi-
tion on B given above holds. We can strengthen Theorem 19 as follows.
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Proposition 23 (PA Interpretation of Synchronized Products) For
all continuity controlled hybrid automata H1, H2:

[[H1 ×H2]]
pa
cc
↔ ρf (∂A′([[H1]]

pa
cc ‖ [[H2]]

pa
cc )) ,

where A′, f and γ are as in Theorem 19.

PROOF. Consider the relation

B′ = B ∪ {(〈t1, α〉, 〈t2, α〉) |
∃α′ ∈ Vst •B(〈t1, α′〉, 〈t2, α′〉) ∧ α 6∈ [s(t1)] ∧ α 6∈ [s(t2)]} ,

where B is the bisimulation used in the proof of Theorem 19. It follows im-
mediately from Corollary 4 that B′ is a bisimulation as well. Moreover, B′

is closed under changes of valuation. Hence, using Corollary 22, we conclude
that [[H1 ×H2]]

pa
cc
↔ ρf (∂A′([[H1]]

pa
cc ‖ [[H2]]

pa
cc )). 2

We have the following positive result concerning preservation of interference-
compatible bisimilarity.

Proposition 24 (Synchronized Products Preserve IC-Bisimilarity)
For all continuity controlled hybrid automata H1, H2, H

′
1 and H ′

2 such that
[[H1]]

pa
cc
↔ [[H ′

1]]
pa
cc and [[H2]]

pa
cc
↔ [[H ′

2]]
pa
cc , we have [[H1 ×H2]]

pa
cc
↔ [[H ′

1 ×H ′
2]]

pa
cc .

PROOF. In Ref. [10], it is shown that↔ is preserved by parallel composition
and encapsulation. It is easy to see that↔ is also preserved by action renaming.
Then the preservation of↔ by synchronized product follows immediately from
Proposition 23. 2

It is worth mentioning that general preservation results for both bisimilarity
and interference-compatible bisimilarity are given in Ref. [25]. There, they
are called initially stateless bisimilarity and stateless bisimilarity, respectively.
Interference-compatible bisimilarity is called robust bisimilarity in Ref. [19].

7.3 Example: Nuclear Reactor

In this section, we consider a simple nuclear reactor in which the temperature
of the reactor core is controlled by two control rods. The behaviour of the
reactor can be described informally as follows.
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Initially, the temperature of the reactor core is 510 ◦ C and the control rods are
outside the reactor core. With the control rods outside the reactor core, the
temperature T increases according to the differential equation Ṫ = 0.1T − 50.
The reactor must be shut down if the temperature becomes higher than 550 ◦ C.
To prevent a shutdown, one of the control rods should be put into the reactor
core once the temperature becomes 550 ◦ C. With control rod 1 inside the
reactor core, the temperature T decreases according to the differential equation
Ṫ = 0.1T − 56. With control rod 2 inside the reactor core, the temperature
T decreases according to the differential equation Ṫ = 0.1T − 60. The control
rod inside the reactor is removed from the reactor core once the temperature
becomes 510 ◦ C. When it is removed, it cannot be put back in the reactor core
for the next k seconds. To prevent that the reactor ever needs to be shut down,
the time k must be short enough to guarantee that, whenever the temperature
of the reactor core becomes 550 ◦ C, one of the control rods can be put back
in the reactor core.

The example is taken from Ref. [6]. There, the reactor core and the two con-
trol rods are described by hybrid automata. Here, we give the strong process
algebra interpretation of the continuity controlled hybrid automata that are
obtained from those hybrid automata by designating state variables as robust
state variables as follows: the temperature T in the case of the automaton for
the reactor core, the clock c1 in the case of the automaton for control rod 1
and the clock c2 in the case of the automaton for control rod 2.

The process algebra interpretation of the continuity controlled hybrid automa-
ton that describes the reactor core is as follows:

˜̃ι · ((T = 510) ∧N 〈Cout|F 〉) ,

where the recursive specification F consists of the following equations:

Cout = (T ≤ 550 ∧ Ṫ = 0.1T − 50) ∩H{T}(
(•T = 550 ∧ T • = •T ) uH ˜̃add1 · Cin1

+ (•T = 550 ∧ T • = •T ) uH ˜̃add2 · Cin2 + σ+
rel(Cout)

)
,

Cin1 = (T ≥ 510 ∧ Ṫ = 0.1T − 56) ∩H{T}(
(•T = 510 ∧ T • = •T ) uH ˜̃rmv 1 · Cout + σ+

rel(Cin1)
)
,

Cin2 = (T ≥ 510 ∧ Ṫ = 0.1T − 60) ∩H{T}(
(•T = 510 ∧ T • = •T ) uH ˜̃rmv 2 · Cout + σ+

rel(Cin2)
)
.

The process algebra interpretation of the continuity controlled hybrid automa-

38



ton that describes control rod 1 is as follows:

˜̃ι · (T ∧N 〈R1
out|F1〉) ,

where the recursive specification F1 consists of the following equations:

R1
out = (ċ1 = 1) ∩H{c1}

(
(•c1 ≥ k ∧ c1• = •c1) uH ˜̃add1 ·R1

in + σ+
rel(R

1
out)

)
,

R1
in = T ∩H{c1}

(
(c1

• = 0) uH ˜̃rmv 1 ·R1
out + σ+

rel(R
1
in)
)
.

The process algebra interpretation of the continuity controlled hybrid automa-
ton that describes control rod 2 is as follows:

˜̃ι · (T ∧N 〈R2
out|F2〉) ,

where the recursive specification F2 consists of the following equations:

R2
out = (ċ2 = 1) ∩H{c2}

(
(•c2 ≥ k ∧ c2• = •c2) uH ˜̃add2 ·R2

in + σ+
rel(R

2
out)

)
,

R2
in = T ∩H{c2}

(
(c2

• = 0) uH ˜̃rmv 2 ·R2
out + σ+

rel(R
2
in)
)
.

A continuity controlled hybrid automaton for the whole system is obtained
by constructing the synchronized product of the continuity controlled hybrid
automata for the reactor core and the two control rods. Because Theorem 19
applies here, the process algebra interpretation of the continuity controlled
hybrid automaton for the whole system is bisimilar to the following term:

ρf (∂H(Cout ‖ ρf ′(∂H′(R1
out ‖R2

out)))) ,

where H = {add1, rmv 1, add2, rmv 2, ι}, H ′ = {ι}, the renaming function f is
such that f(a) = a if a ∈ H and f(a) = a if a 6∈ {a | a ∈ H}, the renaming
function f ′ is such that f ′(a) = a if a ∈ H ′ and f ′(a) = a if a 6∈ {a | a ∈ H ′},
and the communication function γ is such that γ(a, a) = a if a ∈ H and it is
undefined otherwise.

In the continuity controlled hybrid automata for the nuclear reactor and con-
trol rods, just like in the hybrid automaton for the thermostat of Section 6.2,
delays are modelled by means of state variables with derivative 1. Such state
variables are called clock variables. Because the relative delay operator is avail-
able in ACPsrt

hs for that purpose, we can replace the recursive specifications
given above by ones without clock variables. Such recursive specifications are
given in Section 4.1 of Ref. [10].
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7.4 Localization of Continuity Controlled Hybrid Automata

For continuity controlled hybrid automata, it is useful to introduce localiza-
tion. With localization extra state variables can be made robust.

Let H = (V,W,M,E, S, µ, ν, ε, χ, φ, ψ) be a continuity controlled hybrid au-
tomaton and V ′ ⊆ V . Then the localization of H with respect to V ′, written
V ′ ∇H, is the continuity controlled hybrid automaton

H = (V, V ′ ∪W,M,E, S, µ, ν, ε, χ, φ, ψ) .

We have the following result concerning the localization of continuity con-
trolled hybrid automata and the localization of ACPsrt

hs terms.

Theorem 25 (PA Interpretation of Localization) For all continuity
controlled hybrid automata H and V ′ ⊆ V(H):

[[V ′ ∇H]]pa
cc
↔ V ′ ∇ [[H]]pa

cc .

PROOF. See Appendix B.5. 2

Continuity controlled hybrid automata H for which V(H)∇H = H are closely
related to original hybrid automata.

Proposition 26 (Relation Original and CC Hybrid Automata) For
all continuity controlled hybrid automata H, there exists a hybrid automaton
H ′ such that:

V(H)∇H = cc(H ′) .

PROOF. Follows immediately from the definitions of hybrid automaton and
continuity controlled hybrid automaton and the definition of localization of
continuity controlled hybrid automata. 2

In continuity controlled hybrid automata, evolutions with a finite number of
discontinuities for certain state variables may take place. In synchronized prod-
ucts of continuity controlled hybrid automata, only the continuous changes of
those state variables are interruptable. Thus, continuity controlled hybrid au-
tomata offer controllability of interruption of continuous changes of state vari-
ables in synchronized products. Proposition 26 shows that, after composition
of continuity controlled hybrid automata by means of synchronized products,
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a continuity controlled hybrid automaton that is essentially an original hybrid
automaton can always be obtained by localization.

8 Concluding Remarks

The connections between the process algebra for hybrid systems introduced in
Ref. [10] and the formalism of hybrid automata have been investigated. It has
been shown that there is a fragment of the process algebra for hybrid systems
that gets near a symbolic counterpart of the formalism of hybrid automata.
However, an exact match is not attainable. This has brought us to introduce
an adaptation of the formalism of hybrid automata that yields an exact match.
In continuation of the work presented in this paper, an interesting option for
future work is to investigate the adaptation of model checking tools developed
for hybrid automata to a suitable fragment of our process algebra for hybrid
systems.

Hybrid automata and related notions are defined in different ways in the lit-
erature. The following are some examples of the differences. Hybrid automata
are interpreted as trajectories in e.g. Ref. [6] and as timed transition systems
in e.g. Ref. [3]. The state variables are interpreted as functions from R≥ to R
that are piecewise of class C∞ in e.g. Ref. [1], as functions from R≥ to R that
are piecewise of class C1 in e.g. Ref. [8], and as functions from R≥ to R that
are piecewise differentiable in e.g. Ref. [3]. Control switches are labelled with
a set of events in e.g. Ref. [6] and they are labelled with a single event in e.g.
Ref. [23]. Stutter control switches for each control mode are required in e.g.
Ref. [1] and they are not required in e.g. Ref. [7]. Because of these differences,
we have taken the liberty to choose the definitions that result in the closest
match with our process algebra for hybrid systems.

In some papers on hybrid automata, e.g. in Ref. [8], the events of a hybrid
automaton include a silent event τ and bisimilarity of hybrid automata is weak
bisimilarity in the sense of Ref. [26]. Our process algebra for hybrid systems
does not incorporate silent actions and weak (or branching) bisimilarity. This
issue is not even fully understood in process algebras with timing. The version
of branching bisimilarity for processes with discrete relative timing proposed
in Ref. [27] for this purpose, and adapted to continuous relative timing in
Ref. [12], is too fine for many applications. A slightly coarser equivalence is
proposed in Ref. [28].

We have given process algebra interpretations of a hybrid automaton that de-
scribes a thermostat and continuity controlled hybrid automata that describe
the components of a simple nuclear reactor. The hybrid automaton for the
thermostat can be found in Ref. [8] and the hybrid automata from which the
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continuity controlled hybrid automata for the components of the simple nu-
clear reactor are obtained can be found in Ref. [6]. More examples of the use of
hybrid automata for describing hybrid systems can be found there, and in the
remaining literature on hybrid automata. For example, hybrid automata de-
scribing the components of a railroad crossing system can be found in Ref. [6].
Process algebra interpretations for those hybrid automata are essentially given
in Section 4.7 of Ref. [10]: instead of equations of the form

Xm = φm
∩H

V

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)

equivalent equations of the form

Xm = φm
∩H

V

∫
u∈[0,∞)

σu
rel

( ∑
s∈{s∈S|ms=m}

χs
uH ˜̃es ·Xm′

s

)

are used.

The term hybrid system is sometimes, e.g. in Refs. [29,30], used for a hybrid
automaton with the initial, flow and jump conditions replaced by the sets,
functions and relations defined by them. In those cases, hybrid automata are
regarded as concrete syntactic descriptions of such hybrid systems. For the
study of connections with ACPsrt

hs , such hybrid systems are essentially the
same as hybrid automata.

The term hybrid automaton is used in a rather uncommon way in the HIOA
framework [31]. The hybrid automata from that framework are similar to the
hybrid transition systems introduced in Section 7.1 of the current paper. The
main difference is that it is stipulated in the HIOA framework that the states
must be valuations of state variables.

As mentioned in Section 1, the process algebra for hybrid systems introduced
in Ref. [10] includes among other things equational axioms for reasoning about
hybrid systems. It is worth mentioning that the propositions and theorems that
assert bisimilarity of process algebra interpretations of hybrid automata can
alternatively be proved by means of those axioms.
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A Structural Operational Semantics of ACPsrt
hs

We assume that a fixed but arbitrary set A of actions and a fixed but arbitrary
partial commutative and associative communication function γ : A × A → A
have been given. We also assume that a fixed but arbitrary set V of state
variables has been given. Furthermore, it is assumed that each first-order
definable set of non-negative real numbers can be denoted by a closed term.

We shall henceforth use x, y, x′, y′, . . . and X,Y, . . . as variables ranging over
processes, tX , tY , . . . to stand for arbitrary terms of ACPsrt

hs , a, b, c, . . . to stand
for arbitrary elements of A, H,H ′, . . . to stand for arbitrary subsets of A,
u, u′, . . . as variables ranging over R≥, p, q, r, . . . to stand for arbitrary closed
terms denoting elements of R≥, U,U ′, . . . to stand for arbitrary closed terms
denoting first-order definable subsets of R≥, E,E ′, . . . to stand for arbitrary
guarded recursive specifications. Moreover, we shall henceforth use F and G as
variables ranging over functions that map each non-negative real number to a
process and can be represented by terms containing a designated free variable
ranging over R≥. For more information on such second-order variables, see e.g.
Refs. [32,33].

We write Aδ for A ∪ {δ}. Let t be a term of ACPsrt
hs and E be a guarded

recursive specification. Then we write 〈t|E〉 for t with, for all X ∈ V(E), all
occurrences of X in t replaced by 〈X|E〉. Let V ⊆ V. Then we write CV for∧

v∈V (v• = •v ∧ v̇• = •v̇).

The structural operational semantics of ACPsrt
hs is described by the rules given

in Tables A.1, A.2, A.3 and A.4. We write 〈t, α〉 6 r7−→ for the set of all transition

formulas ¬(〈t, α〉 r,ρ7−−→〈t′, α′〉) where t′ is a closed term of ACPsrt
hs , α′ ∈ Vst and

ρ ∈ Er. We write 〈t, α〉 67−→ for the set of all transition formulas ¬(〈t, α〉 r,ρ7−−→
〈t′, α′〉) where t′ is a closed term of ACPsrt

hs , α′ ∈ Vst, r ∈ R> and ρ ∈ Er.
We write ρ D r, where ρ ∈ Er+s (r, s > 0), for the ρ′ ∈ Es such that ρ′(s′) =
ρ(r+s′) for all s′ ∈ [0, s]. The five kinds of transition relations used are further
explained in Section 5.

The structural operational semantics for integration is described by the rules
given in Table A.5. The complexity of the rule concerning the time-related
capabilities of a process

∫
u∈UF (u) is caused by the fact that the processes

F (p) with p ∈ U that are capable of idling need not change uniformly while
idling. For more information on this phenomenon, see e.g. Refs. [12,34]. The
structural operational semantics for recursion is described by the rules given
in Table A.6. The structural operational semantics for localization is described
by the rules given in Table A.7. The structural operational semantics for action
renaming is described by the rules given in Table A.8.

43



Table A.1
Rules for operational semantics of BPAsrt

hs (a ∈ A, r, s > 0)

〈˜̃a, α〉 a−→〈
√
, α′〉

〈x, α〉 a−→〈x′, α′〉

〈σ0
rel(x), α〉

a−→〈x′, α′〉

〈x, α〉 a−→〈
√
, α′〉

〈σ0
rel(x), α〉

a−→〈
√
, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈σ0
rel(x), α〉

r,ρ7−−→〈x′, α′〉

〈σr+s
rel (x), α〉 r,ρ7−−→〈σs

rel(x), α
′〉

α′ ∈ [s(x)]

〈σr
rel(x), α〉

r,ρ7−−→〈x, α′〉

〈x, α′〉 s,ρDr7−−−−→〈x′, α′′〉

〈σr
rel(x), α〉

r+s,ρ7−−−−→〈x′, α′′〉

〈x, α〉 a−→〈x′, α′〉, α∈ [s(y)]

〈x+ y, α〉 a−→〈x′, α′〉

α∈ [s(x)], 〈y, α〉 a−→〈y′, α′〉

〈x+ y, α〉 a−→〈y′, α′〉

〈x, α〉 a−→〈
√
, α′〉, α∈ [s(y)]

〈x+ y, α〉 a−→〈
√
, α′〉

α∈ [s(x)], 〈y, α〉 a−→〈
√
, α′〉

〈x+ y, α〉 a−→〈
√
, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉, 〈y, α〉 6 r7−→, α∈ [s(y)]

〈x+ y, α〉 r,ρ7−−→〈x′, α′〉

〈x, α〉 6 r7−→, α∈ [s(x)], 〈y, α〉 r,ρ7−−→〈y′, α′〉

〈x+ y, α〉 r,ρ7−−→〈y′, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉, 〈y, α〉 r,ρ7−−→〈y′, α′〉

〈x+ y, α〉 r,ρ7−−→〈x′ + y′, α′〉

〈x, α〉 a−→〈x′, α′〉

〈x · y, α〉 a−→〈x′ · y, α′〉

〈x, α〉 a−→〈
√
, α′〉, α′ ∈ [s(y)]

〈x · y, α〉 a−→〈y, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈x · y, α〉 r,ρ7−−→〈x′ · y, α′〉

〈x, α〉 a−→〈x′, α′〉

〈ψ :→ x, α〉 a−→〈x′, α′〉
α |= ψ

〈x, α〉 a−→〈
√
, α′〉

〈ψ :→ x, α〉 a−→〈
√
, α′〉

α |= ψ

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈ψ :→ x, α〉 r,ρ7−−→〈x′, α′〉
α |= ψ

〈x, α〉 a−→〈x′, α′〉

〈ψ ∧N x, α〉 a−→〈x′, α′〉
α |= ψ

〈x, α〉 a−→〈
√
, α′〉

〈ψ ∧N x, α〉 a−→〈
√
, α′〉

α |= ψ

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈ψ ∧N x, α〉 r,ρ7−−→〈x′, α′〉
α |= ψ

〈x, α〉 a−→〈x′, α′〉

〈φ ∩HV x, α〉 a−→〈x′, α′〉
α |= φ

〈x, α〉 a−→〈
√
, α′〉

〈φ ∩HV x, α〉 a−→〈
√
, α′〉

α |= φ

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈φ ∩HV x, α〉 r,ρ7−−→〈φ ∩HV x′, α′〉
α

r,ρ7−−→α′ |=V φ

〈x, α〉 a−→〈x′, α′〉

〈χ uH x, α〉 a−→〈x′, α′〉
α−→α′ |= χ

〈x, α〉 a−→〈
√
, α′〉

〈χ uH x, α〉 a−→〈
√
, α′〉

α−→α′ |= χ

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈χ uH x, α〉 r,ρ7−−→〈x′, α′〉
∃α′′ • α−→α′′ |= χ

〈x, α〉 a−→〈x′, α′〉

〈νrel(x), α〉 a−→〈x′, α′〉

〈x, α〉 a−→〈
√
, α′〉

〈νrel(x), α〉 a−→〈
√
, α′〉
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Table A.2
Additional rules for ACPsrt

hs (a, b, c ∈ A, r > 0)
〈x, α〉 a−→〈x′, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x ‖ y, α〉 a−→〈x′ ‖ y, α′〉

α→α′ ∈ [d(x)], α′ ∈ [s(x)], 〈y, α〉 a−→〈y′, α′〉

〈x ‖ y, α〉 a−→〈x ‖ y′, α′〉

〈x, α〉 a−→〈
√
, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x ‖ y, α〉 a−→〈y, α′〉

α→α′ ∈ [d(x)], α′ ∈ [s(x)], 〈y, α〉 a−→〈
√
, α′〉

〈x ‖ y, α〉 a−→〈x, α′〉

〈x, α〉 a−→〈x′, α′〉, 〈y, α〉 b−→〈y′, α′〉

〈x ‖ y, α〉 c−→〈x′ ‖ y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈x′, α′〉, 〈y, α〉 b−→〈
√
, α′〉

〈x ‖ y, α〉 c−→〈x′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈
√
, α′〉, 〈y, α〉 b−→〈y′, α′〉

〈x ‖ y, α〉 c−→〈y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈
√
, α′〉, 〈y, α〉 b−→〈

√
, α′〉

〈x ‖ y, α〉 c−→〈
√
, α′〉

γ(a, b) = c

〈x, α〉 r,ρ7−−→〈x′, α′〉, 〈y, α〉 r,ρ7−−→〈y′, α′〉

〈x ‖ y, α〉 r,ρ7−−→〈x′ ‖ y′, α′〉

〈x, α〉 a−→〈x′, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x bb y, α〉 a−→〈x′ ‖ y, α′〉

〈x, α〉 a−→〈
√
, α′〉, α→α′ ∈ [d(y)], α′ ∈ [s(y)]

〈x bb y, α〉 a−→〈y, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉, 〈y, α〉 r,ρ7−−→〈y′, α′〉

〈x bb y, α〉 r,ρ7−−→〈x′ bb y′, α′〉

〈x, α〉 a−→〈x′, α′〉, 〈y, α〉 b−→〈y′, α′〉

〈x | y, α〉 c−→〈x′ ‖ y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈x′, α′〉, 〈y, α〉 b−→〈
√
, α′〉

〈x | y, α〉 c−→〈x′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈
√
, α′〉, 〈y, α〉 b−→〈y′, α′〉

〈x | y, α〉 c−→〈y′, α′〉
γ(a, b) = c

〈x, α〉 a−→〈
√
, α′〉, 〈y, α〉 b−→〈

√
, α′〉

〈x | y, α〉 c−→〈
√
, α′〉

γ(a, b) = c

〈x, α〉 r,ρ7−−→〈x′, α′〉, 〈y, α〉 r,ρ7−−→〈y′, α′〉

〈x | y, α〉 r,ρ7−−→〈x′ | y′, α′〉

〈x, α〉 a−→〈x′, α′〉

〈∂H(x), α〉 a−→〈∂H(x′), α′〉
a 6∈ H

〈x, α〉 a−→〈
√
, α′〉

〈∂H(x), α〉 a−→〈
√
, α′〉

a 6∈ H

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈∂H(x), α〉 r,ρ7−−→〈∂H(x′), α′〉

Table A.3
Rules for α∈ [s( )] (a ∈ Aδ, r > 0)

α∈ [s(˜̃a)]

α∈ [s(x)]

α∈ [s(σ0
rel(x))] α∈ [s(σr

rel(x))]

α∈ [s(x)], α∈ [s(y)]

α∈ [s(x+ y)]

α∈ [s(x)]

α∈ [s(x · y)]

α∈ [s(x)]

α∈ [s(ψ :→ x)] α∈ [s(ψ :→ x)]
α 6|= ψ

α∈ [s(x)]

α∈ [s(ψ ∧N x)]
α |= ψ

α∈ [s(x)]

α∈ [s(φ ∩HV x)]
α |= φ

α∈ [s(x)]

α∈ [s(χ uH x)] α∈ [s(χ uH x)]
¬∃α′ • α−→α′ |= χ

α∈ [s(x)]

α∈ [s(νrel(x))]

α∈ [s(x)], α∈ [s(y)]

α∈ [s(x ‖ y)]

α∈ [s(x)], α∈ [s(y)]

α∈ [s(x bb y)]

α∈ [s(x)], α∈ [s(y)]

α∈ [s(x | y)]

α∈ [s(x)]

α∈ [s(∂H(x))]
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Table A.4
Rules for α→α′ ∈ [d( )] (a ∈ Aδ, r > 0)

α→α′ ∈ [d(˜̃a)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(σ0
rel(x))] α→α′ ∈ [d(σr

rel(x))]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)]

α→α′ ∈ [d(x+ y)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(x · y)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(ψ :→ x)] α→α′ ∈ [d(ψ :→ x)]
α 6|= ψ

α→α′ ∈ [d(x)]

α→α′ ∈ [d(ψ ∧N x)]
α |= ψ

α→α′ ∈ [d(x)], 〈x, α〉 r,ρ7−−→〈x′, α′′〉

α→α′ ∈ [d(φ ∩HV x)]
α−→α′ |= CV , α |= φ

α→α′ ∈ [d(x)], 〈x, α〉 67−→

α→α′ ∈ [d(φ ∩HV x)]
α |= φ

α→α′ ∈ [d(x)]

α→α′ ∈ [d(χ uH x)] α→α′ ∈ [d(χ uH x)]
¬∃α′′ • α−→α′′ |= χ

α∈ [s(x)]

α→α′ ∈ [d(νrel(x))]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x ‖ y, α〉 r,ρ7−−→〈x′, α′′〉

α→α′ ∈ [d(x ‖ y)]

α∈ [s(x)], α∈ [s(y)], 〈x ‖ y, α〉 67−→

α→α′ ∈ [d(x ‖ y)]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x bb y, α〉 r,ρ7−−→〈x′, α′′〉

α→α′ ∈ [d(x bb y)]

α∈ [s(x)], α∈ [s(y)], 〈x bb y, α〉 67−→

α→α′ ∈ [d(x bb y)]

α→α′ ∈ [d(x)], α→α′ ∈ [d(y)], 〈x | y, α〉 r,ρ7−−→〈x′, α′′〉

α→α′ ∈ [d(x | y)]

α∈ [s(x)], α∈ [s(y)], 〈x | y, α〉 67−→

α→α′ ∈ [d(x | y)]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(∂H(x))]

Table A.5
Additional rules for integration (a ∈ A, p, q ≥ 0, r > 0)
〈F (p), α〉 a−→〈x′, α′〉, {α∈ [s(F (q))] | q ∈ U}

〈
∫

u∈U
F (u), α〉 a−→〈x′, α′〉

p ∈ U

〈F (p), α〉 a−→〈
√
, α′〉, {α∈ [s(F (q))] | q ∈ U}

〈
∫

u∈U
F (u), α〉 a−→〈

√
, α′〉

p ∈ U

{〈F (q), α〉 r,ρ7−−→〈F1(q), α
′〉 | q ∈ U1},

. . . ,

{〈F (q), α〉 r,ρ7−−→〈Fn(q), α′〉 | q ∈ Un},
{〈F (q), α〉 6 r7−→ , α∈ [s(F (q))] | q ∈ Un+1}

〈
∫

u∈U
F (u), α〉 r,ρ7−−→〈

∫
u∈U1

F1(u) + . . .+
∫

u∈Un
Fn(u), α′〉

{U1, . . . , Un} partition

of U \ Un+1, Un+1 ⊂ U

{α∈ [s(F (q))] | q ∈ U}

α∈ [s(
∫

u∈U
F (u))]

{α→α′ ∈ [d(F (q))] | q ∈ U}

α→α′ ∈ [d(
∫

u∈U
F (u))]
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Table A.6
Additional rules for recursion (a ∈ A, r > 0)
〈〈tX |E〉, α〉 a−→〈x′, α′〉

〈〈X|E〉, α〉 a−→〈x′, α′〉
X = tX ∈ E

〈〈tX |E〉, α〉 a−→〈
√
, α′〉

〈〈X|E〉, α〉 a−→〈
√
, α′〉

X = tX ∈ E

〈〈tX |E〉, α〉
r,ρ7−−→〈x′, α′〉

〈〈X|E〉, α〉 r,ρ7−−→〈x′, α′〉
X = tX ∈ E

α∈ [s(〈tX |E〉)]

α∈ [s(〈X|E〉)]
X = tX ∈ E

α→α′ ∈ [d(〈tX |E〉)]

α→α′ ∈ [d(〈X|E〉)]
X = tX ∈ E

Table A.7
Additional rules for localization (a ∈ A, r > 0)

〈x, α〉 a−→〈x′, α′〉

〈v ∇ x, α〉 a−→〈v ∇ x′, α′〉

〈a, α〉 a−→〈
√
, α′〉

〈v ∇ x, α〉 a−→〈
√
, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈v ∇ x, α〉 r,ρ7−−→〈v ∇ x′, α′〉
α

r,ρ7−−→α′ |={v} T
α∈ [s(x)]

α∈ [s(v ∇ x)]

α→α′ ∈ [d(x)], 〈x, α〉 r,ρ7−−→〈x′, α′′〉

α→α′ ∈ [d(v ∇ x)]
α−→α′ |= C{v}

α→α′ ∈ [d(x)], 〈x, α〉 67−→

α→α′ ∈ [d(v ∇ x)]

Table A.8
Additional rules for action renaming (a ∈ A, r > 0)

〈x, α〉 a−→〈x′, α′〉

〈ρf (x), α〉 f(a)−−−→〈ρf (x′), α′〉

〈x, α〉 a−→〈
√
, α′〉

〈ρf (x), α〉 f(a)−−−→〈
√
, α′〉

〈x, α〉 r,ρ7−−→〈x′, α′〉

〈ρf (x), α〉 r,ρ7−−→〈ρf (x′), α′〉

α∈ [s(x)]

α∈ [s(ρf (x))]

α→α′ ∈ [d(x)]

α→α′ ∈ [d(ρf (x))]
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B Proofs

In this appendix, we give the proofs of Theorem 7, Proposition 9, Proposi-
tion 11, Theorem 14 and Theorem 25.

In the proofs, we write 〈t, α〉 7−→ to indicate that there exist an r ∈ R>, ρ ∈ Er,

t′ ∈ PT and α′ ∈ Vst such that 〈t, α〉 r,ρ7−−→〈t′, α′〉); and 〈t, α〉 67−→ to indicate that
not 〈t, α〉 7−→.

B.1 Proof of Theorem 7

In this section, we prove the following theorem.

Theorem 7. For all hybrid automata H1 and H2 with V(H1) = V(H2):

[[H1]]
pa
s
↔ [[H2]]

pa
s ⇔ [[H1]]↔ [[H2]] .

PROOF. Let H = (V,M,E, S, µ, ν, ε, χ, φ, ψ) be a hybrid automaton. The
following facts concerning [[H]]pa

s , which follow easily from the definition of
strong process algebra interpretation, are used in the proof of Theorem 7. For
action steps, the following implications hold:

〈Xm, α〉 a−→〈t, α′〉⇒∃m′ ∈M • t ≡ Xm′ ∧ α′ ∈ [s(Xm′)] (B.1)

〈ψm
∧N Xm, α〉 a−→〈t, α′〉⇒∃m′ ∈M • t ≡ Xm′ ∧ α′ ∈ [s(Xm′)] (B.2)

For time steps, the following implications hold:

〈Xm, α〉
r,ρ7−−→〈t, α′〉⇒ t↔Xm ∧ α′ ∈ [s(Xm)] (B.3)

〈ψm
∧N Xm, α〉

r,ρ7−−→〈t, α′〉⇒ t↔Xm ∧ α′ ∈ [s(Xm)] (B.4)

For signals, the following bi-implications hold:

α∈ [s(Xm)] ∧ (〈Xm, α〉 7−→⇒ α−→α′ |= CV ) ⇔ α→α′ ∈ [d(Xm)] (B.5)

α∈ [s(ψm
∧N Xm)] ∧ (〈ψm

∧N Xm, α〉 7−→⇒ α−→α′ |= CV )

⇔ α→α′ ∈ [d(ψm
∧N Xm)] (B.6)

The following three facts, which follow easily from the definitions of transition
system interpretation and strong process algebra interpretation are also used:
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∃ρ ∈ Er • α
r,ρ7−−→α′ |=V φ(m)⇔〈m,α〉 r7−→〈m,α′〉 (B.7)

α
r,ρ7−−→α′ |=V φ(m)⇔∃t ∈ PT • 〈Xm, α〉

r,ρ7−−→〈t, α′〉 (B.8)

α |= ψ(m) ∧ α r,ρ7−−→α′ |=V φ(m)⇔∃t ∈ PT • 〈ψm
∧N Xm, α〉

r,ρ7−−→〈t, α′〉(B.9)

We proceed with the proof of Theorem 7. Suppose that

Hi = (V,Mi, Ei, Si, µi, νi, εi, χi, φi, ψi) ,

[[Hi]] = (Qi, Q
0
i , Ei,−→i,Vst, || ||i) ,

for i = 1, 2.

We prove the implication from left to right as follows. Consider the relation
B = B0 ∪B1 where

B0 = {(〈m1, α〉, 〈m2, α〉) | 〈ψm1
∧N Xm1 , α〉↔ 〈ψm2

∧N Xm2 , α〉} ,

B1 = {(〈m1, α〉, 〈m2, α〉) | 〈Xm1 , α〉↔ 〈Xm2 , α〉} .

We show that B is a bisimulation. We proceed by distinguishing the different
conditions to be satisfied by a bisimulation:

• Because [[H1]]
pa
s
↔ [[H2]]

pa
s , it follows from the definition of strong process

algebra interpretation that, for all α ∈ Vst, for all m1 ∈M1 with α∈ [s(ψm1
∧N

Xm1)], there exists an m2 ∈M2 such that 〈ψm1
∧NXm1 , α〉↔ 〈ψm2

∧NXm2 , α〉.
Therefore, if α∈ [s(ψm1

∧N Xm1)], then there exists an m2 ∈ M2 such that
〈ψm1

∧NXm1 , α〉↔ 〈ψm2
∧NXm2 , α〉 and α∈ [s(ψm2

∧NXm2)]. Using Theorem 6,
we conclude: if 〈m1, α〉 ∈ Q0

1, then there exists a 〈m2, α〉 ∈ Q0
2 such that

B(〈m1, α〉, 〈m2, α〉). The proof for the other direction goes analogous.
• Suppose B(〈m1, α〉, 〈m2, α〉). We proceed by distinguishing the two subre-

lations:
· B1(〈m1, α〉, 〈m2, α〉): In this case, we may assume 〈Xm1 , α〉 ↔ 〈Xm2 , α〉.

We distinguish between jump and flow transitions:
Suppose 〈Xm1 , α〉

a−→ 〈t′1, α′〉. It follows, using (B.1), that t′1 ≡ Xm′
1

for some m′
1 ∈ M1. Because 〈Xm1 , α〉 ↔ 〈Xm2 , α〉, it also fol-

lows that there exists a t′2 ∈ PT such that 〈Xm2 , α〉
a−→ 〈t′2, α′〉

and 〈t′1, α′〉 ↔ 〈t′2, α′〉. It follows, using (B.1), that t′2 ≡ Xm′
2

and
α′ ∈ [s(Xm′

2
)] for some m′

2 ∈ M2. Note that, because t′1 ≡ Xm′
1

and
t′2 ≡ Xm′

2
, 〈Xm′

1
, α′〉 ↔ 〈Xm′

2
, α′〉. Using Theorem 6, we conclude:

if 〈m1, α〉 a−→1 〈m′
1, α

′〉, then there exists a 〈m′
2, α

′〉 ∈ Q2 such that
〈m2, α〉 a−→2 〈m′

2, α
′〉 and B(〈m′

1, α
′〉, 〈m′

2, α
′〉).
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Suppose 〈Xm1 , α〉
r,ρ7−−→〈t1, α′〉. It follows, using (B.3), that t1 ↔Xm1 .

Because 〈Xm1 , α〉 ↔ 〈Xm2 , α〉, it also follows that there exists a t2 ∈
PT such that 〈Xm2 , α〉

r,ρ7−−→ 〈t2, α′〉 and 〈t1, α′〉 ↔ 〈t2, α′〉. It follows,
using (B.3), that t2 ↔ Xm2 and α′ ∈ [s(Xm2)]. Note that, because
t1 ↔ Xm1 and t2 ↔ Xm2 , 〈Xm1 , α

′〉 ↔ 〈Xm2 , α
′〉. Using Theorem 6,

we conclude: if 〈m1, α〉
r7−→1 〈m1, α

′〉, then there exists a 〈m2, α
′〉 ∈ Q2

such that 〈m2, α〉
r7−→2 〈m2, α

′〉 and B(〈m1, α
′〉, 〈m2, α

′〉).
The proof for the other direction goes analogous.

· B0(〈m1, α〉, 〈m2, α〉): The proof for this case goes similar to the proof
for the case B1(〈m1, α〉, 〈m2, α〉), using (B.2) and (B.4) instead of (B.1)
and (B.3).

• Because 〈m,α〉 ∈ ||α′|| iff α = α′, the conditions on observations are trivially
satisfied.

We prove the implication from right to left as follows. Suppose that B is a
bisimulation between [[H1]] and [[H2]]. Then consider the relation

B′ = B′
∗ ∪B′

0 ∪B′
1 ∪B′

∗
−1 ∪B′

0
−1 ∪B′

1
−1 ,

where

B′
∗ = {(〈[[H1]]

pa
s , α〉, 〈[[H2]]

pa
s , α〉) | α ∈ Vst} ,

B′
0 = {(〈ψm1

∧N Xm1 , α〉, 〈ψm2
∧N Xm2 , α〉) |

B(〈m1, α〉, 〈m2, α〉) ∧ α |= ψ1(m1) ∧ α |= ψ2(m2)} ,

B′
1 = {(〈t1, α〉, 〈t2, α〉) | ∃m1 ∈M1,m2 ∈M2 •

B(〈m1, α〉, 〈m2, α〉) ∧ t1 ↔Xm1 ∧ t2 ↔Xm2} .

Note that, by definition, B′ is a symmetric relation. First, we show that B′ is
a bisimulation. Suppose B′(〈t1, α〉, 〈t2, α〉). We proceed by distinguishing the
six subrelation:

• B′
1(〈t1, α〉, 〈t2, α〉): In this case, we may assume that B(〈m1, α〉, 〈m2, α〉),

t1 ↔ Xm1 and t2 ↔ Xm2 for some m1 ∈ M1 and m2 ∈ M2. We proceed by
distinguishing the different conditions to be satisfied by a bisimulation:
· Suppose 〈m1, α〉 a−→1 〈m′

1, α
′〉. Because B(〈m1, α〉, 〈m2, α〉), it follows

that there exists a 〈m′
2, α

′〉 ∈ Q2 such that 〈m2, α〉 a−→2 〈m′
2, α

′〉 and
B(〈m′

1, α
′〉, 〈m′

2, α
′〉). Using Theorem 6 and (B.1), and also t1 ↔Xm1 and

t2 ↔ Xm2 , we conclude: if 〈t1, α〉 a−→ 〈t′1, α′〉, then there exists a t′2 ∈ PT
such that 〈t2, α〉 a−→〈t′2, α′〉 and B′(〈t′1, α′〉, 〈t′2, α′〉).

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈Xm1 , α〉

a−→〈
√
, α′〉 for all a ∈ A and α′ ∈ Vst. Because

t1 ↔Xm1 , we conclude: if 〈t1, α〉 a−→〈
√
, α′〉 then 〈t2, α〉 a−→〈

√
, α′〉.
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· Suppose 〈m1, α〉
r7−→1 〈m1, α

′〉. Because B(〈m1, α〉, 〈m2, α〉), it follows that
〈m2, α

′〉 ∈ Q2, 〈m2, α〉
r7−→2 〈m2, α

′〉 and B(〈m1, α
′〉, 〈m2, α

′〉). First, using

Proposition 1 and (B.7), we conclude: if α
r,ρ7−−→α′ |=V φ1(m1), then α

r,ρ7−−→
α′ |=V φ2(m2) and B(〈m1, α

′〉, 〈m2, α
′〉). Next, using (B.8), and also t1 ↔

Xm1 and t2 ↔Xm2 , we conclude: if 〈t1, α〉
r,ρ7−−→〈t′1, α′〉, then there exists a

t′2 ∈ PT such that 〈t2, α〉
r,ρ7−−→〈t′2, α′〉 and B′(〈t′1, α′〉, 〈t′2, α′〉).

· Suppose 〈m1, α〉 ∈ Q1. Because B(〈m1, α〉, 〈m2, α〉), it follows that
〈m2, α〉 ∈ Q2. Using Theorem 6, and also t1 ↔ Xm1 and t2 ↔ Xm2 ,
we conclude: if α∈ [s(t1)], then α∈ [s(t2)].

· Satisfaction of the condition concerning α→α′ ∈ [d( )] is proved sepa-
rately below.

• B′
0(〈t1, α〉, 〈t2, α〉): The proof for this case goes similar to the proof for the

case B′
1(〈t1, α〉, 〈t2, α〉), using (B.2) and (B.9) instead of (B.1) and (B.8).

• B′
∗(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ≡ [[H1]]

pa
s and t2 ≡

[[H2]]
pa
s . We proceed by distinguishing the different conditions to be satisfied

by a bisimulation:
· Because [[H1]] ↔ [[H2]], it follows from the definition of transition system

interpretation that, if 〈m1, α
′〉 ∈ Q0

1, then there exists a 〈m2, α
′〉 ∈ Q0

2 such
that B(〈m1, α

′〉, 〈m2, α
′〉). Using Theorem 6, we conclude: if α′ ∈ [s(ψm1

∧N

Xm1)], then there exists an m2 ∈ M2 such that α′ ∈ [s(ψm2
∧N Xm2)]

and B′(〈ψm1
∧N Xm1 , α

′〉, 〈ψm2
∧N Xm2 , α

′〉). Moreover, it follows from the
definition of strong process algebra interpretation that, for i = 1, 2,
〈[[Hi]]

pa
s , α〉

a−→ 〈t′i, α′〉 iff a = ι, t′i ≡ ψmi
∧N Xmi

and α |= ψi(mi) for
some mi ∈ Mi. Because t1 ≡ [[H1]]

pa
s and t2 ≡ [[H2]]

pa
s , we conclude: if

〈t1, α〉 a−→〈t′1, α′〉, then there exists a t′2 ∈ PT such that 〈t2, α〉 a−→〈t′2, α′〉
and B′(〈t′1, α′〉, 〈t′2, α′〉).

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈[[H1]]

pa
s , α〉

a−→〈
√
, α′〉 for all a ∈ A and α′ ∈ Vst. Because

t1 ≡ [[H1]]
pa
s , we conclude: if 〈t1, α〉 a−→〈

√
, α′〉, then 〈t2, α〉 a−→〈

√
, α′〉.

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈[[H1]]

pa
s , α〉

r,ρ7−−→〈t′1, α′〉 for all r ∈ R>, ρ ∈ Er, t
′
1 ∈ PT

and α′ ∈ Vst. Because t1 ≡ [[H1]]
pa
s , we conclude: if 〈t1, α〉

r,ρ7−−→〈t′1, α′〉, then

there exists a t′2 ∈ PT such that 〈t2, α〉
r,ρ7−−→〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉).

· It follows immediately from the definition of strong process algebra in-
terpretation that α∈ [s([[H1]]

pa
s )] and α∈ [s([[H2]]

pa
s )]. Because t1 ≡ [[H1]]

pa
s

and t2 ≡ [[H2]]
pa
s , we conclude: if α∈ [s(t1)], then α∈ [s(t1)].

· Satisfaction of the condition concerning α→α′ ∈ [d( )] is proved sepa-
rately below.

• The symmetric cases B′
1
−1(〈t1, α〉, 〈t2, α〉), B′

0
−1(〈t1, α〉, 〈t2, α〉) and

B′
∗
−1(〈t1, α〉, 〈t2, α〉) go analogous.

Having proved that all other conditions are satisfied, we can easily prove that
the condition concerning α→α′ ∈ [d( )] is satisfied by B′ as well. We proceed
by distinguishing again the six subrelation:
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• B′
1(〈t1, α〉, 〈t2, α〉): In this case, we may assume that B(〈m1, α〉, 〈m2, α〉),

t1 ↔ Xm1 and t2 ↔ Xm2 for some m1 ∈ M1 and m2 ∈ M2. Because
all other conditions are satisfied, we conclude immediately from (B.5): if
α→α′ ∈ [d(t1)], then α→α′ ∈ [d(t2)].

• B′
0(〈t1, α〉, 〈t2, α〉): The proof for this case goes similar to the proof for the

case B′
1(〈t1, α〉, 〈t2, α〉), using (B.6) instead of (B.5).

• B′
∗(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ≡ [[H1]]

pa
s and

t2 ≡ [[H2]]
pa
s . We conclude immediately from the definition of strong pro-

cess algebra interpretation: if α→α′ ∈ [d(t1)], then α→α′ ∈ [d(t2)].
• The symmetric cases B′

1
−1(〈t1, α〉, 〈t2, α〉), B′

0
−1(〈t1, α〉, 〈t2, α〉) and

B′
∗
−1(〈t1, α〉, 〈t2, α〉) go analogous.

This finishes the proof that B′ is a bisimulation. By definition, we have
B′(〈[[H1]]

pa
s , α〉, 〈[[H2]]

pa
s , α〉) for all α ∈ Vst. So, we immediately conclude that

[[H1]]
pa
s
↔ [[H2]]

pa
s . 2

B.2 Proof of Proposition 9

In this section, we prove the following proposition.

Proposition 9. For all hybrid automata H1 and H2 with V(H1) = V(H2):

[[H1]]
pa
w
↔ [[H2]]

pa
w ⇒ [[H1]]

pa
s
↔ [[H2]]

pa
s .

PROOF. Suppose that V(H1) = V(H2) = V . Moreover, suppose that B
is a bisimulation witnessing [[H1]]

pa
w
↔ [[H2]]

pa
w . Without loss of generality, we

assume that B only relates terms reachable from [[H1]]
pa
w and [[H2]]

pa
w . Then

consider the relation

B′ = {(〈t1, α〉, 〈t2, α〉) | B(〈t�1, α〉, 〈t�2, α〉)} ,

where t� is the term t with, in each subterm of the form φ ∩H
V t′, V

replaced by ∅. Note that, by definition, B′ is a symmetric relation and
B′(〈[[H1]]

pa
s , α〉, 〈[[H2]]

pa
s , α〉) for all α ∈ Vst. First, we show that B′ is a bisimula-

tion. Suppose B′(〈t1, α〉, 〈t2, α〉). Then we may assume that B(〈t�1, α〉, 〈t�2, α〉).
We proceed by distinguishing the different conditions to be satisfied by a
bisimulation:

• Suppose 〈t�1, α〉
a−→〈t′1

�, α′〉. Because B(〈t�1, α〉, 〈t�2, α〉), it follows that there
exists a t′2 ∈ PT such that 〈t�2, α〉

a−→〈t′2
�, α′〉 and B(〈t′1

�, α′〉, 〈t′2
�, α′〉). It fol-

lows from the definitions of strong and weak process algebra interpretation
that, for i = 1, 2, 〈ti, α〉 a−→〈t′i, α′〉 iff 〈t�i , α〉

a−→〈t′i
�, α′〉. Hence, we conclude:

if 〈t1, α〉 a−→〈t′1, α′〉, then 〈t2, α〉 a−→〈t′2, α′〉 and B′(〈t′1, α′〉, 〈t′2, α′〉).
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• It follows immediately from the definition of strong process algebra inter-
pretation that not 〈t1, α〉 a−→ 〈

√
, α′〉 for all a ∈ A and α′ ∈ Vst. Hence, we

conclude: if 〈t1, α〉 a−→〈
√
, α′〉, then 〈t2, α〉 a−→〈

√
, α′〉.

• Suppose 〈t�1, α〉
r,ρ7−−→ 〈t′1

�, α′〉 for some ρ that is smooth for V . Because

B(〈t�1, α〉, 〈t�2, α〉), it follows that there exists a t′2 ∈ PT such that 〈t�2, α〉
r,ρ7−−→

〈t′2
�, α′〉 and B(〈t′1

�, α′〉, 〈t′2
�, α′〉). It follows from the definitions of strong

and weak process algebra interpretation that, for i = 1, 2, 〈ti, α〉
r,ρ7−−→〈t′i, α′〉

iff 〈t�i , α〉
r,ρ7−−→ 〈t′i

�, α′〉 and ρ is smooth for V . Hence, we conclude: if

〈t1, α〉
r,ρ7−−→〈t′1, α′〉, then 〈t2, α〉

r,ρ7−−→〈t′2, α′〉 and B′(〈t′1, α′〉, 〈t′2, α′〉).
• Suppose α∈ [s(t�1)]. Because B(〈t�1, α〉, 〈t�2, α〉), it follows that α∈ [s(t�2)]. It

follows from the definitions of strong and weak process algebra interpre-
tation that, for i = 1, 2, α∈ [s(ti)] iff α∈ [s(t�i )]. Hence, we conclude: if
α∈ [s(t1)], then α∈ [s(t2)].

• Suppose α→α′ ∈ [d(t�1)]. Because B(〈t�1, α〉, 〈t�2, α〉), it follows that
α→α′ ∈ [d(t�2)]. It follows from the definitions of strong and weak process
algebra interpretation that, for i = 1, 2, α→α′ ∈ [d(ti)] iff α→α′ ∈ [d(t�i )]
and either α−→α′ |= CV or 〈t�i , α〉 67−→. Hence, we conclude: if α→α′ ∈ [d(t1)],
then α→α′ ∈ [d(t2)].

This finishes the proof that B′ is a bisimulation. By definition, we have
B′(〈[[H1]]

pa
s , α〉, 〈[[H2]]

pa
s , α〉) for all α ∈ Vst. So, we immediately conclude that

[[H1]]
pa
s
↔ [[H2]]

pa
s . 2

B.3 Proof of Proposition 11

In this section, we prove the following proposition.

Proposition 11. For all hybrid automata H:

[[H]]pa
s
↔V(H)∇ [[H]]pa

w .

PROOF. In order to preclude confusion between the variables from the dif-
ferent guarded recursive specifications in contexts where they are used as
constants, we decorate the variables from the guarded recursive specification
that forms part of [[H]]pa

s with the superscript “ ′ ” and the variables from the
guarded recursive specification that forms part of [[H]]pa

w with the superscript
“ ′′ ” wherever they are used as constants.

Suppose that H = (V,M,E, S, µ, ν, ε, χ, φ, ψ). Consider the relation

B = B∗ ∪B0 ∪B1 ∪B∗
−1 ∪B0

−1 ∪B1
−1 ,
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where

B∗ = {(〈[[H]]pa
s , α〉, 〈V ∇ [[H]]pa

w , α〉) | α ∈ Vst} ,

B0 = {(〈ψm
∧N X ′

m, α〉, 〈V ∇ (ψm
∧N X ′′

m), α〉) | α |= φ(m) ∧ α |= ψ(m)} ,

B1 = {(〈t′, α〉, 〈V ∇ t′′, α〉) | ∃m ∈M • t′↔X ′
m ∧ t′′↔X ′′

m ∧ α |= φ(m)} .

Note that, by definition, B is a symmetric relation. First, we show that B is
a bisimulation. Suppose B(〈t1, α〉, 〈t2, α〉). We proceed by distinguishing the
six subrelations:

• B1(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ↔X ′
m, t2 ≡ V ∇ t′′,

t′′ ↔ X ′′
m and α |= φ(m) for some t′′ ∈ PT and m ∈ M . We proceed by

distinguishing the different conditions to be satisfied by a bisimulation:
· Suppose 〈t1, α〉 a−→ 〈t′1, α′〉. Because t1 ↔ X ′

m and t′′ ↔ X ′′
m, it follows

from the definitions of strong and weak process algebra interpretation
that 〈t′′, α〉 a−→ 〈t′2, α′〉, t′1 ↔ X ′

m′ , t′2 ↔ X ′′
m′ and α′ |= φ(m′) for some

t′2 ∈ PT and m′ ∈ M . Then also 〈V ∇ t′′, α〉 a−→ 〈V ∇ t′2, α
′〉. Because

t2 ≡ V ∇ t′′, we conclude: if 〈t1, α〉 a−→〈t′1, α′〉, then there exists a t′′2 ∈ PT
such that 〈t2, α〉 a−→〈t′′2, α′〉 and B(〈t′1, α′〉, 〈t′′2, α′〉).

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈t1, α〉 a−→〈

√
, α′〉 for all a ∈ A and α′ ∈ Vst. Hence, we

conclude: if 〈t1, α〉 a−→〈
√
, α′〉, then 〈t2, α〉 a−→〈

√
, α′〉.

· Suppose 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉. Because t1 ↔ X ′

m and t′′ ↔ X ′′
m, it follows

from the definitions of strong and weak process algebra interpretation that
〈t′′, α〉 r,ρ7−−→〈t′2, α′〉, t′1 ↔ X ′

m, t′2 ↔ X ′′
m, α′ |= φ(m) and α

r,ρ7−−→α′ |=V T for

some t′2 ∈ PT . Then also 〈V ∇ t′′, α〉 r,ρ7−−→〈V ∇ t′2, α
′〉. Because t2 ≡ V ∇ t′′,

we conclude: if 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉, then there exists a t′′2 ∈ PT such that

〈t2, α〉
r,ρ7−−→〈t′′2, α′〉 and B(〈t′1, α′〉, 〈t′′2, α′〉).

· Suppose α∈ [s(t1)]. Because t1 ↔X ′
m and t′′↔X ′′

m, it follows from the def-
initions of strong and weak process algebra interpretation that α∈ [s(t′′)].
Then also α∈ [s(V ∇ t′′)]. Because t2 ≡ V ∇ t′′, we conclude: if α∈ [s(t1)],
then α∈ [s(t2)].

· Suppose α→α′ ∈ [d(t1)]. Because t1 ↔ X ′
m and t′′ ↔ X ′′

m, it follows
from the definitions of strong and weak process algebra interpretation
that α→α′ ∈ [d(t′′)] and either α −→ α′ |= CV or 〈t′′, α〉 67−→. Then also
α→α′ ∈ [d(V ∇ t′′)]. Because t2 ≡ V ∇ t′′, we conclude: if α→α′ ∈ [d(t1)],
then α→α′ ∈ [d(t2)].

• B0(〈t1, α〉, 〈t2, α〉): The proof for this case goes similar to the proof for the
case B1(〈t1, α〉, 〈t2, α〉).

• B∗(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ≡ [[H]]pa
s and t2 ≡

V ∇ [[H]]pa
w . We proceed by distinguishing the different conditions to be

satisfied by a bisimulation:
· Suppose 〈t1, α〉 a−→〈t′1, α′〉. It follows from the definition of strong process
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algebra interpretation that 〈[[H]]pa
s , α〉

a−→〈t′1, α′〉 iff a = ι, t′1 ≡ ψm
∧N X ′

m,
α′ |= φ(m) and α′ |= ψ(m) for some m ∈M . Moreover, it follows from the
definitions of weak process algebra interpretation that 〈[[H]]pa

w , α〉
a−→〈t′2, α′〉

iff a = ι, t′2 ≡ ψm
∧NX ′′

m, α′ |= φ(m) and α′ |= ψ(m) for some m ∈M . Then
also 〈V ∇ [[H]]pa

w , α〉
a−→〈V ∇ t′2, α

′〉 iff a = ι, t′2 ≡ ψm
∧NX ′′

m, α′ |= φ(m) and
α′ |= ψ(m) for some m ∈ M . Because t1 ≡ [[H]]pa

s and t2 ≡ V ∇ [[H]]pa
w ,

we conclude: if 〈t1, α〉 a−→ 〈t′1, α′〉, then there exists a t′′2 ∈ PT such that
〈t2, α〉 a−→〈t′′2, α′〉 and B(〈t′1, α′〉, 〈t′′2, α′〉).

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈[[H]]pa

s , α〉
a−→〈
√
, α′〉 for all a ∈ A and α′ ∈ Vst. Because

t1 ≡ [[H]]pa
s , we conclude: if 〈t1, α〉 a−→〈

√
, α′〉, then 〈t2, α〉 a−→〈

√
, α′〉.

· It follows immediately from the definition of strong process algebra inter-
pretation that not 〈[[H]]pa

s , α〉
r,ρ7−−→ 〈t′1, α′〉 for all r ∈ R>, ρ ∈ Er, t

′
1 ∈ PT

and α′ ∈ Vst. Because t1 ≡ [[H]]pa
s , we conclude: if 〈t1, α〉

r,ρ7−−→〈t′1, α′〉, then

there exists a t′2 ∈ PT such that 〈t2, α〉
r,ρ7−−→〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉).

· It follows immediately from the definitions of strong and weak process
algebra interpretation that α∈ [s([[H]]pa

s )] and α∈ [s([[H]]pa
w )]. Then also

α∈ [s(V ∇ [[H]]pa
w )]. Because t1 ≡ [[H]]pa

s and t2 ≡ V ∇ [[H]]pa
w , we conclude:

if α∈ [s(t1)], then α∈ [s(t2)].
· The case α→α′ ∈ [d(t1)] goes analogous to the previous case.

• The symmetric cases B1
−1(〈t1, α〉, 〈t2, α〉), B0

−1(〈t1, α〉, 〈t2, α〉) and
B∗

−1(〈t1, α〉, 〈t2, α〉) are easy because the line of reasoning used for each
condition in the previous cases can be reversed.

This finishes the proof that B is a bisimulation. By definition, we have
B(〈[[H]]pa

s , α〉, 〈V(H)∇ [[H]]pa
w , α〉) for all α ∈ Vst. So, we immediately conclude

that [[H]]pa
s
↔V(H)∇ [[H]]pa

w . 2

B.4 Proof of Theorem 14

In this section, we prove the following theorem.

Theorem 14. For all hybrid automata H1, H2:

[[H1 ×H2]]
pa
w
↔ ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )) ,

where A′ = (E(H1) ∩ E(H2)) ∪ {ι}, the renaming function f is such that
f(a) = a if a ∈ A′ and f(a) = a if a 6∈ {a | a ∈ A′}, and the communication
function γ is such that γ(a, a) = a if a ∈ A′ and it is undefined otherwise.
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PROOF. Suppose that

Hi = (Vi,Mi, Ei, Si, µi, νi, εi, χi, φi, ψi), for i = 1, 2 .

From the definitions of synchronized product and weak process algebra inter-
pretation, we obtain for [[H1 ×H2]]

pa
w :

[[H1 ×H2]]
pa
w =

∑
(m1,m2)∈M1×M2

˜̃ι · ((ψm1 ∧ ψm2) ∧N 〈X(m1,m2)|F ′〉) , (B.10)

where the guarded recursive specification F ′ consists of the following equation
for each (m1,m2) ∈M1 ×M2:

X(m1,m2)

= (φm1 ∧ φm2) ∩H∅(∑
s∈S′1

χs
uH ˜̃es ·X(m′

s,m2) +
∑
s∈S′2

χs
uH ˜̃es ·X(m1,m′

s)

+
∑

(s1,s2)∈S′3

(χs1 ∧ χs2) uH ˜̃es1 ·X(m′
s1

,m′
s2

) +
∫

u∈(0,∞)

σu
rel(X(m1,m2))

)

with

S ′1 = {s ∈ S1 | ms = m1, es 6∈ E2} ,
S ′2 = {s ∈ S2 | ms = m2, es 6∈ E1} ,
S ′3 = {(s1, s2) ∈ S1 × S2 | ms1 = m1,ms2 = m2, es1 = es2} .

From the definition of weak process algebra interpretation, we obtain for [[Hi]]
pa
w

(i = 1, 2):

[[Hi]]
pa
w =

∑
mi∈Mi

˜̃ι · (ψmi
∧N 〈Xmi

|F ′
i 〉) , (B.11)

where the guarded recursive specification F ′
i consists of the following equation

for each mi ∈Mi:

Xmi
= φmi

∩H∅

( ∑
si∈S∗i

χsi
uH ˜̃esi

·Xm′
si

+
∫

u∈(0,∞)

σu
rel(Xmi

)

)

with

S∗i = {s ∈ Si | ms = mi} .
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We prove the bisimilarity of [[H1 ×H2]]
pa
w and ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )) as fol-

lows. Consider the relation

B = B∗ ∪B0 ∪B1 ∪B∗
−1 ∪B0

−1 ∪B1
−1 ,

where

B∗ = {(〈[[H1 ×H2]]
pa
w , α〉, 〈ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )), α〉) | α ∈ Vst} ,

B0 = {(〈(ψm1 ∧ ψm2) ∧N X(m1,m2), α〉,
〈ρf (∂A′((ψm1

∧N Xm1) ‖ (ψm2
∧N Xm2))), α〉) |

α |= φ1(m1) ∧ φ2(m2) ∧ α |= ψ1(m1) ∧ ψ2(m2)} ,

B1 = {(〈t, α〉, 〈ρf (∂A′(t1 ‖ t2)), α〉) | ∃ (m1,m2) ∈M1 ×M2 •

t↔X(m1,m2) ∧ t1 ↔Xm1 ∧ t2 ↔Xm2 ∧ α |= φ1(m1) ∧ φ2(m2)} .

Note that, by definition, B is a symmetric relation. First, we show that B is a
bisimulation. Suppose B(〈t, α〉, 〈t′, α〉). We proceed by distinguishing the six
subrelations:

• B1(〈t, α〉, 〈t′, α〉): In this case, we may assume that t′ ≡ ρf (∂A′(t1 ‖ t2)),
t ↔ X(m1,m2), t1 ↔ Xm1 , t2 ↔ Xm2 , α |= φ1(m1) and α |= φ2(m2) for
some m1 ∈ M1 and m2 ∈ M2. We proceed by distinguishing the different
conditions to be satisfied by a bisimulation:
· Suppose 〈t, α〉 a−→〈t′′, α′〉. We proceed by distinguishing the three possibil-

ities for a:
a ∈ E1 and a 6∈ E2: It follows, using (B.10), that t′′ ↔ X(m′

1,m2) and
α′ |= φ1(m

′
1) ∧ φ2(m2) for some m′

1 ∈ M1. Because t ↔ X(m1,m2),
t1 ↔ Xm1 and t2 ↔ Xm2 , it also follows, using (B.10) and (B.11),
that 〈t1, α〉 a−→〈t′1, α′〉 for some t′1 with t′1 ↔Xm′

1
and that α′ ∈ [s(t2)].

Moreover, because α |= φ2(m2), we have α→α′ ∈ [d(t2)]. Hence, it
follows that 〈ρf (∂A′(t1 ‖ t2)), α〉 a−→〈ρf (∂A′(t

′
1 ‖ t2)), α′〉. Because t′ ≡

ρf (∂A′(t1 ‖ t2)), we conclude: if 〈t, α〉 a−→ 〈t′′, α′〉, then there exists a
t′′′ ∈ PT such that 〈t′, α〉 a−→〈t′′′, α′〉 and B(〈t′′, α′〉, 〈t′′′, α′〉).
a 6∈ E1 and a ∈ E2: This case is analogous to the previous case.
a ∈ E1 and a ∈ E2: It follows, using (B.10), that t′′ ↔ X(m′

1,m′
2) and

α′ |= φ1(m
′
1) ∧ φ2(m

′
2) for some m′

1 ∈ M1 and m′
2 ∈ M2. Because

t↔ X(m1,m2), t1 ↔ Xm1 and t2 ↔ Xm2 , it also follows, using (B.10)
and (B.11), that 〈t1, α〉 a−→〈t′1, α′〉 for some t′1 with t′1 ↔Xm′

1
and that

〈t2, α〉 a−→ 〈t′2, α′〉 for some t′2 with t′2 ↔ Xm′
2
. Hence, it follows that

〈ρf (∂A′(t1‖t2)), α〉 a−→〈ρf (∂A′(t
′
1‖t′2)), α′〉. Because t′ ≡ ρf (∂A′(t1‖t2)),

we conclude: if 〈t, α〉 a−→〈t′′, α′〉, then there exists a t′′′ ∈ PT such that
〈t′, α〉 a−→〈t′′′, α′〉 and B(〈t′′, α′〉, 〈t′′′, α′〉).
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· It follows immediately from (B.10) that not 〈t, α〉 a−→〈
√
, α′〉 for all a ∈ A

and α′ ∈ Vst. Hence, we conclude: if 〈t, α〉 a−→〈
√
, α′〉, then 〈t′, α〉 a−→〈

√
, α′〉.

· Suppose 〈t, α〉 r,ρ7−−→〈t′′, α′〉. It follows, using (B.10), that t′′↔X(m1,m2) and
α′ |= φ1(m1) ∧ φ2(m2). Because t ↔ X(m1,m2), t1 ↔ Xm1 and t2 ↔ Xm2 ,

it also follows, using (B.10) and (B.11), that 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉 for some

t′1 with t′1 ↔ Xm1 and that 〈t2, α〉
r,ρ7−−→〈t′2, α′〉 for some t′2 with t′2 ↔ Xm2 .

Hence, it follows that 〈ρf (∂A′(t1 ‖ t2)), α〉
r,ρ7−−→〈ρf (∂A′(t

′
1 ‖ t′2)), α′〉. Because

t′ ≡ ρf (∂A′(t1 ‖ t2)), we conclude: if 〈t, α〉 r,ρ7−−→〈t′′, α′〉, then there exists a

t′′′ ∈ PT such that 〈t′, α〉 r,ρ7−−→〈t′′′, α′〉 and B(〈t′′, α′〉, 〈t′′′, α′〉).
· Suppose α∈ [s(t)]. Because t ↔ X(m1,m2), t1 ↔ Xm1 and t2 ↔ Xm2 , it

follows, using (B.10) and (B.11), that α∈ [s(t1)] and α∈ [s(t2)]. Then
also α∈ [s(ρf (∂A′(t1 ‖ t2)))]. Because t′ ≡ ρf (∂A′(t1 ‖ t2)), we conclude:
if α∈ [s(t)], then α∈ [s(t′)].

· Suppose α→α′ ∈ [d(t)]. Because t↔X(m1,m2), t1 ↔Xm1 and t2 ↔Xm2 , it
follows, using (B.10) and (B.11), that α→α′ ∈ [d(t1)] and α→α′ ∈ [d(t2)]
and also that α∈ [s(t1)] and α∈ [s(t2)]. Then also α→α′ ∈ [d(ρf (∂A′(t1 ‖
t2)))]. Because t′ ≡ ρf (∂A′(t1 ‖ t2)), we conclude: if α→α′ ∈ [d(t)], then
α→α′ ∈ [d(t′)].

• B0(〈t, α〉, 〈t′, α〉): The proof for this case goes similar to the proof for the
case B1(〈t, α〉, 〈t′, α〉).

• B∗(〈t, α〉, 〈t′, α〉): In this case, we may assume that t ≡ [[H1 ×H2]]
pa
w and

t′ ≡ ρf (∂A′([[H1]]
pa
w ‖ [[H2]]

pa
w )). We proceed by distinguishing the different

conditions to be satisfied by a bisimulation:
· Suppose 〈t, α〉 a−→〈t′′, α′〉. It follows, using (B.10), that 〈[[H1 ×H2]]

pa
w , α〉

a−→
〈t′′, α′〉 iff a = ι, t′′ ≡ (ψm1 ∧ ψm2) ∧N X(m1,m2), α

′ |= φ1(m1) ∧ φ2(m2) and
α′ |= ψ1(m1) ∧ ψ2(m2) for some m1 ∈ M1 and m2 ∈ M2. Moreover, it
follows, using (B.11), that, for i = 1, 2, 〈[[Hi]]

pa
w , α〉

a−→ 〈t′i, α′〉 iff a = ι,
t′i ≡ ψmi

∧N Xmi
, α′ |= φi(mi) and α′ |= ψi(mi) for some mi ∈ Mi. Then

also 〈ρf (∂A′([[H1]]
pa
w ‖ [[H2]]

pa
w )), α〉 a−→〈t′′′, α′〉 iff a = ι, t′′′ ≡ ρf (∂A′((ψm1

∧N

Xm1) ‖ (ψm2
∧N Xm2))), α

′ |= φ1(m1), α
′ |= ψ1(m1), α

′ |= φ2(m2) and
α′ |= ψ2(m2) for some m1 ∈ M1 and m2 ∈ M2. Because t ≡ [[H1 ×H2]]

pa
w

and t′ ≡ ρf (∂A′([[H1]]
pa
w ‖ [[H2]]

pa
w )), we conclude: if 〈t, α〉 a−→ 〈t′′, α′〉, then

there exists a t′′′ ∈ PT such that 〈t′, α〉 a−→〈t′′′, α′〉 and B(〈t′′, α′〉, 〈t′′′, α′〉).
· It follows immediately from (B.10) that not 〈[[H1 ×H2]]

pa
w , α〉

a−→ 〈
√
, α′〉

for all a ∈ A and α′ ∈ Vst. Because t ≡ [[H1 ×H2]]
pa
w , we conclude: if

〈t, α〉 a−→〈
√
, α′〉, then 〈t′, α〉 a−→〈

√
, α′〉.

· It follows immediately from (B.10) that not 〈[[H1 ×H2]]
pa
w , α〉

r,ρ7−−→ 〈t′′, α′〉
for all r ∈ R>, ρ ∈ Er, t

′′ ∈ PT and α′ ∈ Vst. Because t ≡ [[H1 ×H2]]
pa
w ,

we conclude: if 〈t, α〉 r,ρ7−−→ 〈t′′, α′〉, then there exists a t′′′ ∈ PT such that

〈t′, α〉 r,ρ7−−→〈t′′′, α′〉 and B(〈t′′, α′〉, 〈t′′′, α′〉).
· It follows immediately from (B.10) and (B.11) that α∈ [s([[H1 ×H2]]

pa
w )],

α∈ [s([[H1]]
pa
w )] and α∈ [s([[H2]]

pa
w )]. Then also α∈ [s(ρf (∂A′([[H1]]

pa
w ‖

[[H2]]
pa
w )))]. Because t ≡ [[H1 ×H2]]

pa
w and t′ ≡ ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )),

we conclude: if α∈ [s(t)], then α∈ [s(t′)].
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· The case α→α′ ∈ [d(t)] goes analogous to the previous case.
• The symmetric cases B1

−1(〈t, α〉, 〈t′′, α〉), B0
−1(〈t, α〉, 〈t′′, α〉) and

B∗
−1(〈t, α〉, 〈t′′, α〉) are easy because the line of reasoning used for

each condition in the previous cases can be reversed.

This finishes the proof that B is a bisimulation. By definition, we have
B(〈[[H1 ×H2]]

pa
w , α〉, 〈ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )), α〉) for all α ∈ Vst. So, we im-

mediately conclude that [[H1 ×H2]]
pa
w
↔ ρf (∂A′([[H1]]

pa
w ‖ [[H2]]

pa
w )). 2

B.5 Proof of Theorem 25

In this section, we prove the following theorem.

Theorem 25. For all continuity controlled hybrid automata H and V ′ ⊆
V(H):

[[V ′ ∇H]]pa
cc
↔ V ′ ∇ [[H]]pa

cc .

PROOF. Suppose that H = (V,W,M,E, S, µ, ν, ε, χ, φ, ψ). From the def-
initions of localization and process algebra interpretation, we obtain for
[[V ′ ∇H]]pa

cc :

[[V ′ ∇H]]pa
cc =

∑
m∈M

˜̃ι · (ψm
∧N 〈Xm|F ′〉) , (B.12)

where the guarded recursive specification F ′ consists of the following equation
for each m ∈M :

Xm = φm
∩H

V ′∪W

(∑
s∈S

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)
.

From the definition of process algebra interpretation, we obtain for [[H]]pa
cc :

[[H]]pa
cc =

∑
m∈M

˜̃ι · (ψm
∧N 〈Xm|F 〉) , (B.13)

where the guarded recursive specification F consists of the following equation
for each m ∈M :

Xm = φm
∩H

W

(∑
s∈S

χs
uH ˜̃es ·Xm′

s
+

∫
u∈(0,∞)

σu
rel(Xm)

)
.
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In order to preclude confusion between the variables from the different guarded
recursive specifications in contexts where they are used as constants, we dec-
orate the variables from the guarded recursive specification that forms part of
[[V ′ ∇H]]pa

cc with the superscript “ ′ ” and the variables from the guarded recur-
sive specification that forms part of [[H]]pa

cc with the superscript “ ′′ ” wherever
they are used as constants.

We prove the bisimilarity of [[V ′ ∇H]]pa
cc and V ′ ∇ [[H]]pa

cc as follows. Consider
the relation

B = B∗ ∪B0 ∪B1 ∪B∗
−1 ∪B0

−1 ∪B1
−1 ,

where

B∗ = {(〈[[V ′ ∇H]]pa
cc , α〉, 〈V ′ ∇ [[H]]pa

cc , α〉) | α ∈ Vst} ,

B0 = {(〈ψm
∧N X ′

m, α〉, 〈V ′ ∇ (ψm
∧N X ′′

m), α〉) | α |= φ(m) ∧ α |= ψ(m)} ,

B1 = {(〈t′, α〉, 〈V ′ ∇ t′′, α〉) | ∃m ∈M • t′↔X ′
m ∧ t′′↔X ′′

m ∧ α |= φ(m)} .

Note that, by definition, B is a symmetric relation. First, we show that B is
a bisimulation. Suppose B(〈t1, α〉, 〈t2, α〉). We proceed by distinguishing the
six subrelations:

• B1(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ↔X ′
m, t2 ≡ V ′∇ t′′,

t′′ ↔ X ′′
m and α |= φ(m) for some t′′ ∈ PT and m ∈ M . We proceed by

distinguishing the different conditions to be satisfied by a bisimulation:
· Suppose 〈t1, α〉 a−→ 〈t′1, α′〉. Because t1 ↔ X ′

m and t′′ ↔ X ′′
m, it follows,

using (B.12) and (B.13), that 〈t′′, α〉 a−→〈t′2, α′〉, t′1 ↔ X ′
m′ , t′2 ↔ X ′′

m′ and
α′ |= φ(m′) for some t′2 ∈ PT and m′ ∈ M . Then also 〈V ′ ∇ t′′, α〉 a−→
〈V ′ ∇ t′2, α

′〉. Because t2 ≡ V ′ ∇ t′′, we conclude: if 〈t1, α〉 a−→〈t′1, α′〉, then
there exists a t′′2 ∈ PT such that 〈t2, α〉 a−→〈t′′2, α′〉 and B(〈t′1, α′〉, 〈t′′2, α′〉).

· It follows immediately from (B.12) that not 〈t1, α〉 a−→〈
√
, α′〉 for all a ∈ A

and α′ ∈ Vst. Hence, we conclude: if 〈t1, α〉 a−→ 〈
√
, α′〉, then 〈t2, α〉 a−→

〈
√
, α′〉.

· Suppose 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉. Because t1 ↔ X ′

m and t′′ ↔ X ′′
m, it follows,

using (B.12) and (B.13), that 〈t′′, α〉 r,ρ7−−→ 〈t′2, α′〉, t′1 ↔ X ′
m, t′2 ↔ X ′′

m,

α′ |= φ(m) and α
r,ρ7−−→α′ |=V ′ T for some t′2 ∈ PT . Then also 〈V ′∇t′′, α〉 r,ρ7−−→

〈V ′∇ t′2, α
′〉. Because t2 ≡ V ′∇ t′′, we conclude: if 〈t1, α〉

r,ρ7−−→〈t′1, α′〉, then

there exists a t′′2 ∈ PT such that 〈t2, α〉
r,ρ7−−→〈t′′2, α′〉 and B(〈t′1, α′〉, 〈t′′2, α′〉).

· Suppose α∈ [s(t1)]. Because t1 ↔X ′
m and t′′↔X ′′

m, it follows, using (B.12)
and (B.13), that α∈ [s(t′′)]. Then also α∈ [s(V ′∇t′′)]. Because t2 ≡ V ′∇t′′,
we conclude: if α∈ [s(t1)], then α∈ [s(t2)].

· Suppose α→α′ ∈ [d(t1)]. Because t1 ↔ X ′
m and t′′ ↔ X ′′

m, it follows, us-
ing (B.12) and (B.13), that α→α′ ∈ [d(t′′)] and either α −→ α′ |= CV ′ or

60



〈t′′, α〉 67−→. Then also α→α′ ∈ [d(V ′ ∇ t′′)]. Because t2 ≡ V ′ ∇ t′′, we con-
clude: if α→α′ ∈ [d(t1)], then α→α′ ∈ [d(t2)].

• B0(〈t1, α〉, 〈t2, α〉): The proof for this case goes similar to the proof for the
case B1(〈t1, α〉, 〈t2, α〉).

• B∗(〈t1, α〉, 〈t2, α〉): In this case, we may assume that t1 ≡ [[V ′ ∇H]]pa
cc and

t2 ≡ V ′ ∇ [[H]]pa
cc . We proceed by distinguishing the different conditions to

be satisfied by a bisimulation:
· Suppose 〈t1, α〉 a−→〈t′1, α′〉. It follows, using (B.12), that 〈[[V ′ ∇H]]pa

cc , α〉
a−→

〈t′1, α′〉 iff a = ι, t′1 ≡ ψm
∧N X ′

m, α′ |= φ(m) and α′ |= ψ(m) for some
m ∈ M . Moreover, it follows, using (B.13), that 〈[[H]]pa

cc , α〉
a−→ 〈t′2, α′〉 iff

a = ι, t′2 ≡ ψm
∧N X ′′

m, α′ |= φ(m) and α′ |= ψ(m) for some m ∈ M .
Then also 〈V ′ ∇ [[H]]pa

cc , α〉
a−→ 〈V ′ ∇ t′2, α

′〉 iff a = ι, t′2 ≡ ψm
∧N X ′′

m,
α′ |= φ(m) and α′ |= ψ(m) for some m ∈ M . Because t1 ≡ [[V ′ ∇H]]pa

cc

and t2 ≡ V ′ ∇ [[H]]pa
cc , we conclude: if 〈t1, α〉 a−→〈t′1, α′〉, then there exists a

t′2 ∈ PT such that 〈t2, α〉 a−→〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉).
· It follows immediately from (B.12) that not 〈[[V ′ ∇H]]pa

cc , α〉
a−→ 〈

√
, α′〉

for all a ∈ A and α′ ∈ Vst. Because t1 ≡ [[V ′ ∇H]]pa
cc , we conclude: if

〈t1, α〉 a−→〈
√
, α′〉, then 〈t2, α〉 a−→〈

√
, α′〉.

· It follows immediately from (B.12) that not 〈[[V ′ ∇H]]pa
cc , α〉

r,ρ7−−→ 〈t′1, α′〉
for all r ∈ R>, ρ ∈ Er, t

′
1 ∈ PT and α′ ∈ Vst. Because t1 ≡ [[V ′ ∇H]]pa

cc ,

we conclude: if 〈t1, α〉
r,ρ7−−→ 〈t′1, α′〉, then there exists a t′2 ∈ PT such that

〈t2, α〉
r,ρ7−−→〈t′2, α′〉 and B(〈t′1, α′〉, 〈t′2, α′〉).

· It follows immediately from (B.12) and (B.13) that α∈ [s([[V ′ ∇H]]pa
cc )] and

α∈ [s([[H]]pa
cc )]. Then also α∈ [s(V ′∇[[H]]pa

cc )]. Because t1 ≡ [[V ′ ∇H]]pa
cc and

t2 ≡ V ′ ∇ [[H]]pa
cc , we conclude: if α∈ [s(t1)], then α∈ [s(t2)].

· The case α→α′ ∈ [d(t1)] goes analogous to the previous case.
• The symmetric cases B1

−1(〈t1, α〉, 〈t2, α〉), B0
−1(〈t1, α〉, 〈t2, α〉) and

B∗
−1(〈t1, α〉, 〈t2, α〉) are easy because the line of reasoning used for each

condition in the previous cases can be reversed.

This finishes the proof that B is a bisimulation. By definition, we have
B(〈[[V ′ ∇H]]pa

cc , α〉, 〈V ′ ∇ [[H]]pa
cc , α〉) for all α ∈ Vst. So, we immediately con-

clude that [[V ′ ∇H]]pa
cc
↔ V ′ ∇ [[H]]pa

cc . 2
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